SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Bohlender D.) "

Search: WFRF:(Bohlender D.)

  • Result 1-15 of 15
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Wade, G. A., et al. (author)
  • The MiMeS survey of magnetism in massive stars : introduction and overview
  • 2016
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 456:1, s. 2-22
  • Journal article (other academic/artistic)abstract
    • The MiMeS (Magnetism in Massive Stars) project is a large-scale, high-resolution, sensitive spectropolarimetric investigation of the magnetic properties of O- and early B-type stars. Initiated in 2008 and completed in 2013, the project was supported by three Large Program allocations, as well as various programmes initiated by independent principal investigators, and archival resources. Ultimately, over 4800 circularly polarized spectra of 560 O and B stars were collected with the instruments ESPaDOnS (Echelle SpectroPolarimetric Device for the Observation of Stars) at the Canada-France-Hawaii Telescope, Narval at the Telescope Bernard Lyot and HARPSpol at the European Southern Observatory La Silla 3.6 m telescope, making MiMeS by far the largest systematic investigation of massive star magnetism ever undertaken. In this paper, the first in a series reporting the general results of the survey, we introduce the scientific motivation and goals, describe the sample of targets, review the instrumentation and observational techniques used, explain the exposure time calculation designed to provide sensitivity to surface dipole fields above approximately 100 G, discuss the polarimetric performance, stability and uncertainty of the instrumentation, and summarize the previous and forthcoming publications.
  •  
2.
  • Shultz, M. E., et al. (author)
  • MOBSTER - VI. The crucial influence of rotation on the radio magnetospheres of hot stars
  • 2022
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 513:1, s. 1429-1448
  • Journal article (peer-reviewed)abstract
    • Numerous magnetic hot stars exhibit gyrosynchrotron radio emission. The source electrons were previously thought to be accelerated to relativistic velocities in the current sheet formed in the middle magnetosphere by the wind opening magnetic field lines. However, a lack of dependence of radio luminosity on the wind power, and a strong dependence on rotation, has recently challenged this paradigm. We have collected all radio measurements of magnetic early-type stars available in the literature. When constraints on the magnetic field and/or the rotational period are not available, we have determined these using previously unpublished spectropolarimetric and photometric data. The result is the largest sample of magnetic stars with radio observations that has yet been analysed: 131 stars with rotational and magnetic constraints, of which 50 are radio-bright. We confirm an obvious dependence of gyrosynchrotron radiation on rotation, and furthermore find that accounting for rotation neatly separates stars with and without detected radio emission. There is a close correlation between H alpha emission strength and radio luminosity. These factors suggest that radio emission may be explained by the same mechanism responsible for H alpha emission from centrifugal magnetospheres, i.e. centrifugal breakout (CBO), however, while the H alpha-emitting magnetosphere probes the cool plasma before breakout, radio emission is a consequence of electrons accelerated in centrifugally driven magnetic reconnection.
  •  
3.
  • Fossati, L., et al. (author)
  • A detailed spectropolarimetric analysis of the planet-hosting star WASP-12
  • 2010
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 720:1, s. 872-886
  • Journal article (peer-reviewed)abstract
    • The knowledge of accurate stellar parameters is paramount in several fields of stellar astrophysics, particularly in the study of extrasolar planets, where often the star is the only visible component and therefore used to infer the planet's fundamental parameters. Another important aspect of the analysis of planetary systems is the stellar activity and the possible star planet interaction. Here, we present a self-consistent abundance analysis of the planet-hosting star WASP-12 and a high-precision search for a structured stellar magnetic field on the basis of spectropolarimetric observations obtained with the ESPaDOnS spectropolarimeter. Our results show that the star does not have a structured magnetic field, and that the obtained fundamental parameters are in good agreement with what was previously published. In addition, we derive improved constraints on the stellar age (1.0-2.65 Gyr), mass (1.23-1.49 M/M-circle dot), and distance (295-465 pc). WASP-12 is an ideal object in which to look for pollution signatures in the stellar atmosphere. We analyze the WASP-12 abundances as a function of the condensation temperature and compare them with those published by several other authors on planet-hosting and non-planet-hosting stars. We find hints of atmospheric pollution in WASP-12's photosphere but are unable to reach firm conclusions with our present data. We conclude that a differential analysis based on WASP-12 twins will probably clarify whether an atmospheric pollution is present as well as the nature of this pollution and its implications in planet formation and evolution. We also attempt the direct detection of the circumstellar disk through infrared excess, but without success.
  •  
4.
  • Fossati, L., et al. (author)
  • Searching for a gas cloud surrounding the WASP-18 planetary system
  • 2014
  • In: Astrophysics and Space Science. - : Springer Science and Business Media LLC. - 0004-640X .- 1572-946X. ; 354:1, s. 21-28
  • Journal article (peer-reviewed)abstract
    • Near-UV (NUV) Hubble Space Telescope (HST) observations of the extreme hot-Jupiter WASP-12b revealed the presence of diffuse exospheric gas extending beyond the planet's Roche lobe. Furthermore the NUV observations showed a complete lack of the normally bright core emission of the Mg ii h&k resonance lines, in agreement with the measured anomalously low stellar activity index (logR' (HK) ). Comparisons with other distant and inactive stars, and the analysis of radio and optical measurements of the intervening interstellar medium (ISM), led us to the conclusion that the system is surrounded by a circumstellar gas cloud, likely formed of material lost by the planet. Similar anomalous logR' (HK) index deficiencies might therefore signal the presence of translucent circumstellar gas around other stars hosting evaporating planets; we identified five such systems and WASP-18 is one of them. Both radio and optical observations of the region surrounding WASP-18 point towards a negligible ISM absorption along the WASP-18 line of sight. Excluding the unlikely possibility of an intrinsic anomalously low stellar activity, we conclude that the system is probably surrounded by a circumstellar gas cloud, presumably formed of material lost by the planet. Nevertheless only a far-UV spectrum of the star would provide a definite answer. Theoretical modelling suggests WASP-18b undergoes negligible mass loss, in contrast to the probable presence of a circumstellar gas cloud formed of material lost by the planet. The solution might be the presence either of an extra energy source driving mass loss (e.g., the reconnection of the stellar and planetary magnetic fields inside the planet atmosphere) or of an evaporating third body (e.g., moon).
  •  
5.
  • Grunhut, H, et al. (author)
  • Discovery of a magnetic field in the O9 sub-giant star HD 57682 by the MiMeS Collaboration
  • 2009
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966 .- 1745-3925 .- 1745-3933. ; 400:1, s. L94-L98
  • Journal article (peer-reviewed)abstract
    • We report the detection of a strong, organized magnetic field in the O9IV star HD 57682, using spectropolarimetric observations obtained with ESPaDOnS at the 3.6-m Canada-France-Hawaii Telescope within the context of the Magnetism in Massive Stars (MiMeS) Large Programme. From the fitting of our spectra using non-local thermodynamic equilibrium model atmospheres, we determined that HD 57682 is a 17(-9)(+19)M(circle dot) star with a radius of 7.0(-1.8)(+2.4)R(circle dot) and a relatively low mass-loss rate of 1.4(-0.95)(+3.1) x 10(-9) M-circle dot yr(-1). The photospheric absorption lines are narrow, and we use the Fourier transform technique to infer v sin i = 15 +/- 3 km s(-1). This v sin i implies a maximum rotational period of 31.5 d, a value qualitatively consistent with the observed variability of the optical absorption and emission lines, as well as the Stokes V profiles and longitudinal field. Using a Bayesian analysis of the velocity-resolved Stokes V profiles to infer the magnetic field characteristics, we tentatively derive a dipole field strength of 1680(-356)(+134)G. The derived field strength and wind characteristics imply a wind that is strongly confined by the magnetic field.
  •  
6.
  • Neiner, C., et al. (author)
  • HD96446 : a puzzle for current models of magnetospheres?
  • 2012
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 546, s. A44-
  • Journal article (peer-reviewed)abstract
    • Context. Oblique magnetic dipole fields have been detected in Bp stars for several decades, and more recently also in normal massive stars. In the past decade, it has been established that stellar magnetospheres form through the channelling and confinement of an outflowing stellar wind by the stellar magnetic field. This explains specific properties of magnetic massive stars, such as their rotationally modulated photometric light curve, H alpha emission, UV spectra, and X-ray emission. Aims. In the framework of the MiMeS (Magnetism in Massive Stars) project, four HARPSpol observations of the magnetic Bp star HD96446 have been obtained. HD96446 is very similar to sigma Ori E, the prototype of centrifugally supported rigidly rotating magnetospheres (CM) and is therefore a perfect target to study the validity of this model. Methods. We first updated the basic parameters of HD96446 and studied its spectral variability. We then analysed the HARPSpol spectropolarimetric observations using the LSD (Least-Squares Deconvolution) technique to derive the longitudinal magnetic field and Zeeman signatures in various types of lines. With LTE spectrum modelling, we derived constraints on the field modulus, the rotational velocity, and the inclination angle, and measured non-solar abundances of several elements which we checked with NLTE modelling. Finally, we calculated the magnetic confinement and Alfven and Kepler radii from the stellar magnetic field and rotation properties, and we examined the various types of magnetospheres that may be present around HD96446. Results. We find radial velocity variations with a period around 2.23 h, that we attribute to beta Cep-type p-mode pulsations. We detect clear direct magnetic Stokes V signatures with slightly varying values of the longitudinal magnetic field, typical of an oblique dipole rotator, and show that these signatures are not much perturbed by the radial velocity variations. The magnetic confinement parameter and Alfven radius in the centrifugally supported, rigidly-rotating magnetosphere (CM) model points towards the presence of confined material in the magnetosphere. However, HD96446 does not present signatures of the presence of such confined material, such as H alpha emission. Conclusions. We conclude that, even though HD96446 fulfills all criteria to host a CM with confined material, it does not. The rotation period must be significantly revised, or another model of magnetosphere with a leakage mechanism will need to be developed to explain the magnetic environment of this star.
  •  
7.
  • Shultz, Matthew E., et al. (author)
  • The magnetic early B-type stars I : magnetometry and rotation
  • 2018
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press. - 0035-8711 .- 1365-2966. ; 475:4, s. 5144-5178
  • Journal article (peer-reviewed)abstract
    • The rotational and magnetic properties of many magnetic hot stars are poorly characterized, therefore the Magnetism in Massive Stars and Binarity and Magnetic Interactions in various classes of Stars collaborations have collected extensive high-dispersion spectropo-larimetric data sets of these targets. We present longitudinal magnetic field measurements < B-z > for 52 early B-type stars (B5-B0), with which we attempt to determine their rotational periods P-rot. Supplemented with high-resolution spectroscopy, low-resolution Dominion As-trophysical Observatory circular spectropolarimetry, and archival Hipparcos photometry, we determined P-rot for 10 stars, leaving only five stars for which P-rot could not be determined. Rotational ephemerides for 14 stars were refined via comparison of new to historical magnetic measurements. The distribution of P-rot is very similar to that observed for the cooler Ap/Bp stars. We also measured v sin i and v(mac) for all stars. Comparison to non-magnetic stars shows that v sin i is much lower for magnetic stars, an expected consequence of magnetic braking. We also find evidence that v(mac) is lower for magnetic stars. Least-squares deconvolution profiles extracted using single-element masks revealed widespread, systematic discrepancies in < B-z > between different elements: this effect is apparent only for chemically peculiar stars, suggesting it is a consequence of chemical spots. Sinusoidal fits to H line < B-z > measurements (which should be minimally affected by chemical spots), yielded evidence of surface magnetic fields more complex than simple dipoles in six stars for which this has not previously been reported; however, in all six cases, the second- and third-order amplitudes are small relative to the first-order (dipolar) amplitudes.
  •  
8.
  • Shultz, M. E., et al. (author)
  • The magnetic early B-type stars - IV. Breakout or leakage? : H α emission as a diagnostic of plasma transport in centrifugal magnetospheres
  • 2020
  • In: Monthly notices of the Royal Astronomical Society. - : OXFORD UNIV PRESS. - 0035-8711 .- 1365-2966. ; 499:4, s. 5379-5395
  • Journal article (peer-reviewed)abstract
    • Rapidly rotating early-type stars with strong magnetic fields frequently show H alpha emission originating in centrifugal magnetospheres (CMs), circumstellar structures in which centrifugal support due to magnetically enforced corotation of the magnetically confined plasma enables it to accumulate to high densities. It is not currently known whether the CM plasma escapes via centrifugal breakout (CB), or by an unidentified leakage mechanism. We have conducted the first comprehensive examination of the H alpha emission properties of all stars currently known to display CM-pattern emission. We find that the onset of emission is dependent primarily on the area of the CM, which can be predicted simply by the value B-K of the magnetic field at the Kepler corotation radius R-K. Emission strength is strongly sensitive to both CM area and B-K. Emission onset and strength are not dependent on effective temperature, luminosity, or mass-loss rate. These results all favour a CB scenario; however, the lack of intrinsic variability in any CM diagnostics indicates that CB must be an essentially continuous process, i.e. it effectively acts as a leakage mechanism. We also show that the emission profile shapes are approximately scale-invariant, i.e. they are broadly similar across a wide range of emission strengths and stellar parameters. While the radius of maximum emission correlates closely as expected to R-K, it is always larger, contradicting models that predict that emission should peak at R-K.
  •  
9.
  • Wang, Anqi, et al. (author)
  • Characterizing prostate cancer risk through multi-ancestry genome-wide discovery of 187 novel risk variants
  • 2023
  • In: Nature Genetics. - : Springer Nature. - 1061-4036 .- 1546-1718. ; 55:12, s. 2065-2074
  • Journal article (peer-reviewed)abstract
    • The transferability and clinical value of genetic risk scores (GRSs) across populations remain limited due to an imbalance in genetic studies across ancestrally diverse populations. Here we conducted a multi-ancestry genome-wide association study of 156,319 prostate cancer cases and 788,443 controls of European, African, Asian and Hispanic men, reflecting a 57% increase in the number of non-European cases over previous prostate cancer genome-wide association studies. We identified 187 novel risk variants for prostate cancer, increasing the total number of risk variants to 451. An externally replicated multi-ancestry GRS was associated with risk that ranged from 1.8 (per standard deviation) in African ancestry men to 2.2 in European ancestry men. The GRS was associated with a greater risk of aggressive versus non-aggressive disease in men of African ancestry (P = 0.03). Our study presents novel prostate cancer susceptibility loci and a GRS with effective risk stratification across ancestry groups.
  •  
10.
  • Yakunin, I., et al. (author)
  • The surface magnetic field and chemical abundance distributions of the B2V helium-strong star HD 184927
  • 2015
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 447:2, s. 1418-1438
  • Journal article (peer-reviewed)abstract
    • A new time series of high-resolution Stokes I and V spectra of the magnetic B2V star HD 184927 has been obtained in the context of the Magnetism in Massive Stars Large Program with an Echelle SpectroPolarimetric Device for the Observation of Stars (ESPaDOnS) spectropolarimeter at the Canada-France-Hawaii Telescope and dimaPol liquid crystal spectropolarimeter at 1.8-m telescope of Dominion Astrophysical Observatory. We model the optical and UV spectrum obtained from the International Ultraviolet Explorer (IUE) archive to infer the stellar physical parameters. Using magnetic field measurements, we derive an improved rotational period of 9.531 02 +/- 0.0007 d. We infer the longitudinal magnetic field from lines of H, He, and various metals, revealing large differences between the apparent field strength variations determined from different elements. Magnetic Doppler Imaging using He and O lines yields strongly non-uniform surface distributions of these elements. We demonstrate that the diversity of longitudinal field variations can be understood as due to the combination of element-specific surface abundance distributions in combination with a surface magnetic field that is comprised of dipolar and quadrupolar components. We have reanalysed IUE high-resolution spectra, confirming strong modulation of wind-sensitive C IV and S IV resonance lines. However, we are unable to detect any modulation of the Ha profile attributable to a stellar magnetosphere. We conclude that HD 184927 hosts a centrifugal magnetosphere (eta(*) similar to 2.4(-1.1)(+22) x 10(4)), albeit one that is undetectable at optical wavelengths. The magnetic braking time-scale of HD 184927 is computed to be tau(J) = 0.96 or 5.8 Myr. These values are consistent with the slow rotation and estimated age of the star.
  •  
11.
  • Alecian, E., et al. (author)
  • Discovery of new magnetic early-B stars within the MiMeS HARPSpol survey
  • 2014
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 567, s. A28-
  • Journal article (peer-reviewed)abstract
    • Context. The Magnetism in Massive Stars (MiMeS) project aims at understanding the origin of the magnetic fields in massive stars as well as their impact on stellar internal structure, evolution, and circumstellar environment. Aims. One of the objectives of the MiMeS project is to provide stringent observational constraints on the magnetic fields of massive stars; however, identification of magnetic massive stars is challenging, as only a few percent of high-mass stars host strong fields detectable with the current instrumentation. Hence, one of the first objectives of the MiMeS project was to search for magnetic objects among a large sample of massive stars, and to build a sub-sample for in-depth follow-up studies required to test the models and theories of fossil field origins, magnetic wind confinement and magnetospheric properties, and magnetic star evolution. Methods. We obtained high-resolution spectropolarimetric observations of a large number of OB stars thanks to three large programs (LP) of observations that have been allocated on the high-resolution spectropolarimeters ESPaDOnS, Narval, and the polarimetric module HARPSpol of the HARPS spectrograph. We report here on the methods and first analysis of the HARPSpol magnetic detections. We identified the magnetic stars using a multi-line analysis technique. Then, when possible, we monitored the new discoveries to derive their rotation periods, which are critical for follow-up and magnetic mapping studies. We also performed a first-look analysis of their spectra and identified obvious spectral anomalies (e. g., surface abundance peculiarities, Ha emission), which are also of interest for future studies. Results. In this paper, we focus on eight of the 11 stars in which we discovered or confirmed a magnetic field from the HARPSpol LP sample (the remaining three were published in a previous paper). Seven of the fields were detected in early-type Bp stars, while the last field was detected in the Ap companion of a normal early B-type star. We report obvious spectral and multiplicity properties, as well as our measurements of their longitudinal field strengths, and their rotation periods when we are able to derive them. We also discuss the presence or absence of Ha emission with respect to the theory of centrifugally-supported magnetospheres.
  •  
12.
  • Fossati, L., et al. (author)
  • Absorbing gas around the WASP-12 planetary system
  • 2013
  • In: ASTROPHYSICAL JOURNAL LETTERS. - 2041-8205. ; 766:2, s. L20-
  • Journal article (peer-reviewed)abstract
    • Near-UV observations of the planet host star WASP-12 uncovered the apparent absence of the normally conspicuous core emission of the Mg II h and k resonance lines. This anomaly could be due either to (1) a lack of stellar activity, which would be unprecedented for a solar-like star of the imputed age of WASP-12 or (2) extrinsic absorption, from the intervening interstellar medium (ISM) or from material within the WASP-12 system itself, presumably ablated from the extreme hot Jupiter WASP-12 b. HIRES archival spectra of the Ca II H and K lines of WASP-12 show broad depressions in the line cores, deeper than those of other inactive and similarly distant stars and similar to WASP-12's Mg II h and k line profiles. We took high-resolution ESPaDOnS and FIES spectra of three early-type stars within 20' of WASP-12 and at similar distances, which show the ISM column is insufficient to produce the broad Ca II depression observed in WASP-12. The EBHIS H I column density map supports and strengthens this conclusion. Extrinsic absorption by material local to the WASP-12 system is therefore the most likely cause of the line core anomalies. Gas escaping from the heavily irradiated planet could form a stable and thick circumstellar disk/cloud. The anomalously low stellar activity index (logR'(HK)) of WASP-12 is evidently a direct consequence of the extra core absorption, so similar HK index deficiencies might signal the presence of translucent circumstellar gas around other stars hosting evaporating planets.
  •  
13.
  • Grunhut, J. H., et al. (author)
  • The MiMeS survey of Magnetism in Massive Stars : magnetic analysis of the O-type stars
  • 2017
  • In: Monthly notices of the Royal Astronomical Society. - : OXFORD UNIV PRESS. - 0035-8711 .- 1365-2966. ; 465:2, s. 2432-2470
  • Journal article (peer-reviewed)abstract
    • We present the analysis performed on spectropolarimetric data of 97 O-type targets included in the framework of the Magnetism in Massive Stars (MiMeS) Survey. Mean least-squares deconvolved Stokes I and V line profiles were extracted for each observation, from which we measured the radial velocity, rotational and non-rotational broadening velocities, and longitudinal magnetic field B-l. The investigation of the Stokes I profiles led to the discovery of two new multiline spectroscopic systems (HD 46106, HD 204827) and confirmed the presence of a suspected companion in HD 37041. We present a modified strategy of the leastsquares deconvolution technique aimed at optimizing the detection of magnetic signatures while minimizing the detection of spurious signatures in Stokes V. Using this analysis, we confirm the detection of a magnetic field in six targets previously reported as magnetic by the MiMeS collaboration (HD 108, HD 47129A2, HD 57682, HD 148937, CPD-28 2561, and NGC 1624-2), as well as report the presence of signal in Stokes V in three new magnetic candidates (HD 36486, HD 162978, and HD 199579). Overall, we find a magnetic incidence rate of 7 +/- 3 per cent, for 108 individual O stars (including all O-type components part of multiline systems), with a median uncertainty of the B-l measurements of about 50 G. An inspection of the data reveals no obvious biases affecting the incidence rate or the preference for detecting magnetic signatures in the magnetic stars. Similar to A- and B-type stars, we find no link between the stars' physical properties (e.g. T-eff, mass, and age) and the presence of a magnetic field. However, the Of?p stars represent a distinct class of magnetic O-type stars.
  •  
14.
  • Shultz, M. E., et al. (author)
  • The magnetic early B-type stars - III. A main-sequence magnetic, rotational, and magnetospheric biography
  • 2019
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press. - 0035-8711 .- 1365-2966. ; 490:1, s. 274-295
  • Journal article (peer-reviewed)abstract
    • Magnetic confinement of stellar winds leads to the formation of magnetospheres, which can be sculpted into centrifugal magnetospheres (CMs) by rotational support of the corotating plasma. The conditions required for the CMs of magnetic early B-type stars to yield detectable emission in H alpha - the principal diagnostic of these structures - are poorly constrained. A key reason is that no detailed study of the magnetic and rotational evolution of this population has yet been performed. Using newly determined rotational periods, modern magnetic measurements, and atmospheric parameters determined via spectroscopic modelling, we have derived fundamental parameters, dipolar oblique rotator models, and magnetospheric parameters for 56 early B-type stars. Comparison to magnetic A- and O-type stars shows that the range of surface magnetic field strength is essentially constant with stellar mass, but that the unsigned surface magnetic flux increases with mass. Both the surface magnetic dipole strength and the total magnetic flux decrease with stellar age, with the rate of flux decay apparently increasing with stellar mass. We find tentative evidence that multipolar magnetic fields may decay more rapidly than dipoles. Rotational periods increase with stellar age, as expected for a magnetic braking scenario. Without exception, all stars with Ha emission originating in a CM are (1) rapid rotators, (2) strongly magnetic, and (3) young, with the latter property consistent with the observation that magnetic fields and rotation both decrease over time.
  •  
15.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-15 of 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view