SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Boreux Virginie) "

Search: WFRF:(Boreux Virginie)

  • Result 1-8 of 8
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Allen-Perkins, Alfonso, et al. (author)
  • CropPol : a dynamic, open and global database on crop pollination
  • 2022
  • In: Ecology. - : Wiley. - 0012-9658 .- 1939-9170. ; 103:3
  • Journal article (peer-reviewed)abstract
    • Seventy five percent of the world's food crops benefit from insect pollination. Hence, there has been increased interest in how global change drivers impact this critical ecosystem service. Because standardized data on crop pollination are rarely available, we are limited in our capacity to understand the variation in pollination benefits to crop yield, as well as to anticipate changes in this service, develop predictions, and inform management actions. Here, we present CropPol, a dynamic, open and global database on crop pollination. It contains measurements recorded from 202 crop studies, covering 3,394 field observations, 2,552 yield measurements (i.e. berry weight, number of fruits and kg per hectare, among others), and 47,752 insect records from 48 commercial crops distributed around the globe. CropPol comprises 32 of the 87 leading global crops and commodities that are pollinator dependent. Malus domestica is the most represented crop (32 studies), followed by Brassica napus (22 studies), Vaccinium corymbosum (13 studies), and Citrullus lanatus (12 studies). The most abundant pollinator guilds recorded are honey bees (34.22% counts), bumblebees (19.19%), flies other than Syrphidae and Bombyliidae (13.18%), other wild bees (13.13%), beetles (10.97%), Syrphidae (4.87%), and Bombyliidae (0.05%). Locations comprise 34 countries distributed among Europe (76 studies), Northern America (60), Latin America and the Caribbean (29), Asia (20), Oceania (10), and Africa (7). Sampling spans three decades and is concentrated on 2001-05 (21 studies), 2006-10 (40), 2011-15 (88), and 2016-20 (50). This is the most comprehensive open global data set on measurements of crop flower visitors, crop pollinators and pollination to date, and we encourage researchers to add more datasets to this database in the future. This data set is released for non-commercial use only. Credits should be given to this paper (i.e., proper citation), and the products generated with this database should be shared under the same license terms (CC BY-NC-SA). This article is protected by copyright. All rights reserved.
  •  
2.
  • Garibaldi, Lucas A., et al. (author)
  • Trait matching of flower visitors and crops predicts fruit set better than trait diversity
  • 2015
  • In: Journal of Applied Ecology. - : Wiley. - 1365-2664 .- 0021-8901. ; 52:6, s. 1436-1444
  • Research review (peer-reviewed)abstract
    • Understanding the relationships between trait diversity, species diversity and ecosystem functioning is essential for sustainable management. For functions comprising two trophic levels, trait matching between interacting partners should also drive functioning. However, the predictive ability of trait diversity and matching is unclear for most functions, particularly for crop pollination, where interacting partners did not necessarily co-evolve. World-wide, we collected data on traits of flower visitors and crops, visitation rates to crop flowers per insect species and fruit set in 469 fields of 33 crop systems. Through hierarchical mixed-effects models, we tested whether flower visitor trait diversity and/or trait matching between flower visitors and crops improve the prediction of crop fruit set (functioning) beyond flower visitor species diversity and abundance. Flower visitor trait diversity was positively related to fruit set, but surprisingly did not explain more variation than flower visitor species diversity. The best prediction of fruit set was obtained by matching traits of flower visitors (body size and mouthpart length) and crops (nectar accessibility of flowers) in addition to flower visitor abundance, species richness and species evenness. Fruit set increased with species richness, and more so in assemblages with high evenness, indicating that additional species of flower visitors contribute more to crop pollination when species abundances are similar.Synthesis and applications. Despite contrasting floral traits for crops world-wide, only the abundance of a few pollinator species is commonly managed for greater yield. Our results suggest that the identification and enhancement of pollinator species with traits matching those of the focal crop, as well as the enhancement of pollinator richness and evenness, will increase crop yield beyond current practices. Furthermore, we show that field practitioners can predict and manage agroecosystems for pollination services based on knowledge of just a few traits that are known for a wide range of flower visitor species. Despite contrasting floral traits for crops world-wide, only the abundance of a few pollinator species is commonly managed for greater yield. Our results suggest that the identification and enhancement of pollinator species with traits matching those of the focal crop, as well as the enhancement of pollinator richness and evenness, will increase crop yield beyond current practices. Furthermore, we show that field practitioners can predict and manage agroecosystems for pollination services based on knowledge of just a few traits that are known for a wide range of flower visitor species. Editor's Choice
  •  
3.
  • Garibaldi, Lucas A., et al. (author)
  • Wild Pollinators Enhance Fruit Set of Crops Regardless of Honey Bee Abundance
  • 2013
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 339:6127, s. 1608-1611
  • Journal article (peer-reviewed)abstract
    • The diversity and abundance of wild insect pollinators have declined in many agricultural landscapes. Whether such declines reduce crop yields, or are mitigated by managed pollinators such as honey bees, is unclear. We found universally positive associations of fruit set with flower visitation by wild insects in 41 crop systems worldwide. In contrast, fruit set increased significantly with flower visitation by honey bees in only 14% of the systems surveyed. Overall, wild insects pollinated crops more effectively; an increase in wild insect visitation enhanced fruit set by twice as much as an equivalent increase in honey bee visitation. Visitation by wild insects and honey bees promoted fruit set independently, so pollination by managed honey bees supplemented, rather than substituted for, pollination by wild insects. Our results suggest that new practices for integrated management of both honey bees and diverse wild insect assemblages will enhance global crop yields.
  •  
4.
  • Garratt, Michael P D, et al. (author)
  • Opportunities to reduce pollination deficits and address production shortfalls in an important insect pollinated crop
  • 2021
  • In: Ecological Applications. - : Wiley. - 1051-0761 .- 1939-5582.
  • Journal article (peer-reviewed)abstract
    • Pollinators face multiple pressures and there is evidence of populations in decline. As demand for insect-pollinated crops increases, crop production is threatened by shortfalls in pollination services. Understanding the extent of current yield deficits due to pollination and identifying opportunities to protect or improve crop yield and quality through pollination management is therefore of international importance. To explore the extent of 'pollination deficits', where maximum yield is not being achieved due to insufficient pollination, we use an extensive dataset on a globally important crop, apples. We quantified how these deficits vary between orchards and countries as well as compare 'pollinator dependence' across different apple varieties. We found evidence of pollination deficits and in some cases, risks of over-pollination were even apparent where fruit quality could be reduced by too much pollination. In almost all regions studied we found some orchards performing significantly better than others, in terms of avoiding a pollination deficit and crop yield shortfalls due to sub-optimal pollination. This represents an opportunity to improve production through better pollinator and crop management. Our findings also demonstrate that pollinator dependence varies considerably between apple varieties in terms of fruit number and fruit quality. We propose that assessments of pollination service and deficits in crops can be used to quantify supply and demand for pollinators and help target local management to address deficits although crop variety has a strong influence on the role of pollinators.
  •  
5.
  • Giménez-García, Angel, et al. (author)
  • Pollination supply models from a local to global scale
  • 2023
  • In: Web Ecology. - 1399-1183. ; 23:2, s. 99-129
  • Journal article (peer-reviewed)abstract
    • Ecological intensification has been embraced with great interest by the academic sector but is still rarely taken up by farmers because monitoring the state of different ecological functions is not straightforward. Modelling tools can represent a more accessible alternative of measuring ecological functions, which could help promote their use amongst farmers and other decision-makers. In the case of crop pollination, modelling has traditionally followed either a mechanistic or a data-driven approach. Mechanistic models simulate the habitat preferences and foraging behaviour of pollinators, while data-driven models associate georeferenced variables with real observations. Here, we test these two approaches to predict pollination supply and validate these predictions using data from a newly released global dataset on pollinator visitation rates to different crops. We use one of the most extensively used models for the mechanistic approach, while for the data-driven approach, we select from among a comprehensive set of state-of-The-Art machine-learning models. Moreover, we explore a mixed approach, where data-derived inputs, rather than expert assessment, inform the mechanistic model. We find that, at a global scale, machine-learning models work best, offering a rank correlation coefficient between predictions and observations of pollinator visitation rates of 0.56. In turn, the mechanistic model works moderately well at a global scale for wild bees other than bumblebees. Biomes characterized by temperate or Mediterranean forests show a better agreement between mechanistic model predictions and observations, probably due to more comprehensive ecological knowledge and therefore better parameterization of input variables for these biomes. This study highlights the challenges of transferring input variables across multiple biomes, as expected given the different composition of species in different biomes. Our results provide clear guidance on which pollination supply models perform best at different spatial scales-the first step towards bridging the stakeholder-Academia gap in modelling ecosystem service delivery under ecological intensification.
  •  
6.
  • Happe, Anne-Kathrin, et al. (author)
  • Predatory arthropods in apple orchards across Europe : Responses to agricultural management, adjacent habitat, landscape composition and country
  • 2019
  • In: Agriculture, Ecosystems & Environment. - : Elsevier BV. - 0167-8809 .- 1873-2305. ; 273, s. 141-150
  • Journal article (peer-reviewed)abstract
    • Local agri-environmental schemes, including hedgerows, flowering strips, organic management, and a landscape rich in semi-natural habitat patches, are assumed to enhance the presence of beneficial arthropods and their contribution to biological control in fruit crops. We studied the influence of local factors (orchard management and adjacent habitats) and of landscape composition on the abundance and community composition of predatory arthropods in apple orchards in three European countries. To elucidate how local and landscape factors influence natural enemy effectiveness in apple production systems, we calculated community energy use as a proxy for the communities' predation potential based on biomass and metabolic rates of predatory arthropods. Predator communities were assessed by standardised beating samples taken from apple trees in 86 orchards in Germany, Spain and Sweden. Orchard management included integrated production (IP; i.e. the reduced and targeted application of synthetic agrochemicals), and organic management practices in all three countries. Predator communities differed between management types and countries. Several groups, including beetles (Coleoptera), predatory bugs (Heteroptera), flies (Diptera) and spiders (Araneae) benefited from organic management depending on country. Woody habitat and IP supported harvestmen (Opiliones). In both IP and organic orchards we detected aversive influences of a high-quality surrounding landscape on some predator groups: for example, high covers of woody habitat reduced earwig abundances in German orchards but enhanced their abundance in Sweden, and high natural plant species richness tended to reduce predatory bug abundance in Sweden and IP orchards in Spain. We conclude that predatory arthropod communities and influences of local and landscape factors are strongly shaped by orchard management, and that the influence of management differs between countries. Our results indicate that organic management improves the living conditions for effective predator communities.
  •  
7.
  • Roquer-Beni, Laura, et al. (author)
  • Management-dependent effects of pollinator functional diversity on apple pollination services : A response-effect trait approach
  • 2021
  • In: Journal of Applied Ecology. - : Wiley. - 0021-8901 .- 1365-2664. ; 58:12, s. 2843-2853
  • Journal article (peer-reviewed)abstract
    • Functional traits mediate the response of communities to disturbances (response traits) and their contribution to ecosystem functions (effect traits). To predict how anthropogenic disturbances influence ecosystem services requires a dual approach including both trait concepts. Here, we used a response–effect trait conceptual framework to understand how local and landscape features affect pollinator functional diversity and pollination services in apple orchards.We worked in 110 apple orchards across four European regions. Orchards differed in management practices. Low-intensity (LI) orchards were certified organic or followed close-to-organic practices. High-intensity (HI) orchards followed integrated pest management practices. Within each management type, orchards encompassed a range of local (flower diversity, agri-environmental structures) and landscape features (orchard and pollinator-friendly habitat cover). We measured pollinator visitation rates and calculated trait composition metrics based on 10 pollinator traits. We used initial fruit set as a measure of pollination service.Some pollinator traits (body size and hairiness) were negatively related to orchard cover and positively affected by pollinator-friendly habitat cover. Bee functional diversity was lower in HI orchards and decreased with increased landscape orchard cover. Pollination service was not associated with any particular trait but increased with pollinator trait diversity in LI orchards. As a result, LI orchards with high pollinator trait diversity reached levels of pollination service similar to those of HI orchards.Synthesis and applications. Pollinator functional diversity enables pollinator communities to respond to agricultural intensification and to increase pollination function. Our results show that efforts to promote biodiversity provide greater returns in low-intensity than in high-intensity orchards. The fact that low-intensity orchards with high pollinator functional diversity reach levels of pollination services similar to those of high-intensity orchards provides a compelling argument for the conversion of high-intensity into low-intensity farms.
  •  
8.
  • Samnegård, Ulrika, et al. (author)
  • Management trade-offs on ecosystem services in apple orchards across Europe : Direct and indirect effects of organic production
  • 2019
  • In: Journal of Applied Ecology. - : Wiley. - 0021-8901 .- 1365-2664. ; 56:4, s. 802-811
  • Journal article (peer-reviewed)abstract
    • Apple is considered the most important fruit crop in temperate areas and profitable production depends on multiple ecosystem services, including the reduction of pest damage and the provision of sufficient pollination levels. Management approaches present an inherent trade-off as each affects species differently. We quantified the direct and indirect effects of management (organic vs. integrated pest management, IPM) on species richness, ecosystem services, and fruit production in 85 apple orchards in three European countries. We also quantified how habit composition influenced these effects at three spatial scales: within orchards, adjacent to orchards, and in the surrounding landscape. Organic management resulted in 48% lower yield than IPM, and also that the variation between orchards was large with some organic orchards having a higher yield than the average yield of IPM orchards. The lower yield in organic orchards resulted directly from management practices, and from higher pest damage in organic orchards. These negative yield effects were partly offset by indirect positive effects from more natural enemies and higher flower visitation rates in organic orchards. Two factors other than management affected species richness and ecosystem services. Higher cover of flowering plants within and adjacent to the apple trees increased flower visitation rates by pollinating insects and a higher cover of apple orchards in the landscape decreased species richness of beneficial arthropods. The species richness of beneficial arthropods in orchards was uncorrelated with fruit production, suggesting that diversity can be increased without large yield loss. At the same time, organic orchards had 38% higher species richness than IPM orchards, an effect that is likely due to differences in pest management.Synthesis and applications. Our results indicate that organic management is more efficient than integrated pest management in developing environmentally friendly apple orchards with higher species richness. We also demonstrate that there is no inherent trade-off between species richness and yield. Development of more environmentally friendly means for pest control, which do not negatively affect pollination services, needs to be a priority for sustainable apple production. Our results indicate that organic management is more efficient than integrated pest management in developing environmentally friendly apple orchards with higher species richness. We also demonstrate that there is no inherent trade-off between species richness and yield. Development of more environmentally friendly means for pest control, which do not negatively affect pollination services, needs to be a priority for sustainable apple production. Editor's Choice
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-8 of 8
Type of publication
journal article (7)
research review (1)
Type of content
peer-reviewed (8)
Author/Editor
Boreux, Virginie (8)
Miñarro, Marcos (5)
Hambäck, Peter A. (4)
Klein, Alexandra Mar ... (4)
Garibaldi, Lucas A (4)
Garcia, Daniel (4)
show more...
Bosch, Jordi (4)
Rundlöf, Maj (3)
Bommarco, Riccardo (3)
Potts, Simon G. (3)
Bartomeus, Ignasi (3)
Rader, Romina (3)
Andersson, Georg K S (3)
Samnegård, Ulrika (3)
Tasin, Marco (3)
Rodrigo, Anselm (3)
Freitas, Breno M. (3)
Krishnan, Smitha (3)
Otieno, Mark (3)
Smith, Henrik G. (2)
Carvalheiro, Luísa G ... (2)
Albrecht, Matthias (2)
Dainese, Matteo (2)
Isaacs, Rufus (2)
Kremen, Claire (2)
Tscharntke, Teja (2)
Aizen, Marcelo A. (2)
Garratt, Michael P.D ... (2)
Steffan-Dewenter, In ... (2)
Allen-Perkins, Alfon ... (2)
Magrach, Ainhoa (2)
Winfree, Rachael (2)
Biddinger, David J (2)
Artz, Derek R (2)
Joshi, Neelendra K (2)
Nicholson, Charlie C (2)
Stewart, Rebecca I A (2)
Gagic, Vesna (2)
Hipólito, Juliana (2)
Holzschuh, Andrea (2)
Porcel Vilches, Mari ... (2)
Cunningham, Saul A. (2)
Vergara, Carlos H. (2)
Ricketts, Taylor H. (2)
Chacoff, Natacha P. (2)
Klein, Alexandra M. (2)
Schueepp, Christof (2)
Krewenka, Kristin M. (2)
Mayfield, Margaret M ... (2)
Motzke, Iris (2)
show less...
University
Lund University (7)
Swedish University of Agricultural Sciences (6)
Stockholm University (4)
Language
English (8)
Research subject (UKÄ/SCB)
Natural sciences (8)
Agricultural Sciences (4)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view