SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Braun Mihaly) "

Sökning: WFRF:(Braun Mihaly)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Feurdean, Angelica, et al. (författare)
  • Origin of the forest steppe and exceptional grassland diversity in Transylvania (central-eastern Europe)
  • 2015
  • Ingår i: Journal of Biogeography. - : Wiley. - 1365-2699 .- 0305-0270. ; 42:5, s. 951-963
  • Tidskriftsartikel (refereegranskat)abstract
    • Aim The forest steppe of the Transylvanian Plain is a landscape of exceptionally diverse steppe-like and semi-natural grasslands. Is this vegetation a remnant of a once continuous temperate forest extensively cleared by humans, or has the area, since the last glacial, always been a forest steppe? Understanding the processes that drive temperate grassland formation is important because effective management of this biome is critical to the conservation of the European cultural landscape. Location Lake Stiucii, north-western Romania, central-eastern Europe. Methods We analysed multi-proxy variables (pollen, coprophilous fungi, plant macroremains, macrocharcoal) from a 55,000year discontinuous sequence (c. 55,000-35,000; 13,000-0cal. yr bp), integrating models of pollen-based vegetation cover, biome reconstruction, global atmospheric simulations and archaeological records. Results Needleleaf woodland occurred during glacial Marine Isotope Stage (MIS) 3, but contracted at the end of this period. Forest coverage of c. 55% (early Holocene) and 65% (mid-Holocene) prevailed through the Holocene, but Bronze Age humans extensively cleared forests after 3700cal. yr bp. Forest coverage was most widespread between 8600 and 3700cal. yr bp, whereas grasses, steppe and xerothermic forbs were most extensive between 11,700 and 8600cal. yr bp and during the last 3700cal. yr bp. Cerealia pollen indicate the presence of arable agriculture by c. 7000cal. yr bp. Main conclusions We have provided the first unequivocal evidence for needleleaf woodland during glacial MIS 3 in this region. Extensive forests prevailed prior to 3700cal. yr bp, challenging the hypothesis that the Transylvanian lowlands were never wooded following the last glaciation. However, these forests were never fully closed either, reflecting dry growing season conditions, recurrent fires and anthropogenic impacts, which have favoured grassland persistence throughout the Holocene. The longevity of natural and semi-natural grasslands in the region may explain their current exceptional biodiversity. This longer-term perspective implies that future climatic warming and associated fire will maintain these grasslands.
  •  
2.
  • Feurdean, Angelica, et al. (författare)
  • The transformation of the forest steppe in the lower Danube Plain of southeastern Europe : 6000 years of vegetation and land use dynamics
  • 2021
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4170 .- 1726-4189. ; 18:3, s. 1081-1103
  • Tidskriftsartikel (refereegranskat)abstract
    • Forest steppes are dynamic ecosystems, highly susceptible to changes in climate, disturbances and land use. Here we examine the Holocene history of the European forest steppe ecotone in the lower Danube Plain to better understand its sensitivity to climate fluctuations, fire and human impact, and the timing of its transition into a cultural forest steppe. We used multi-proxy analyses (pollen, n-alkanes, coprophilous fungi, charcoal and geochemistry) of a 6000- year sequence from Lake Oltina (southeastern Romania) combined with a REVEALS (Regional Estimates of Vegetation Abundance from Large Sites) model of quantitative vegetation cover. We found a greater tree cover, composed of xerothermic (Carpinus orientalis and Quercus) and temperate (Carpinus betulus, Tilia, Ulmus and Fraxinus) tree taxa, between 6000 and 2500 cal yr BP. Maximum tree cover (~50 %), dominated by C. orientalis occurred between 4200 and 2500 cal yr BP at a time of wetter climatic conditions and moderate fire activity. Compared to other European forest steppe areas, the dominance of C. orientalis represents the most distinct feature of the woodland's composition at this time. Tree loss was underway by 2500 yr BP (Iron Age), with the REVEALS model indicating a fall to ~20% tree cover from the Late Holocene forest maximum, linked to clearance for agriculture, while climate conditions remained wet. Biomass burning increased markedly at 2500 cal yr BP, suggesting that fire was regularly used as a management tool until 1000 cal yr BP when woody vegetation became scarce. A sparse tree cover, with only weak signs of forest recovery, then became a permanent characteristic of the lower Danube Plain, highlighting more or less continuous anthropogenic pressure. The timing of anthropogenic ecosystem transformation here (2500 cal yr BP) falls between that in centraleastern (between 3700 and 3000 cal yr BP) and eastern (after 2000 cal yr BP) Europe. Our study is the first quantitative land cover estimate at the forest steppe ecotone in southeastern Europe spanning 6000 years. It provides critical empirical evidence that, at a broad spatial scale, the present-day forest steppe and woodlands reflect the potential natural vegetation in this region under current climate conditions. However, the extent of tree cover and its composition have been neither stable in time nor shaped solely by the climate. Consequently, vegetation change must be seen as dynamic and reflecting wider changes in environmental conditions including natural disturbances and human impact.
  •  
3.
  • Magyari, Eniko K., et al. (författare)
  • Population dynamics and genetic changes of Picea abies in the South Carpathians revealed by pollen and ancient DNA analyses
  • 2011
  • Ingår i: BMC Evolutionary Biology. - : Springer Science and Business Media LLC. - 1471-2148. ; 11, s. 66-
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Studies on allele length polymorphism designate several glacial refugia for Norway spruce (Picea abies) in the South Carpathian Mountains, but infer only limited expansion from these refugia after the last glaciation. To better understand the genetic dynamics of a South Carpathian spruce lineage, we compared ancient DNA from 10,700 and 11,000-year-old spruce pollen and macrofossils retrieved from Holocene lake sediment in the Retezat Mountains with DNA extracted from extant material from the same site. We used eight primer pairs that amplified short and variable regions of the spruce cpDNA. In addition, from the same lake sediment we obtained a 15,000-years-long pollen accumulation rate (PAR) record for spruce that helped us to infer changes in population size at this site. Results: We obtained successful amplifications for Norway spruce from 17 out of 462 pollen grains tested, while the macrofossil material provided 22 DNA sequences. Two fossil sequences were found to be unique to the ancient material. Population genetic statistics showed higher genetic diversity in the ancient individuals compared to the extant ones. Similarly, statistically significant Ks and Kst values showed a considerable level of differentiation between extant and ancient populations at the same loci. Lateglacial and Holocene PAR values suggested that population size of the ancient population was small, in the range of 1/10 or 1/5 of the extant population. PAR analysis also detected two periods of rapid population growths (from ca. 11,100 and 3900 calibrated years before present (cal yr BP)) and three bottlenecks (around 9180, 7200 and 2200 cal yr BP), likely triggered by climatic change and human impact. Conclusion: Our results suggest that the paternal lineages observed today in the Retezat Mountains persisted at this site at least since the early Holocene. Combination of the results from the genetic and the PAR analyses furthermore suggests that the higher level of genetic variation found in the ancient populations and the loss of ancient allele types detected in the extant individuals were likely due to the repeated bottlenecks during the Holocene; however our limited sample size did not allow us to exclude sampling effect. This study demonstrates how past population size changes inferred from PAR records can be efficiently used in combination with ancient DNA studies. The joint application of palaeoecological and population genetics analyses proved to be a powerful tool to understand the influence of past population demographic changes on the haplotype diversity and genetic composition of forest tree species.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy