SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Bravo Andrea Garcia) "

Search: WFRF:(Bravo Andrea Garcia)

  • Result 1-30 of 30
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Bernal, Ximena E., et al. (author)
  • Empowering Latina scientists
  • 2019
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 363:6429, s. 825-826
  • Journal article (other academic/artistic)
  •  
3.
  • Donis, Daphne, et al. (author)
  • Stratification strength and light climate explain variation in chlorophyll a at the continental scale in a European multilake survey in a heatwave summer
  • 2021
  • In: Limnology and Oceanography. - : John Wiley & Sons. - 0024-3590 .- 1939-5590. ; 66:12, s. 4314-4333
  • Journal article (peer-reviewed)abstract
    • To determine the drivers of phytoplankton biomass, we collected standardized morphometric, physical, and biological data in 230 lakes across the Mediterranean, Continental, and Boreal climatic zones of the European continent. Multilinear regression models tested on this snapshot of mostly eutrophic lakes (median total phosphorus [TP] = 0.06 and total nitrogen [TN] = 0.7 mg L-1), and its subsets (2 depth types and 3 climatic zones), show that light climate and stratification strength were the most significant explanatory variables for chlorophyll a (Chl a) variance. TN was a significant predictor for phytoplankton biomass for shallow and continental lakes, while TP never appeared as an explanatory variable, suggesting that under high TP, light, which partially controls stratification strength, becomes limiting for phytoplankton development. Mediterranean lakes were the warmest yet most weakly stratified and had significantly less Chl a than Boreal lakes, where the temperature anomaly from the long-term average, during a summer heatwave was the highest (+4 degrees C) and showed a significant, exponential relationship with stratification strength. This European survey represents a summer snapshot of phytoplankton biomass and its drivers, and lends support that light and stratification metrics, which are both affected by climate change, are better predictors for phytoplankton biomass in nutrient-rich lakes than nutrient concentrations and surface temperature.
  •  
4.
  • Kattge, Jens, et al. (author)
  • TRY plant trait database - enhanced coverage and open access
  • 2020
  • In: Global Change Biology. - : Wiley-Blackwell. - 1354-1013 .- 1365-2486. ; 26:1, s. 119-188
  • Journal article (peer-reviewed)abstract
    • Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.
  •  
5.
  • Mantzouki, Evanthia, et al. (author)
  • Temperature Effects Explain Continental Scale Distribution of Cyanobacterial Toxins
  • 2018
  • In: Toxins. - : MDPI. - 2072-6651. ; 10:4
  • Journal article (peer-reviewed)abstract
    • Insight into how environmental change determines the production and distribution of cyanobacterial toxins is necessary for risk assessment. Management guidelines currently focus on hepatotoxins (microcystins). Increasing attention is given to other classes, such as neurotoxins (e.g., anatoxin-a) and cytotoxins (e.g., cylindrospermopsin) due to their potency. Most studies examine the relationship between individual toxin variants and environmental factors, such as nutrients, temperature and light. In summer 2015, we collected samples across Europe to investigate the effect of nutrient and temperature gradients on the variability of toxin production at a continental scale. Direct and indirect effects of temperature were the main drivers of the spatial distribution in the toxins produced by the cyanobacterial community, the toxin concentrations and toxin quota. Generalized linear models showed that a Toxin Diversity Index (TDI) increased with latitude, while it decreased with water stability. Increases in TDI were explained through a significant increase in toxin variants such as MC-YR, anatoxin and cylindrospermopsin, accompanied by a decreasing presence of MC-LR. While global warming continues, the direct and indirect effects of increased lake temperatures will drive changes in the distribution of cyanobacterial toxins in Europe, potentially promoting selection of a few highly toxic species or strains.
  •  
6.
  • Martinez-Dubarbie, Francisco, et al. (author)
  • Plasma Phosphorylated Tau 231 Increases at One-Year Intervals in Cognitively Unimpaired Subjects
  • 2024
  • In: JOURNAL OF ALZHEIMERS DISEASE. - 1387-2877 .- 1875-8908. ; 98:3, s. 1029-1042
  • Journal article (peer-reviewed)abstract
    • Background: Plasma biomarkers of Alzheimer's disease (AD) constitute a non-invasive tool for diagnosing and classifying subjects. They change even in preclinical stages, but it is necessary to understand their properties so they can be helpful in a clinical context. Objective: With this work we want to study the evolution of p-tau231 plasma levels in the preclinical stages of AD and its relationship with both cognitive and imaging parameters. Methods: We evaluated plasma phosphorylated (p)-tau231 levels in 146 cognitively unimpaired subjects in sequential visits. We performed a Linear Mixed-effects Model to analyze their rate of change. We also correlated their baseline levels with cognitive tests and structural and functional image values. ATN status was defined based on cerebrospinal fluid biomarkers. Results: Plasma p-tau231 showed a significant rate of change over time. It correlated negatively with memory tests only in amyloid-positive subjects. No significant correlations were found with any imaging measures. Conclusions: Increases in plasma p-tau231 can be detected at one-year intervals in cognitively healthy subjects. It could constitute a sensitive marker for detecting early signs of neuronal network impairment by amyloid.
  •  
7.
  • Bravo, Andrea Garcia, et al. (author)
  • Cleaning and sampling protocol for analysis of mercury and dissolved organic matter in freshwater systems
  • 2018
  • In: MethodsX. - : Elsevier BV. - 1258-780X .- 2215-0161. ; 5, s. 1017-1026
  • Journal article (peer-reviewed)abstract
    • Mercury (Hg), and in particular its methylated form (methylmercury, MeHg), is a hazardous substance with the potential to produce significant adverse neurological and other health effects. Enhanced anthropogenic emissions and long-range transport of atmospheric Hg have increased Hg concentrations above background levels in aquatic systems. In this context, the Minamata Convention, a global legally binding agreement that seeks to prevent human exposure to Hg, was signed and enforced by 128 countries, and today more than 90 Parties have ratified it. All these Parties have committed to develop Hg monitoring programs to report the effectiveness of the convention. For this purpose, we provide a standardized cleaning and water sampling protocol for the determination of total-Hg and MeHg in freshwaters at ambient levels. As Hg and organic matter are tightly bound, the protocol also describes sample collection for dissolved organic carbon (DOC) concentration and characterization of dissolved organic matter (DOM) composition by fluorescence spectroscopy. This protocol is highly useful to non-experts without a prior background in Hg sampling and analysis, and can serve as a useful basis for national monitoring programs. Furthermore, this protocol should help increase quantitative inventories of DOC, inorganic-Hg (IHg) and MeHg concentrations and DOM composition in freshwater, which are severely lacking at a global scale. • Provides a standardized method to collect water samples for IHg, MeHg, DOC and DOM composition from freshwater ecosystems.
  •  
8.
  • Bravo, Andrea Garcia, et al. (author)
  • Geobacteraceae are important members of mercury-methylating microbial communities of sediments impacted by waste water releases
  • 2018
  • In: The ISME Journal. - : Springer Science and Business Media LLC. - 1751-7362 .- 1751-7370. ; 12, s. 802-812
  • Journal article (peer-reviewed)abstract
    • Microbial mercury (Hg) methylation in sediments can result in bioaccumulation of the neurotoxin methylmercury (MMHg) in aquatic food webs. Recently, the discovery of the gene hgcA, required for Hg methylation, revealed that the diversity of Hg methylators is much broader than previously thought. However, little is known about the identity of Hg-methylating microbial organisms and the environmental factors controlling their activity and distribution in lakes. Here, we combined high-throughput sequencing of 16S rRNA and hgcA genes with the chemical characterization of sediments impacted by a waste water treatment plant that releases significant amounts of organic matter and iron. Our results highlight that the ferruginous geochemical conditions prevailing at 1–2 cm depth are conducive to MMHg formation and that the Hgmethylating guild is composed of iron and sulfur-transforming bacteria, syntrophs, and methanogens. Deltaproteobacteria, notably Geobacteraceae, dominated the hgcA carrying communities, while sulfate reducers constituted only a minor component, despite being considered the main Hg methylators in many anoxic aquatic environments. Because iron is widely applied in waste water treatment, the importance of Geobacteraceae for Hg methylation and the complexity of Hgmethylating communities reported here are likely to occur worldwide in sediments impacted by waste water treatment plant discharges and in iron-rich sediments in general.
  •  
9.
  •  
10.
  • Bravo, Andrea Garcia, et al. (author)
  • High methylmercury production under ferruginous conditions in sediments impacted by sewage treatment plant discharges
  • 2015
  • In: Water Research. - : Elsevier BV. - 0043-1354 .- 1879-2448. ; 80, s. 245-255
  • Journal article (peer-reviewed)abstract
    • Sewage treatment plants (STPs) are important point sources of mercury (Hg) to the environment. STPs are also significant sources of iron when hydrated ferric oxide (HFO) is used as a dephosphatation agent during water purification. In this study, we combined geochemical and microbiological characterization with Hg speciation and sediment amendments to evaluate the impact of STP's effluents on monomethylmercury (MMHg) production. The highest in-situ Hg methylation was found close to the discharge pipe in subsurface sediments enriched with Hg, organic matter, and iron. There, ferruginous conditions were prevailing with high concentrations of dissolved Fe2+ and virtually no free sulfide in the porewater. Sediment incubations demonstrated that the high MMHg production close to the discharge was controlled by low demethylation yields. Inhibition of dissimilatory sulfate reduction with molybdate led to increased iron reduction rates and Hg-methylation, suggesting that sulfate-reducing bacteria (SRB) may not have been the main Hg methylators under these conditions. However, Hg methylation in sediments amended with amorphous Fe(III)-oxides was only slightly higher than control conditions. Thus, in addition to iron-reducing bacteria, other non-SRB most likely contributed to Hg methylation. Overall, this study highlights that sediments impacted by STP discharges can become local hot-spots for Hg methylation due to the combined inputs of i) Hg, ii) organic matter, which fuels bacterial activities and iii) iron, which keeps porewater sulfide concentration low and hence Hg bioavailable.
  •  
11.
  • Bravo, Andrea Garcia, et al. (author)
  • Methanogens and Iron-Reducing Bacteria : the Overlooked Members of Mercury-Methylating Microbial Communities in Boreal Lakes
  • 2018
  • In: Applied and Environmental Microbiology. - 0099-2240 .- 1098-5336. ; 84:23
  • Journal article (peer-reviewed)abstract
    • Methylmercury is a potent human neurotoxin which biomagnifies in aquatic food webs. Although anaerobic microorganisms containing the hgcA gene potentially mediate the formation of methylmercury in natural environments, the di- versity of these mercury-methylating microbial communities remains largely unex- plored. Previous studies have implicated sulfate-reducing bacteria as the main mer- cury methylators in aquatic ecosystems. In the present study, we characterized the diversity of mercury-methylating microbial communities of boreal lake sediments us- ing high-throughput sequencing of 16S rRNA and hgcA genes. Our results show that in the lake sediments, Methanomicrobiales and Geobacteraceae also represent abun- dant members of the mercury-methylating communities. In fact, incubation experi- ments with a mercury isotopic tracer and molybdate revealed that only between 38% and 45% of mercury methylation was attributed to sulfate reduction. These re- sults suggest that methanogens and iron-reducing bacteria may contribute to more than half of the mercury methylation in boreal lakes.
  •  
12.
  • Catalán, Núria, 1985-, et al. (author)
  • Effects of beaver impoundments on dissolved organic matter quality and biodegradability in boreal riverine systems
  • 2017
  • In: Hydrobiologia. - : Springer Science and Business Media LLC. - 0018-8158 .- 1573-5117. ; 793:1, s. 135-148
  • Journal article (peer-reviewed)abstract
    • Beaver impoundments modify the structure of river reaches and lead to changes in ecosystem function and biogeochemical processes. Here, we assessed the changes in dissolved organic matter (DOM) quality and the biodegradation patterns in a set of beaver systems across Sweden. As the effect of beaver impoundments might be transient and local, we compared DOM quality and biodegradability of both pond and upstream sections of differentially aged beaver systems. Newly established dams shifted the sources and DOM biodegradability patterns. In particular, humic-like DOM, most likely leached from surrounding soils, characterized upstream sections of new beaver impoundments. In contrast, autochthonous and processed compounds, with both higher biodegradation rates and a broader spectrum of reactivities, differentiated DOM in ponds. DOM in recently established ponds seemed to be more humic and less processed compared to older ponds, but system idiosyncrasies determined by catchment particularities influenced this ageing effect.
  •  
13.
  • Dominik, Janusz, et al. (author)
  • Mercury in the food chain of the Lagoon of Venice, Italy
  • 2014
  • In: Marine Pollution Bulletin. - : Elsevier BV. - 0025-326X .- 1879-3363. ; 88:1-2, s. 194-206
  • Journal article (peer-reviewed)abstract
    • Sediments and biota samples were collected in a restricted area of the Lagoon of Venice and analysed for total mercury, monomethyl mercury (MMHg), and nitrogen and carbon isotopes. Results were used to examine mercury biomagnification in a complex food chain. Sedimentary organic matter (SOM) proved to be a major source of nutrients and mercury to primary consumers. Contrary to inorganic mercury, MMHg was strongly biomagnified along the food chain, although the lognormal relationship between MMHg and δ15N was less constrained than generally reported from lakes or coastal marine ecosystems. The relationship improved when log MMHg concentrations were plotted against trophic positions derived from baseline δ15N estimate for primary consumers. From the regression slope a mean MMHg trophic magnification factor of 10 was obtained. Filter-feeding benthic bivalves accumulated more MMHg than other primary consumers and were probably important in MMHg transfer from sediments to higher levels of the food chain.
  •  
14.
  • Eklöf, Karin, et al. (author)
  • Formation of mercury methylation hotspots as a consequence of forestry operations
  • 2018
  • In: Science of the Total Environment. - : Elsevier BV. - 0048-9697 .- 1879-1026. ; 613-614, s. 1069-1078
  • Journal article (peer-reviewed)abstract
    • Earlier studies have shown that boreal forest logging can increase the concentration and export of methylmercury (MeHg) in stream runoff. Here we test whether forestry operations create soil environments of high MeHg net formation associated with distinct microbial communities. Furthermore, we test the hypothesis that Hg methylation hotspots are more prone to form after stump harvest than stem-only harvest, because of more severe soil compaction and soil disturbance. Concentrations of MeHg, percent MeHg of total Hg (THg), and bacterial community composition were determined at 200 soil sampling positions distributed across eight catchments. Each catchment was either stem-only harvested (n = 3), stem-and stump-harvested (n = 2) or left undisturbed (n = 3). In support of our hypothesis, higher MeHg to THg ratios was observed in one of the stump-harvested catchments. While the effects of natural variation could not be ruled out, we noted that most of the highest % MeHg was observed in water-filled cavities created by stump removal or driving damage. This catchment also featured the highest bacterial diversity and highest relative abundance of bacterial families known to include Hg methylators. We propose that water-logged and disturbed soil environments associated with stump harvest can favor methylating microorganisms, which also enhance MeHg formation. 
  •  
15.
  • Garcia Bravo, Andrea, et al. (author)
  • Extremely elevated methyl mercury levels in water, sediment and organisms in a Romanian reservoir affected by release of mercury from a chlor-alkali plant
  • 2014
  • In: Water Research. - : Elsevier BV. - 0043-1354 .- 1879-2448. ; 49, s. 391-405
  • Journal article (peer-reviewed)abstract
    • We examined mercury (Hg) biogeochemistry and biomagnification in the Babeni Reservoir, a system strongly affected by the release of Hg from a chlor-alkali plant. Total mercury (THg) concentrations in river water reached 88 ng L−1 but decreased rapidly in the reservoir (to 9 ng L−1). In contrast, monomethylmercury (MMHg) concentrations increased from the upstream part of the reservoir to the central part (0.7 ng L−1), suggesting high methylation within the reservoir. Moreover, vertical water column profiles of THg and MMHg indicated that Hg methylation mainly occurred deep in the water column and at the sediment–water interface. The discharge of Hg from a chlor-alkali plant in Valcea region caused the highest MMHg concentrations ever found in non-piscivorous fish worldwide. MMHg concentrations and bioconcentration factors (BCF) of plankton and macrophytes revealed that the highest biomagnification of MMHg takes place in primary producers.
  •  
16.
  • Garcia Bravo, Andrea, et al. (author)
  • Species-specific isotope tracers to study the accumulation and biotransformation of mixtures of inorganic and methyl mercury by the microalga Chlamydomonas reinhardtii
  • 2014
  • In: Environmental Pollution. - : Elsevier BV. - 0269-7491 .- 1873-6424. ; 192, s. 212-215
  • Journal article (peer-reviewed)abstract
    • The present study demonstrates that species-specific isotope tracing is an useful tool to precisely measure Hg accumulation and transformations capabilities of living organisms at concentrations naturally encountered in the environment. To that end, a phytoplanktonic green alga Chlamydomonas reinhardtii Dangeard (Chlamydomonadales, Chlorophyceae) was exposed to mixtures of (199)-isotopically enriched inorganic mercury ((IHg)-I-199) and of (201)-isotopically enriched monomethylmercury ((CH3Hg)-C-201) at a concentration range between less than 1 pM to 4 nM. Additionally, one exposure concentration of both mercury species was also studied separately to evaluate possible interactive effects. No difference in the intracellular contents was observed for algae exposed to (IHg)-I-199 and (CH3Hg)-C-201 alone or in their mixture, suggesting similar accumulation capacity for both species at the studied concentrations. Demethylation of (CH3Hg)-C-201 was observed at the highest exposure concentrations, whereas no methylation was detected.
  •  
17.
  • Gascon Diez, Elena, et al. (author)
  • Influence of a wastewater treatment plant on mercury contamination and sediment characteristics in Vidy Bay (Lake Geneva, Switzerland)
  • 2014
  • In: Aquatic Sciences. - : Springer Science and Business Media LLC. - 1015-1621 .- 1420-9055. ; 76:S1, s. S21-S32
  • Journal article (peer-reviewed)abstract
    • Previous direct observations of the sediment surface in Vidy Bay, Lake Geneva (Switzerland), revealed a range of sediment characteristics in terms of colour, texture and morphology. Dives with the MIR submersibles during the éLEMO project permitted the exploration of a large portion of Vidy Bay. It is the most contaminated part of Lake Geneva, due to inputs of treated and untreated waters from a large wastewater treatment plant (WWTP). To evaluate the influence of WWTP effluent on mercury contamination and sediment characteristics, 14 sediment cores were retrieved in the vicinity of the wastewater treatment plant effluent. Total mercury concentrations in sediments ranged between 0.32 and 10.1 mg/kg. Inorganic mercury and monomethylmercury concentrations in overlying and pore waters were also measured. The total partition coefficients of mercury (logK d) ranged from 3.6 to 5.8. The monomethylmercury concentration in pore waters of surface sediments was a large proportion of the total mercury concentration (44 ± 25 %). A Spearman test showed a negative correlation between the distance to the wastewater treatment plant outlet and the concentrations of total mercury in sediments and pore waters. Visual observations from the submersible allowed recognizing six different types of sediment. The areal distribution of these different sediment types clearly showed the influence of the wastewater treatment plant outlet on the sediment surface patterns. However, no relationship with mercury concentrations could be established.
  •  
18.
  • Herrero Ortega, Sonia, et al. (author)
  • High methylmercury formation in ponds fueled by fresh humic and algal derived organic matter
  • 2018
  • In: Limnology and Oceanography. - : Wiley. - 0024-3590 .- 1939-5590. ; 63, s. S44-S53
  • Journal article (peer-reviewed)abstract
    • Neurotoxic methylmercury causes adverse effects to ecosystem viability and human health. Previous studies have revealed that ponding alters natural organic matter (NOM) composition and increase methylmercury concentrations in rivers, especially in the first years after flooding. Here, we investigate the influence of NOM composition (i.e., sources and degradation status) on mercury methylation rate constants in nine boreal beaver ponds of different ages across Sweden. We show that increased methylmercury concentrations in surface waters is a consequence of enhanced mercury methylation in the pond sediments. Moreover, our results reveal that during the first years after the initial flooding, mercury methylation rates are fueled by the amount of fresh humic substances released from the flooded soils and by an increased production of algal-derived NOM triggered by enhanced nutrient availability. Our findings indicate that impoundment-induced changes in NOM composition control mercury methylation processes, causing the raise in MeHg levels in ponds.
  •  
19.
  • Jingying, Xu, 1984-, et al. (author)
  • Mercury methylating microbial communities in boreal wetlands
  • Other publication (other academic/artistic)abstract
    • Understanding the formation of the potent neurotoxic methylmercury (MeHg) is a major concern due to its threats to wildlife and human health. As boreal wetlands play a crucial role for Hg cycling on a global scale, it is crucial to understand the biogeochemical processes involved in MeHg formation in this landscape. A strategy combining high-throughput hgcA amplicon sequencing with molecular barcoding was used to revealed diverse clades of Hg(II) methylators in a wide range of wetland soils. Our results confirms a predominant role of Deltaproteobacteria, and in particular Geobacteraceae, as important Hg(II) methylators in boreal wetland soils. Firmicutes, and in particular Ruminococcaceae, were also abundant members of the Hg(II) methylating microbial communities. Our survey highlight the importance of nutrient status for the shaping of Hg(II) methylating communities across the four wetlands and reveal that water content and prevailing redox states are key factors determining the local variation in Hg(II) methylating community composition within individual wetlands. Also, our study suggests that high nutrient levels linked to low redox potential seemed to favour Hg(II) methylating methanogens within the Methanoregulaceae. Our findings expand the current knowledge on the Hg(II) methylating microbial community composition in wetland soils and the geochemical factors underpinning spatial heterogeity in such communities.  
  •  
20.
  • Jingying, Xu, 1984-, et al. (author)
  • Mercury methylating microbial communities of boreal forest soils
  • 2019
  • In: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 9
  • Journal article (peer-reviewed)abstract
    • The formation of the potent neurotoxic methylmercury (MeHg) is a microbially mediated process that has raised much concern because MeHg poses threats to wildlife and human health. Since boreal forest soils can be a source of MeHg in aquatic networks, it is crucial to understand the biogeochemical processes involved in the formation of this pollutant. High-throughput sequencing of 16S rRNA and the mercury methyltransferase, hgcA, combined with geochemical characterisation of soils, were used to determine the microbial populations contributing to MeHg formation in forest soils across Sweden. The hgcA sequences obtained were distributed among diverse clades, including Proteobacteria, Firmicutes, and Methanomicrobia, with Deltaproteobacteria, particularly Geobacteraceae, dominating the libraries across all soils examined. Our results also suggest that MeHg formation is linked to the composition of also non-mercury methylating bacterial communities, likely providing growth substrate (e.g. acetate) for the hgcA-carrying microorganisms responsible for the actual methylation process. While previous research focused on mercury methylating microbial communities of wetlands, this study provides some first insights into the diversity of mercury methylating microorganisms in boreal forest soils.
  •  
21.
  • Jingying, Xu, 1984-, et al. (author)
  • Mercury Methylating Microbial Community Structure in Boreal Wetlands Explained by Local Physicochemical Conditions
  • 2021
  • In: Frontiers in Environmental Science. - : Frontiers Media S.A.. - 2296-665X. ; 8
  • Journal article (peer-reviewed)abstract
    • The potent neurotoxin methylmercury (MeHg) is a major concern due to its negative effects on wildlife and human health. Boreal wetlands play a crucial role in Hg cycling on a global scale, and therefore, it is crucial to understand the biogeochemical processes involved in MeHg formation in this landscape element. By combining high-throughput hgcA amplicon sequencing with molecular barcoding, we reveal diverse clades of potential Hg-II methylators in a wide range of wetland soils. Among Bacteria, Desulfuromonadota (14% of total reads), Desulfurobacterota_A, and Desulfurobacterota (up to 6% of total reads), previously classified as Deltaproteobacteria, were important members of the hgcA+ microbial community in the studied wetlands. We also identified Actinobacteriota (9.4% of total reads), Bacteroidota (2% of total reads), and Firmicutes (1.2% of total reads) as members of the hgcA+ microbial community. Within Archaea, Methanosarcinales represented up to 2.5% of the total reads. However, up to half of the hgcA+ community could not be resolved beyond domain Bacteria. Our survey also shows that local physicochemical conditions, such as pH, nutrient concentrations, water content, and prevailing redox states, are important for shaping the hgcA+ microbial community structure across the four studied wetlands. Furthermore, we observed a significant correlation between Hg-II methylation rate constants and the structure of the hgcA+ microbial community. Our findings expand the current knowledge on the hgcA+ microbial community composition in wetlands and the physicochemical factors underpinning spatial heterogeneity in such communities.
  •  
22.
  • Lembrechts, Jonas J., et al. (author)
  • SoilTemp : A global database of near-surface temperature
  • 2020
  • In: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 26:11, s. 6616-6629
  • Journal article (peer-reviewed)abstract
    • Current analyses and predictions of spatially explicit patterns and processes in ecology most often rely on climate data interpolated from standardized weather stations. This interpolated climate data represents long-term average thermal conditions at coarse spatial resolutions only. Hence, many climate-forcing factors that operate at fine spatiotemporal resolutions are overlooked. This is particularly important in relation to effects of observation height (e.g. vegetation, snow and soil characteristics) and in habitats varying in their exposure to radiation, moisture and wind (e.g. topography, radiative forcing or cold-air pooling). Since organisms living close to the ground relate more strongly to these microclimatic conditions than to free-air temperatures, microclimatic ground and near-surface data are needed to provide realistic forecasts of the fate of such organisms under anthropogenic climate change, as well as of the functioning of the ecosystems they live in. To fill this critical gap, we highlight a call for temperature time series submissions to SoilTemp, a geospatial database initiative compiling soil and near-surface temperature data from all over the world. Currently, this database contains time series from 7,538 temperature sensors from 51 countries across all key biomes. The database will pave the way toward an improved global understanding of microclimate and bridge the gap between the available climate data and the climate at fine spatiotemporal resolutions relevant to most organisms and ecosystem processes.
  •  
23.
  • Lump, Edina, et al. (author)
  • A molecular tweezer antagonizes seminal amyloids and HIV infection
  • 2015
  • In: eLIFE. - 2050-084X. ; 4
  • Journal article (peer-reviewed)abstract
    • Semen is the main vector for HIV transmission and contains amyloid fibrils that enhance viral infection. Available microbicides that target viral components have proven largely ineffective in preventing sexual virus transmission. In this study, we establish that CLR01, a 'molecular tweezer' specific for lysine and arginine residues, inhibits the formation of infectivity-enhancing seminal amyloids and remodels preformed fibrils. Moreover, CLR01 abrogates semen-mediated enhancement of viral infection by preventing the formation of virion-amyloid complexes and by directly disrupting the membrane integrity of HIV and other enveloped viruses. We establish that CLR01 acts by binding to the target lysine and arginine residues rather than by a non-specific, colloidal mechanism. CLR01 counteracts both host factors that may be important for HIV transmission and the pathogen itself. These combined anti-amyloid and antiviral activities make CLR01 a promising topical microbicide for blocking infection by HIV and other sexually transmitted viruses.
  •  
24.
  • Mantzouki, Evanthia, et al. (author)
  • A European Multi Lake Survey dataset of environmental variables , phytoplankton pigments and cyanotoxins
  • 2018
  • In: Scientific Data. - : Springer Science and Business Media LLC. - 2052-4463. ; 5:October, s. 1-13
  • Journal article (peer-reviewed)abstract
    • Under ongoing climate change and increasing anthropogenic activity, which continuously challenge ecosystem resilience, an in-depth understanding of ecological processes is urgently needed. Lakes, as providers of numerous ecosystem services, face multiple stressors that threaten their functioning. Harmful cyanobacterial blooms are a persistent problem resulting from nutrient pollution and climate-change induced stressors, like poor transparency, increased water temperature and enhanced stratification. Consistency in data collection and analysis methods is necessary to achieve fully comparable datasets and for statistical validity, avoiding issues linked to disparate data sources. The European Multi Lake Survey (EMLS) in summer 2015 was an initiative among scientists from 27 countries to collect and analyse lake physical, chemical and biological variables in a fully standardized manner. This database includes in-situ lake variables along with nutrient, pigment and cyanotoxin data of 369 lakes in Europe, which were centrally analysed in dedicated laboratories. Publishing the EMLS methods and dataset might inspire similar initiatives to study across large geographic areas that will contribute to better understanding lake responses in a changing environment.
  •  
25.
  • Pastor, Ada, et al. (author)
  • Local and regional drivers of headwater streams metabolism : insights from the first AIL collaborative project
  • 2017
  • In: LIMNETICA. - : Asociacion Iberica de Limnologia. - 0213-8409 .- 1989-1806. ; 36:1, s. 67-85
  • Journal article (peer-reviewed)abstract
    • Streams play a key role in the global biogeochemical cycles, processing material from adjacent terrestrial systems and transporting it downstream. However, the drivers of stream metabolism, especially those acting at broad spatial scales, are still not well understood. Moreover, stream metabolism can be affected by hydrological changes associated with seasonality, and thus, assessing the temporality of metabolic rates is a key question to understand stream function. This study aims to analyse the geographical and temporal patterns in stream metabolism and to identify the main drivers regulating the whole ecosystem metabolic rates at local and regional scales. Using a coordinated distributed experiment, we studied ten headwaters streams located across five European ecoregions during summer and fall 2014. We characterized the magnitude and variability of gross primary production (GPP) and ecosystem respiration (ER) with the open-channel method. Moreover, we examined several climatic, geographical, hydrological, morphological, and physicochemical variables that can potentially control stream metabolic rates. Daily rates of stream metabolism varied considerately across streams, with GPP and ER ranging from 0.06 to 4.33 g O-2 m(-2) d(-1) and from 0.72 to 14.20 g O-2 m(-2) d(-1), respectively. All streams were highly heterotrophic (P/R < 1), except the southernmost one. We found that the drier climates tended to have the highest GPP, while humid regions presented the highest ER. Between the sampling periods no statistical differences were found. Partial-least squares models (PLS) explained similar to 80% of the variance in GPP and ER rates across headwater streams and included both local and regional variables. Rates of GPP varied primarily in response to the local variables, such as streambed substrate and stream water temperature. In contrast, regional variables, such as the mean annual temperature or the land use of the catchment, had more relevance to explain ER. Overall, our results highlight that stream metabolism depends on both local and regional drivers and show the positive experience of a young network of researchers to assess scientific challenges across large-scale geographic areas.
  •  
26.
  • Regier, N., et al. (author)
  • Mercury bioaccumulation in the aquatic plant Elodea nuttallii in the field and in microcosm : Accumulation in shoots from the water might involve copper transporters
  • 2013
  • In: Chemosphere. - : Elsevier BV. - 0045-6535 .- 1879-1298. ; 90:2, s. 595-602
  • Journal article (peer-reviewed)abstract
    • Previous studies suggest that macrophytes might participate in bioaccumulation and biomagnification of toxic mercury (Hg) in aquatic environment. Hg bioaccumulation and uptake mechanisms in macrophytes need therefore to be studied. Amongst several macrophytes collected in an Hg contaminated reservoir in Romania, Elodea nuttallii showed a high organic and inorganic Hg accumulation and was then further studied in the laboratory.Tolerance and accumulation of Hg of this plant was also high in the microcosm. Basipetal transport of inorganic Hg was predominant, whereas acropetal transport of methyl-Hg was observed with apparently negligible methylation or demethylation in planta. Hg concentrations were higher in roots>leaves>stems and in top>middle>bottom of shoots. In shoots, more than 60% Hg was found intracellularly where it is believed to be highly available to predators. Accumulation in shoots was highly reduced by cold, death and by competition with Cu+.Hg in E. nuttallii shoots seems to mainly originate from the water column, but methyl-Hg could also be remobilized from the sediments and might drive in part its entry in the food web. At the cellular level, uptake of Hg into the cell sap of shoots seems linked to the metabolism and to copper transporters. The present work highlights an important breakthrough in our understanding of Hg accumulation and biomagnifications: the remobilization of methyl-Hg from sediments to aquatic plants and differences in uptake mechanisms of inorganic and methyl-Hg in a macrophyte.
  •  
27.
  • Wu, Pianpian, et al. (author)
  • Terrestrial diet influences mercury bioaccumulation in zooplankton and macroinvertebrates in lakes with differing dissolved organic carbon concentrations
  • 2019
  • In: Science of the Total Environment. - : ELSEVIER SCIENCE BV. - 0048-9697 .- 1879-1026. ; 669, s. 821-832
  • Journal article (peer-reviewed)abstract
    • Dietary uptake is a key step in conveying both toxic mercury (Hg; particularly as highly bioavailable methylmercury, MeHg) and essential dietary biochemicals, such as polyunsaturated fatty acids (PUFA), across trophic levels within aquatic food webs. Using stable isotopes and fatty acids we evaluated the role of food sources in size-fractioned plankton and littoral macroinvertebrates for the bioaccumulation of total Hg and MeHg in six oligotrophic and one mesotrophic Swedish lakes with differing concentrations of dissolved organic carbon (DOC). We found that the consumption of both algal and terrestrial diets (assessed by PUFA and long-chain saturated fatty acids, respectively) predicted >66% of the Hg concentration variability in meso- (100-500 mu m) and macrozooplankton (>500 mu m) in oligotrophic lakes. In the mesotrophic lake, total Hg bioaccumulation in higher trophic level biota, carnivorous macroinvertebrates was also significantly related to terrestrial diet sources (R-2 = 0.65, p < 0.01). However, lake pH and DOC correlated to total Hg bioaccumulation and bioconcentration across all lakes, suggesting the consumption of different diet sources is mediated by the influence of lake characteristics. This field study reveals that using dietary biomarkers (stable isotopes and fatty acids) together with the physico-chemical lake parameters pH and nutrients together improve our ability to predict Hg bioaccumulation in aquatic food webs. Fatty acids used as dietary biomarkers provide correlative evidence of specific diet source retention in consumers and their effect on Hg bioaccumulation, while pH and nutrients are the underlying physico-chemical lake parameters controlling differences in Hg bioaccumulation between lakes.
  •  
28.
  • Wu, Pianpian, et al. (author)
  • The importance of bioconcentration into the pelagic food web base for methylmercury biomagnification : A meta-analysis
  • 2019
  • In: Science of the Total Environment. - : Elsevier BV. - 0048-9697 .- 1879-1026. ; 646, s. 357-367
  • Research review (peer-reviewed)abstract
    • Methylmercury (MeHg) transfer from water into the base of the food web (bioconcentration) and subsequent biomagnification in the aquatic food web leads to most of the MeHg in fish. But how important is bioconcentration compared to biomagnification in predicting MeHg in fish? To answer this question we reviewed articles in which MeHg concentrations in water, plankton (seston and/or zooplankton), as well as fish (planktivorous and small omnivorous fish) were reported. This yielded 32 journal articles with data from 59 aquatic ecosystems at 22 sites around the world. Although there are many case studies of particular aquatic habitats and specific geographic areas that have examined MeHg bioconcentration and biomagnification, we performed a meta-analysis of such studies. Aqueous MeHg was not a significant predictor of MeHg in fish, but MeHg in seston i.e., the base of the aquatic food web, predicted 63% of the variability in fish MeHg. The MeHg bioconcentration factors (i.e., transfer of MeHg from water to seston; BCFw-s) varied from 3 to 7 orders of magnitude across sites and correlated significantly with MeHg in fish. The MeHg biomagnification factors from zooplankton to fish varied much less (logBMFz-f, 0.75 ± 0.31), and did not significantly correlate with fish MeHg, suggesting that zooplanktivory is not as important as bioconcentration in the biomagnification of fish MeHg across the range of ecosystems represented in our meta-analysis. Partial least square (PLS) and linear regression analyses identified several environmental factors associated with increased BCF, including low dissolved organic carbon, low pH, and oligotrophy. Our study reveals the widespread importance of MeHg bioconcentration into the base of the aquatic food web for MeHg at higher trophic levels in aquatic food webs, as well as the major influences on the variability in this bioconcentration.
  •  
29.
  • Xu, Jingying, 1984- (author)
  • Remediation of mercury contaminated soil and biological mercury methylation in the landscape
  • 2018
  • Doctoral thesis (other academic/artistic)abstract
    • Accumulation of mercury (Hg) in soil originating from both natural and anthropogenic sources poses a major hazard to environmental and human health. Inorganic Hg(II) in soil can be transformed to highly toxic methylmercury (MeHg) mainly via methylating microorganisms. Although MeHg constitutes less than 2% of total Hg in soil, it enters aquatic systems through runoff and can be subsequently bioaccumulated along the food chain, thereby causing severe harm to humans.Current major remediation techniques to control soil Hg contamination were reviewed. Organic matter, clay/minerals and complexation ligands within soil are principal factors influencing Hg mobility that is crucial for evaluating and optimising remedial techniques. The potential of soil washing to treat soil Hg contamination was evaluated. The studied soil was fractionated from fine to coarse particles to assess the effectiveness of physical separation. Batch leaching and pH-static titration tests were performed using (1) water, (2) EDTA, (3) NaOH, (4) HCl, (5) acidic leachates from biodegradable wastes, and (6) alkaline leachates from fly/bottom ashes, to estimate the efficiency of chemical extraction. Less than 1.5% of the total Hg could be mobilised after combined treatments, implying very tight binding of Hg to soil particles, thereby hampering soil washing as a strategy for the studied soil.Hg(II) methylation in boreal soils and lake sediments can have major consequences for MeHg inputs to downstream aquatic systems. It is therefore important to understand the biogeochemical mechanisms involved in MeHg formation in these landscapes. The microbes involved in Hg(II) methylation in sediments and boreal forests and wetlands were investigated by high-throughput 16S rRNA and hgcA sequencing with molecular barcoding. In all three environments, hgcA sequences were distributed among Proteobacteria, Firmicutes and Euryarchaeota, and Deltaproteobacteria, particularly Geobacteraceae, appeared to play a predominant role. Ruminococcaceae were also abundant Hg(II) methylators in soils from one forest and all the wetlands. The boreal forest survey provided some first insights about the possible link between MeHg formation and non-Hg(II) methylating bacterial communities that likely support the growth and activity of Hg(II) methylating members. Results from wetlands pointed out nutrient status as an important factor shaping Hg(II) methylating communities across the four wetlands, and highlighted a significant role of water content and iron in controlling the distribution of Hg(II) methylators within individual wetlands. Furthermore, the interactions between Hg(II) methylating groups revealed that the more anaerobic and productive conditions seemed to favour the activity of Methanoregulaceae and hamper the growth of Ruminococcaceae. Results from lake sediments supported that Geobacteraceae have an important role in Hg(II) methylation under ferruginous geochemical conditions. Our findings provide a better understanding of Hg(II) methylating communities in the landscape.
  •  
30.
  • Xu, Jingying, 1984-, et al. (author)
  • Sources and remediation techniques for mercury contaminated soil
  • 2015
  • In: Environment International. - : Elsevier. - 0160-4120 .- 1873-6750. ; 74, s. 42-53
  • Research review (peer-reviewed)abstract
    • Mercury (Hg) in soils has increased by a factor of 3 to 10 in recent times mainly due to combustion of fossil fuels combined with long-range atmospheric transport processes. Other sources as chlor-alkali plants, gold mining and cement production can also be significant, at least locally. This paper summarizes the natural and anthropogenic sources that have contributed to the increase of Hg concentration in soil and reviews major remediation techniques and their applications to control soil Hg contamination. The focus is on soil washing, stabilisation/solidification, thermal treatment and biological techniques; but also the factors that influence Hg mobilisation in soil and therefore are crucial for evaluating and optimizing remediation techniques are discussed. Further research on bioremediation is encouraged and future study should focus on the implementation of different remediation techniques under field conditions.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-30 of 30
Type of publication
journal article (26)
research review (2)
other publication (1)
doctoral thesis (1)
Type of content
peer-reviewed (27)
other academic/artistic (3)
Author/Editor
Bravo, Andrea Garcia (18)
Bertilsson, Stefan (10)
Buck, Moritz (10)
Björn, Erik (6)
Bishop, Kevin (5)
Amouroux, David (5)
show more...
Wu, Pianpian (4)
Jingying, Xu, 1984- (4)
Schaefer, Jeffra K. (3)
Hansson, Lars-Anders (3)
Pierson, Don (3)
Catalán, Núria, 1985 ... (3)
Zopfi, Jakob (3)
Dominik, Janusz (3)
Colom-Montero, Willi ... (3)
Graae, Bente Jessen (2)
Skyllberg, Ulf (2)
Zhang, Jian (2)
Sonesten, Lars (2)
Åkerblom, Staffan (2)
Garcia, David (2)
Vasconcelos, Vitor (2)
Catalán, Núria (2)
Morais, Joao (2)
Boeckx, Pascal (2)
Antoniou, Maria G. (2)
Grossart, Hans-Peter (2)
Arvola, Lauri (2)
Skjelbred, Birger (2)
Liem-Nguyen, Van (2)
Bauters, Marijn (2)
Goma, Joan (2)
Romo, Susana (2)
Bláha, Ludek (2)
Bordin, Kauane (2)
Buchmann, Nina (2)
Eklöf, Karin (2)
Van Meerbeek, Koenra ... (2)
Pauli, Harald (2)
Svoboda, Miroslav (2)
Myers-Smith, Isla H. (2)
Carbognani, Michele (2)
Petraglia, Alessandr ... (2)
Blonder, Benjamin (2)
Flaim, Giovanna (2)
Bouchet, Sylvain (2)
Cosio, Claudia (2)
Cosio, C. (2)
Osman, Omneya (2)
Herrero Ortega, Soni ... (2)
show less...
University
Uppsala University (24)
Swedish University of Agricultural Sciences (11)
Umeå University (9)
Lund University (4)
University of Gothenburg (3)
Stockholm University (3)
show more...
Luleå University of Technology (1)
Linköping University (1)
Chalmers University of Technology (1)
Karlstad University (1)
Karolinska Institutet (1)
show less...
Language
English (30)
Research subject (UKÄ/SCB)
Natural sciences (23)
Medical and Health Sciences (4)
Agricultural Sciences (4)
Engineering and Technology (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view