SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Brorsson Ann Christin) "

Sökning: WFRF:(Brorsson Ann Christin)

  • Resultat 1-39 av 39
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aronsson, Göran, et al. (författare)
  • Remarkably slow folding of a small protein.
  • 1997
  • Ingår i: FEBS Letters. - 0014-5793 .- 1873-3468. ; 411:2-3, s. 359-364
  • Tidskriftsartikel (refereegranskat)abstract
    • Equilibrium denaturation of the 72 amino acid alpha/beta-protein MerP, by acid, guanidine hydrochloride, or temperature, is fully reversible and follows a two-state model in which only the native and unfolded states are populated. A cis-trans equilibrium around a proline peptide bond causes a heterogeneity of the unfolded state and gives rise to a slow- and a fast folding population. With a rate constant of 1.2 s(-1) for the major fast folding population, which has none of the common intrinsically slow steps, MerP is the slowest folding protein of this small size yet reported.
  •  
2.
  • Bergkvist, Liza, et al. (författare)
  • A beta PP processing results in greater toxicity per amount of A beta(1-42) than individually expressed and secreted A beta(1-42) in Drosophila melanogaster
  • 2016
  • Ingår i: BIOLOGY OPEN. - : COMPANY OF BIOLOGISTS LTD. - 2046-6390. ; 5:8, s. 1030-1039
  • Tidskriftsartikel (refereegranskat)abstract
    • The aggregation of the amyloid-beta (A beta) peptide into fibrillar deposits has long been considered the key neuropathological hallmark of Alzheimers disease (AD). A beta peptides are generated from proteolytic processing of the transmembrane A beta precursor protein (A beta PP) via sequential proteolysis through the beta-secretase activity of beta-site A beta PP-cleaving enzyme (BACE1) and by the intramembranous enzyme gamma-secretase. For over a decade, Drosophila melanogaster has been used as a model organism to study AD, and two different approaches have been developed to investigate the toxicity caused by AD-associated gene products in vivo. In one model, the A beta peptide is directly over-expressed fused to a signal peptide, allowing secretion of the peptide into the extracellular space. In the other model, human A beta PP is co-expressed with human BACE1, resulting in production of the A beta peptide through the processing of A beta PP by BACE1 and by endogenous fly gamma-secretase. Here, we performed a parallel study of flies that expressed the A beta(1-42) peptide alone or that co-expressed A beta PP and BACE1. Toxic effects (assessed by eye phenotype, longevity and locomotor assays) and levels of the A beta(1-42), A beta(1-40) and A beta(1-38) peptides were examined. Our data reveal that the toxic effect per amount of detected A beta(1-42) peptide was higher in the flies co-expressing A beta PP and BACE1 than in the A beta(1-42)-expressing flies, and that the co-existence of A beta(1-42) and A beta(1-40) in the flies co-expressing A beta PP and BACE1 could be of significant importance to the neurotoxic effect detected in these flies. Thus, the toxicity detected in these two fly models seems to have different modes of action and is highly dependent on how and where the peptide is generated rather than on the actual level of the A beta(1-42) peptide in the flies. This is important knowledge that needs to be taken into consideration when using Drosophila models to investigate disease mechanisms or therapeutic strategies in AD research.
  •  
3.
  • Bergkvist, Liza, 1985- (författare)
  • Amyloid-β and lysozyme proteotoxicity in Drosophila : Beneficial effects of lysozyme and serum amyloid P component in models of Alzheimer’s disease and lysozyme amyloidosis
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • In the work presented this thesis, two different conditions that are classified as protein misfolding diseases: Alzheimer's disease and lysozyme amyloidosis and proteins that could have a beneficial effect in these diseases, have been studied using Drosophila melanogaster, commonly known as the fruit fly. The fruit fly has been used for over 100 years to study and better understand fundamental biological processes. Although the fruit fly, unlike humans, is an invertebrate, many of its central biological mechanisms are very similar to ours. The first transgenic flies were designed in the early 1980s, and since then, the fruit fly has been one of the most widely used model organisms in studies on the effects of over-expressed human proteins in a biological system; one can regard the fly as a living, biological test tube. For  most proteins, it is necessary that they fold into a three-dimensional structure to function properly. But sometimes the folding goes wrong; this may be due to mutations that make the protein unstable and subject to misfolding. A misfolded protein molecule can then aggregate with other misfolded proteins. In Alzheimer's disease, which is the most common form of dementia, protein aggregates are present in the brains of patients. These aggregates are composed of the amyloid-β (Aβ) peptide, a small peptide of around 42 amino acids which is cleaved from the larger, membrane-bound, protein AβPP by two different enzymes, BACE1 and γ-secretase. In the first part of this thesis, two different fly models for Alzheimer’s disease were used: the Aβ fly model, which directly expresses the Aβ peptide, and the AβPP-BACE1 fly model, in which all the components necessary to produce the Aβ peptide in the fly are expressed in the fly central nervous system (CNS). The two different fly models were compared and the results show that a significantly smaller amount of the Aβ peptide is needed to achieve the same, or an even greater, toxic effect in the AβPP-BACE1 model compared to the Aβ model. In the second part of the thesis, these two fly models for Alzheimer’s disease were again used, but now to investigate whether lysozyme, a protein involved in our innate immune system, can counteract the toxic effect of Aβ generated in the fly models. And indeed, lysozyme is able to save the flies from Aβ-induced toxicity. Aβ and lysozyme were found to interact with each other in vivo. The second misfolding disease studied in this thesis is lysozyme amyloidosis. It is a rare, dominantly inherited amyloid disease in which mutant variants of lysozyme give rise to aggregates, weighing up to several kilograms, that accumulate around the kidneys and liver, eventually leading to organ failure. In the third part of this thesis, a fly model for lysozyme amyloidosis was used to study the effect of co-expressing the serum amyloid P component (SAP), a protein that is part of all protein aggregates found within this disease class. SAP is able to rescue the toxicity induced by expressing the mutant variant of lysozyme, F57I, in the fly's CNS. To further investigate how SAP was able to do this, double-expressing lysozyme flies, which exhibit stronger disease phenotypes than those of the single-expressing lysozyme flies previously studied, were used in the fourth part of this thesis. SAP was observed to reduce F57I toxicity and promote F57I to form aggregates with more distinct amyloid characteristics. In conclusion, the work included in this thesis demonstrates that: i) Aβ generated from AβPP processing in the fly CNS results in higher proteotoxicity compared with direct expression of Aβ from the transgene, ii) lysozyme can prevent Aβ proteotoxicity in Drosophila and could thus be a potential therapeutic molecule to treat Alzheimer’s disease and iii) in a Drosophila model of lysozyme amyloidosis, SAP can prevent toxicity from the disease-associated lysozyme variant F57I and promote formation of aggregated lysozyme morphotypes with amyloid properties; this is important to take into account when a reduced level of SAP is considered as a treatment strategy for lysozyme amyloidosis.
  •  
4.
  • Bergkvist, Liza, et al. (författare)
  • Co-expression of a disease-associated lysozyme variant with human lysozyme in Drosophila causes accumulation of amyloid deposits and neurodegeneration
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Lysozyme amyloidosis is a dominantly inherited form of amyloid disease. Mutant variants of the protein, with increased tendencies to aggregate compared to the wild type (WT), accumulate in large amyloid deposits in multiple organs, eventually leading to organ failure. Humans affected by lysozyme amyloidosis carry one allele for the wild type protein and one allele encoding for a mutant variant of lysozyme. We have used a Drosophila melanogaster model to investigate the effect of co-expressing WT lysozyme and a mutated variant, F57I, in the central nervous system (CNS) of the fly. In this study, using activity and longevity assays, WT-F57I flies showed a lower activity and a shorter lifespan than flies expressing only WT or the F57I variant of lysozyme (median survival 16 days compared to 34 and 23 respectively). This indicates deteriorating neurological functions in WT-F57I flies; exceeding the decrease in neurological function previously observed for flies only expressing the mutated variant, F57I. In addition, accumulation of insoluble species with amyloid structure was detected for the WT-F57I flies but not for the WT or the F57I flies. Our study show that co-expression of WT lysozyme and the amyloidogenic variant F57I results in neurological damage and is required for accumulation of amyloid deposits, which is characteristic for the disease observed in humans. Our data suggest that insoluble amyloid species or intermediate species, formed on the pathway toward amyloid species, may be cytotoxic and thus contribute to the impaired neurological functions observed for the WT-F57I flies.
  •  
5.
  • Bergkvist, Liza, et al. (författare)
  • Mapping pathogenic processes contributing to neurodegeneration in Drosophila models of Alzheimers disease
  • 2020
  • Ingår i: FEBS Open Bio. - : WILEY. - 2211-5463. ; 10:3, s. 338-350
  • Tidskriftsartikel (refereegranskat)abstract
    • Alzheimers disease (AD) is the most common form of dementia, affecting millions of people and currently lacking available disease-modifying treatments. Appropriate disease models are necessary to investigate disease mechanisms and potential treatments. Drosophila melanogaster models of AD include the A beta fly model and the A beta PP-BACE1 fly model. In the A beta fly model, the A beta peptide is fused to a secretion sequence and directly overexpressed. In the A beta PP-BACE1 model, human A beta PP and human BACE1 are expressed in the fly, resulting in in vivo production of A beta peptides and other A beta PP cleavage products. Although these two models have been used for almost two decades, the underlying mechanisms resulting in neurodegeneration are not yet clearly understood. In this study, we have characterized toxic mechanisms in these two AD fly models. We detected neuronal cell death and increased protein carbonylation (indicative of oxidative stress) in both AD fly models. In the A beta fly model, this correlates with high A beta(1-42) levels and down-regulation of the levels of mRNA encoding lysosomal-associated membrane protein 1, lamp1 (a lysosomal marker), while in the A beta PP-BACE1 fly model, neuronal cell death correlates with low A beta(1-42) levels, up-regulation of lamp1 mRNA levels and increased levels of C-terminal fragments. In addition, a significant amount of A beta PP/A beta antibody (4G8)-positive species, located close to the endosomal marker rab5, was detected in the A beta PP-BACE1 model. Taken together, this study highlights the similarities and differences in the toxic mechanisms which result in neuronal death in two different AD fly models. Such information is important to consider when utilizing these models to study AD pathogenesis or screening for potential treatments.
  •  
6.
  • Bergkvist, Liza, et al. (författare)
  • Serum amyloid P component promotes formation of distinct aggregated lysozyme morphologies and reduces toxicity in Drosophila flies expressing F57I lysozyme
  • 2020
  • Ingår i: PLOS ONE. - : PUBLIC LIBRARY SCIENCE. - 1932-6203. ; 15:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Many conflicting reports about the involvement of serum amyloid P component (SAP) in amyloid diseases have been presented over the years; SAP is known to be a universal component of amyloid aggregates but it has been suggested that it can both induce and suppress amyloid formation. By using our Drosophila model of systemic lysozyme amyloidosis, SAP has previously been shown to reduce the toxicity induced by the expression of the disease-associated lysozyme variant, F57I, in the Drosophila central nervous system. This study further investigates the involvement of SAP in modulating lysozyme toxicity using histochemistry and spectral analyses on the double transgenic WT and F57I lysozyme flies to probe; i) formation of aggregates, ii) morphological differences of the aggregated lysozyme species formed in the presence or absence of SAP, iii) location of lysozyme and iv) co-localisation of lysozyme and SAP in the fly brain. We found that SAP can counteract the toxicity (measured by the reduction in the median survival time) induced by F57I lysozyme by converting toxic F57I species into less toxic amyloid-like structures, as reflected by the spectral changes that p-FTAA undergoes when bound to lysozyme deposits in F57I-F57I-SAP flies as compared to F57I-F57I flies. Indeed, when SAP was introduced to in vitro lysozyme fibril formation, the endpoint fibrils had enhanced ThT fluorescence intensity as compared to lysozyme fibrils alone. This suggests that a general mechanism for SAPs role in amyloid diseases may be to promote the formation of stable, amyloid-like fibrils, thus decreasing the impact of toxic species formed along the aggregation pathway.
  •  
7.
  • Berglund, Anders, et al. (författare)
  • The equilibrium unfolding of MerP characterized by multivariate analysis of 2D NMR data
  • 2005
  • Ingår i: Journal of magnetic resonance. - San Diego : Academic Press. - 1090-7807 .- 1096-0856. ; 172:1, s. 24-30
  • Tidskriftsartikel (refereegranskat)abstract
    • A general problem when analysing NMR spectra that reflect variations in the environment of target molecules is that different resonances are affected to various extents. Often a few resonances that display the largest frequency changes are selected as probes to reflect the examined variation, especially in the case, where the NMR spectra contain numerous resonances. Such a selection is dependent on more or less intuitive judgements and relying on the observed spectral variation being primarily caused by changes in the NMR sample. Second, recording changes observed for a few (albeit significant) resonances is inevitably accompanied by not using all available information in the analysis. Likewise, the commonly used chemical shift mapping (CSM) [Biochemistry 39 (2000) 26, Biochemistry 39 (2000) 12595] constitutes a loss of information since the total variation in the data is not retained in the projection into this single variable. Here, we describe a method for subjecting 2D NMR time-domain data to multivariate analysis and illustrate it with an analysis of multiple NNIR experiments recorded at various folding conditions for the protein MerP. The calculated principal components provide an unbiased model of variations in the NNIR spectra and they can consequently be processed as NMR data, and all the changes as reflected in the principal components are thereby made available for visual inspection in one single NMR spectrum. This approach is much less laborious than consideration of large numbers of individual spectra, and it greatly increases the interpretative power of the analysis.
  •  
8.
  • Bolognesi, B, et al. (författare)
  • The N-terminus of amyloid-beta plays a crucial role in its aggregation and toxicity
  • 2010
  • Ingår i: The FEBS Journal. - : Wiley-Blackwell. - 1742-464X .- 1742-4658. ; 277:Suppl. 1, s. 79-80
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • The aggregation of Amyloid Beta (Aß) peptide into insolubleamyloid fibrils that deposit in the brain is one of the primarypathogenic events in Alzheimer’s disease. We have previouslyshown, using a Drosophila model of Aß toxicity, that the N terminus of the Aß peptide, despite being unstructured in themature Aß fibril, nonetheless affects Aß induced neurodegeneration in vivo. In order to understand the contribution of the N terminusof Aß to its aggregation behaviour, we have investigated anumber of rationally designed N-terminal mutants in vitro. We find that single amino acid mutations in this region affect significantlythe kinetics of Aß aggregation in vitro as measured by arange of spectroscopic techniques. Furthermore, we observe striking differences in the morphology of the aggregated speciesformed by these different Aß mutants when imaged with TEM or  AFM  and  also  in the ß-sheet  content  of their  mature  fibrils. Interestingly, mutants with an increased net charge or lower hydrophobicity tend  to show slower aggregation  kinetics, and  to form more ordered  aggregates  whereas mutations that  reduce net charge   or   increase   hydrophobicity   favour   faster   aggregation kinetics   and   poorly   structured  aggregates.   In   addition,    the exposed  hydrophobicity of aggregates  formed  in the early stages of aggregation  is correlated  to their toxicity.  These findings demonstrate  not  only that  the N-terminus of the Aß peptide  plays a crucial  role  in its aggregation  and  toxicity  but  also  suggest that this  region  of Aß  may  modulate  in vivo toxicity  by altering  the conformations of aggregates that  it forms.
  •  
9.
  • Brorsson, Ann-Christin, et al. (författare)
  • GuHCl and NaCl-dependent hydrogen exchange in MerP reveals a well-defined core with an unusual exchange pattern
  • 2006
  • Ingår i: Journal of Molecular Biology. - : Elsevier BV. - 0022-2836 .- 1089-8638. ; 357:5, s. 1634-1646
  • Tidskriftsartikel (refereegranskat)abstract
    • We have analysed hydrogen exchange at amide groups to characterise the energy landscape of the 72 amino acid residue protein MerP. From the guanidine hydrochloride (GuHCl) dependence of exchange in the pre-transitional region we have determined free energy values of exchange (ΔGHX) and corresponding m-values for individual amide protons. Detailed analysis of the exchange patterns indicates that for one set of amide protons there is a weak dependence on denaturant, indicating that the exchange is dominated by local fluctuations. For another set of amide protons a linear, but much stronger, denaturant dependence is observed. Notably, the plots of free energy of exchange versus [GuHCl] for 16 amide protons show pronounced upward curvature, and a close inspection of the structure shows that these residues form a well-defined core in the protein. The hydrogen exchange that was measured at various concentrations of NaCl shows an apparent selective stabilisation of this core. Detailed analysis of this exchange pattern indicates that it may originate from selective destabilisation of the unfolded state by guanidinium ions and/or selective stabilisation of the core in the native state by chloride ions. © 2006 Elsevier Ltd. All rights reserved.
  •  
10.
  • Brorsson, Ann-Christin, et al. (författare)
  • Intrinsic determinants of neurotoxic aggregate formation by the amyloid beta peptide
  • 2010
  • Ingår i: Biophysical Journal. - : Elsevier BV. - 0006-3495 .- 1542-0086. ; 98:8, s. 1677-84
  • Tidskriftsartikel (refereegranskat)abstract
    • The extent to which proteins aggregate into distinct structures ranging from prefibrillar oligomers to amyloid fibrils is key to the pathogenesis of many age-related degenerative diseases. We describe here for the Alzheimer's disease-related amyloid beta peptide (Abeta) an investigation of the sequence-based determinants of the balance between the formation of prefibrillar aggregates and amyloid fibrils. We show that by introducing single-point mutations, it is possible to convert the normally harmless Abeta40 peptide into a pathogenic species by increasing its relative propensity to form prefibrillar but not fibrillar aggregates, and, conversely, to abolish the pathogenicity of the highly neurotoxic E22G Abeta42 peptide by reducing its relative propensity to form prefibrillar species rather than mature fibrillar ones. This observation can be rationalized by the demonstration that whereas regions of the sequence of high aggregation propensity dominate the overall tendency to aggregate, regions with low intrinsic aggregation propensities exert significant control over the balance of the prefibrillar and fibrillar species formed, and therefore play a major role in determining the neurotoxicity of the Abeta peptide.
  •  
11.
  • Brorsson, Ann-Christin, et al. (författare)
  • Methods and models in neurodegenerative and systemic protein aggregation diseases
  • 2010
  • Ingår i: Frontiers in bioscience : a journal and virtual library. - : Frontiers in Bioscience Publications. - 1093-4715. ; 15, s. 373-396
  • Forskningsöversikt (refereegranskat)abstract
    • Protein misfolding and aggregation are implicated in a wide range of increasingly prevalent human diseases ranging from dementia to diabetes. In this review we discuss the current experimental strategies that are being employed in the investigation of the pathogenesis of three important protein misfolding disorders. The first, Alzheimers disease (AD), is the most prevalent neurodegenerative disease and is thought to be initiated by the aggregation of a natively unstructured peptide called amyloid beta (Abeta). We discuss methods for the characterization of the aggregation properties of Abeta in vitro and how the results of such experiments can be correlated with data from animal models of disease. We then consider another form of amyloidosis, where a systemic distribution of amyloid deposit is caused by aggregation and deposition of mutational variants of lysozyme. We describe how experiments in vitro, and more recently in vivo, have provided insights into the origins of this disease. Finally we outline the varied paradigms that have been employed in the study of the serpinopathies, and in particular, a dementia caused by neuroserpin polymerization.
  •  
12.
  • Brorsson, Ann-Christin, 1969- (författare)
  • The Folding Energy Landscape of MerP
  • 2004
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This thesis is based on studies, described in four papers, in which the folding energy landscape of MerP was investigated by various techniques. MerP is a water-soluble 72 amino acid protein with a secondary structure consisting of four anti-parallel β-strands and two α-helices on one side of the sheet in the order β1α1β2β3α2β4.The first paper describes the use of CD and fluorescence analysis to examine the folding/unfolding process of MerP. From these experiments it was found that the protein folds according to a two-state model in which only the native and unfolded forms are populated without any visible intermediates. With a rate constant of 1.2 s-1, the folding rate was found to be unusually slow for a protein of this size.The studies presented in the second and third papers were based on measurements of native-state amide proton exchange at different temperatures (Paper II) and GuHCl concentrations (Paper III) in the pre-transitional region. In these studies partially unfolded forms were found for MerP which are essentially unrelated to each other. Thus, in the folding energy landscape of MerP, several intermediates seem to occur on different folding trajectories that are parallel to each other. The slow folding rate of MerP might be coupled to extensive visitation of these conformations. Hydrogen exchange in MerP did also reveal structure-dependent differences in compactness between the denatured states in GuHCl and H2O.In the last paper multivariate data analysis was applied to 2-dimensional NMR data to detect conformational changes in the structure of MerP induced by GuHCl. From this analysis it was suggested that regions involved in the most flexible part of the protein structure are disrupted at rather low denaturant concentrations (< 2.1 M GuHCl) while the native structures of the most stable parts are still not completely ruptured at 2.9 M GuHCl.Finally, the stability, kinetics, contact order and folding nuclei of six proteins with similar topology (MerP, U1A, S6, ADA2h, AcP and HPr) were compared. In this analysis it was found that their folding properties are quite diverse, despite their topological similarities, and no general rules that have been formulated yet can adequately predict their folding behaviour.
  •  
13.
  • Brorsson, Ann-Christin, et al. (författare)
  • The “Two-State folder” MerP forms partially unfolded structures that show temperature dependent hydrogen exchange
  • 2004
  • Ingår i: Journal of Molecular Biology. - London : Academic Press. - 0022-2836 .- 1089-8638. ; 340:2, s. 333-344
  • Tidskriftsartikel (refereegranskat)abstract
    • We have analysed the folding energy landscape of the 72 amino acid protein MerP by monitoring native state hydrogen exchange as a function of temperature in the range of 7-55 degrees C. The temperature dependence of the hydrogen exchange has allowed us to determine DeltaG, DeltaH and DeltaC(p) values for the conformational processes that permit hydrogen exchange. When studied with the traditional probes, fluorescence and CD, MerP appears to behave as a typical two-state protein, but the results from the hydrogen exchange analysis reveal a much more complex energy landscape. Analysis at the individual amino acid level show that exchange is allowed from an ensemble of partially unfolded structures (i.e. intermediates) in which the stabilities at the amino acid level form a broad distribution throughout the protein. The formation of partially unfolded structures might contribute to the unusually slow folding of MerP.
  •  
14.
  • Civitelli, Livia, et al. (författare)
  • The Luminescent Oligothiophene p-FTAA Converts Toxic A beta(1-42) Species into Nontoxic Amyloid Fibers with Altered Properties
  • 2016
  • Ingår i: Journal of Biological Chemistry. - : AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC. - 0021-9258 .- 1083-351X. ; 291:17, s. 9233-9243
  • Tidskriftsartikel (refereegranskat)abstract
    • Aggregation of the amyloid-(beta) peptide (A beta) in the brain leads to the formation of extracellular amyloid plaques, which is one of the pathological hallmarks of Alzheimer disease (AD). It is a general hypothesis that soluble prefibrillar assemblies of the A beta peptide, rather than mature amyloid fibrils, cause neuronal dysfunction and memory impairment in AD. Thus, reducing the level of these prefibrillar species by using molecules that can interfere with the A beta fibrillation pathway may be a valid approach to reduce A beta cytotoxicity. Luminescent-conjugated oligothiophenes (LCOs) have amyloid binding properties and spectral properties that differ when they bind to protein aggregates with different morphologies and can therefore be used to visualize protein aggregates. In this study, cell toxicity experiments and biophysical studies demonstrated that the LCO p-FTAA was able to reduce the pool of soluble toxic A beta species in favor of the formation of larger insoluble nontoxic amyloid fibrils, there by counteracting A beta-mediated cytotoxicity. Moreover, p-FTAA bound to early formed A beta species and induced a rapid formation of beta-sheet structures. These p-FTAA generated amyloid fibrils were less hydrophobic and more resistant to proteolysis by proteinase K. In summary, our data show that p-FTAA promoted the formation of insoluble and stable A beta species that were nontoxic which indicates that p-FTAA might have therapeutic potential.
  •  
15.
  • Domert, Jakob, et al. (författare)
  • Spreading of Amyloid-β Peptides via Neuritic Cell-to-cell Transfer Is Dependent on Insufficient Cellular Clearance
  • 2014
  • Ingår i: Neurobiology of Disease. - : Elsevier. - 0969-9961 .- 1095-953X. ; 65, s. 82-92
  • Tidskriftsartikel (refereegranskat)abstract
    • The spreading of pathology through neuronal pathways is likely to be the cause of the progressive cognitive loss observed in Alzheimer's disease (AD) and other neurodegenerative diseases. We have recently shown the propagation of AD pathology via cell-to-cell transfer of oligomeric amyloid beta (Aβ) residues 1-42 (oAβ1-42) using our donor-acceptor 3-D co-culture model. We now show that different Aβ-isoforms (fluorescently labeled 1-42, 3(pE)-40, 1-40 and 11-42 oligomers) can transfer from one cell to another. Thus, transfer is not restricted to a specific Aβ-isoform. Although different Aβ isoforms can transfer, differences in the capacity to clear and/or degrade these aggregated isoforms result in vast differences in the net amounts ending up in the receiving cells and the net remaining Aβ can cause seeding and pathology in the receiving cells. This insufficient clearance and/or degradation by cells creates sizable intracellular accumulations of the aggregation-prone Aβ1-42 isoform, which further promotes cell-to-cell transfer; thus, oAβ1-42 is a potentially toxic isoform. Furthermore, cell-to-cell transfer is shown to be an early event that is seemingly independent of later appearances of cellular toxicity. This phenomenon could explain how seeds for the AD pathology could pass on to new brain areas and gradually induce AD pathology, even before the first cell starts to deteriorate, and how cell-to-cell transfer can act together with the factors that influence cellular clearance and/or degradation in the development of AD.
  •  
16.
  • Elovsson, Greta, et al. (författare)
  • A Novel Drosophila Model of Alzheimer's Disease to Study Aß Proteotoxicity in the Digestive Tract
  • 2024
  • Ingår i: International Journal of Molecular Sciences. - : MDPI. - 1661-6596 .- 1422-0067. ; 25:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Amyloid-beta (A beta) proteotoxicity is associated with Alzheimer's disease (AD) and is caused by protein aggregation, resulting in neuronal damage in the brain. In the search for novel treatments, Drosophila melanogaster has been extensively used to screen for anti-A beta proteotoxic agents in studies where toxic A beta peptides are expressed in the fly brain. Since drug molecules often are administered orally there is a risk that they fail to reach the brain, due to their inability to cross the brain barrier. To circumvent this problem, we have designed a novel Drosophila model that expresses the A beta peptides in the digestive tract. In addition, a built-in apoptotic sensor provides a fluorescent signal from the green fluorescent protein as a response to caspase activity. We found that expressing different variants of A beta 1-42 resulted in proteotoxic phenotypes such as reduced longevity, aggregate deposition, and the presence of apoptotic cells. Taken together, this gut-based A beta-expressing fly model can be used to study the mechanisms behind A beta proteotoxicity and to identify different substances that can modify A beta proteotoxicity.
  •  
17.
  • Elovsson, Greta, et al. (författare)
  • Exploring A beta Proteotoxicity and Therapeutic Candidates Using Drosophila melanogaster
  • 2021
  • Ingår i: International Journal of Molecular Sciences. - : MDPI. - 1661-6596 .- 1422-0067. ; 22:19
  • Forskningsöversikt (refereegranskat)abstract
    • Alzheimers disease is a widespread and devastating neurological disorder associated with proteotoxic events caused by the misfolding and aggregation of the amyloid-beta peptide. To find therapeutic strategies to combat this disease, Drosophila melanogaster has proved to be an excellent model organism that is able to uncover anti-proteotoxic candidates due to its outstanding genetic toolbox and resemblance to human disease genes. In this review, we highlight the use of Drosophila melanogaster to both study the proteotoxicity of the amyloid-beta peptide and to screen for drug candidates. Expanding the knowledge of how the etiology of Alzheimers disease is related to proteotoxicity and how drugs can be used to block disease progression will hopefully shed further light on the field in the search for disease-modifying treatments.
  •  
18.
  • Göransson, Anna-Lena, et al. (författare)
  • Dissecting the Aggregation Events of Alzheimer’s disease Associated Aβ peptide Variants by the Combined use of Different Fluorescent Probes
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • The formation of soluble prefibrillar oligomeric species of the amyloid β peptide (Aβ) has been implicated as a causative agent in the development of Alzheimer’s disease (AD). It is therefore important to characterize the properties of these aggregates, which precede the formation of amyloid fibrils. We studied the in vitro aggregation process of two Aβ40 peptide variants through the combined use of four different fluorescent probes and transmission electron microscopy. Previous studies have shown that these two studied Aβ40 variants exhibit different levels of neurodegeneration when expressed in the central nervous system of Drosophila melanogaster. In the present study, we demonstrate distinct differences in aggregate morphology and their binding properties to different fluorescent probes during in vitro fibrillation of these Aβ peptides. Our results indicate a potential link between the observed neurodegenerative properties and the biophysical properties of distinct aggregated Aβ species.
  •  
19.
  • Göransson, Anna-Lena, et al. (författare)
  • Identification of distinct physiochemical properties of the toxic prefibrillar species formed by Aβ peptide variants
  • 2012
  • Ingår i: Biochemical and Biophysical Research Communications - BBRC. - : Wiley-Blackwell. - 0006-291X .- 1090-2104. ; 420:4, s. 895-900
  • Tidskriftsartikel (refereegranskat)abstract
    • The formation of amyloid-β peptide (Aβ) aggregates at an early stage during the self-assembly process is an important factor in the development of Alzheimer’s disease. The toxic effect is believed to be exerted by prefibrillar species of Aβ. It is therefore important to identify which prefibrillar species are toxic and characterize their distinct properties. In the present study, we investigated the in vitro aggregation behavior of Aβ-derived peptides possessing different levels of neurotoxic activity, using fluorescence spectroscopy in combination with transmission electron microscopy. The toxicity of various Aβ aggregates was assessed by using cultures of human neuroblastoma cells. Through combined use of the fluorescence probe 8-anilino-1-napthalenesulfonate (ANS) and the novel luminescent probe pentamer formyl thiophene acetic acid (p-FTAA), we were able to identify those Aβ peptide-derived prefibrillar species which exhibited cellular toxicity. In particular, species, which formed early during the aggregation process and showed strong p-FTAA and ANS fluorescence, were the species that possessed toxic activities. Moreover, by manipulating the aggregation conditions, it was possible to change the capacity of the Aβ peptide to form nontoxic versus toxic species.
  •  
20.
  • Helmfors, Linda, et al. (författare)
  • A protective role of lysozyme in Alzheimer disease
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Alzheimer disease (AD) is a devastating neurodegenerative disorder where extracellular plaques composed of amyloid β (Aβ) peptides and neuroinflammation are some of the main hallmarks of the disease. Activated microglial cells, which are the resident macrophages in the central nervous system, are suggested to trigger the inflammation response in AD. To discover neuroinflammation biomarkers would be important to reveal the pathological mechanisms of AD and develop therapies that target inflammation mediators. Lysozyme is part of the innate immune system and is secreted from macrophages during various inflammation conditions. However, the involvement of lysozyme in AD pathology has not been explored previously. We have discovered that lysozyme is up-regulated in cerebrospinal fluid from AD patients. Cells exposed to Aβ increased the expression of lysozyme indicating that Aβ might be responsible for the upregulation of lysozyme detected in cerebrospinal fluid. In vitro studies revealed that lysozyme binds to monomeric Aβ1-42 and alters the aggregation pathway counteracting formation of toxic Aβ species. In a newly developed Drosophila model, co-expression of lysozyme with Aβ in brain neurons reduced the formation of insoluble Aβ species, prolonged the survival and improved the activity of the double transgenic flies compared to flies only expressing Aβ. Our findings identify lysozyme as a modulator of Aβ aggregation and toxicity and our discoveries has the potential to be used for development of new treatment strategies and to use lysozyme as a biomarker for AD.
  •  
21.
  • Helmfors, Linda, et al. (författare)
  • Protective properties of lysozyme on β-amyloid pathology : implications for Alzheimer disease
  • 2015
  • Ingår i: Neurobiology of Disease. - : Elsevier. - 0969-9961 .- 1095-953X. ; 83, s. 122-133
  • Tidskriftsartikel (refereegranskat)abstract
    • The hallmarks of Alzheimer disease are amyloid-β plaques and neurofibrillary tangles accompanied by signs of neuroinflammation. Lysozyme is a major player in the innate immune system and has recently been shown to prevent the aggregation of amyloid-β1-40 in vitro. In this study we found that patients with Alzheimer disease have increased lysozyme levels in the cerebrospinal fluid and lysozyme co-localized with amyloid-β in plaques. In Drosophila neuronal co-expression of lysozyme and amyloid-β1-42 reduced the formation of soluble and insoluble amyloid-β species, prolonged survival and improved the activity of amyloid-β1-42 transgenic flies. This suggests that lysozyme levels rise in Alzheimer disease as a compensatory response to amyloid-β increases and aggregation. In support of this, in vitro aggregation assays revealed that lysozyme associates with amyloid-β1-42 and alters its aggregation pathway to counteract the formation of toxic amyloid-β species. Overall, these studies establish a protective role for lysozyme against amyloid-β associated toxicities and identify increased lysozyme in patients with Alzheimer disease. Therefore, lysozyme has potential as a new biomarker as well as a therapeutic target for Alzheimer disease.
  •  
22.
  • Helmfors, Linda, et al. (författare)
  • SAP to the rescue: Serum amyloid p component ameliorates neurological damage caused by expressing a lysozyme variant in the central nervous system of Drosophila melanogaster
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Lysozyme amyloidosis is a hereditary disease in which mutations in the gene encoding lysozyme leads to misfolding and consequently accumulation of amyloid material. To improve understanding of the processes involved we expressed human wild type (WT) lysozyme and the disease-associated variant F57I in the central nervous system (CNS) of a Drosophila melanogaster model of lysozyme amyloidosis, with and without serum amyloid p component (SAP). We found that flies expressing the amyloidogenic variant F57I in the CNS have a shorter lifespan and lower locomotor activity than flies expressing WT lysozyme or control flies, indicating that the flies’ neurological functions are impaired when F57I is expressed in the nerve cells. In addition, the Unfolded Protein Response (UPR) was upregulated in the F57I-expressing flies. However, co-expression of SAP in the CNS restored the F57I flies’ locomotor activity and lifespan. Thus, SAP has apparent ability to protect nerve cells from damage caused by F57I. Furthermore, co-expression of SAP prevented accumulation of insoluble forms of lysozyme in both WT- and F57I-expressing flies and delayed up-regulation of the UPR by 10 days in F57I flies. Our findings suggest that SAP can prevent cytotoxic effects of expressing F57I in fly CNS by retaining F57I in a soluble form and preventing crowding of misfolded F57I species in the endoplasmic reticulum.
  •  
23.
  • Helmfors, Linda, et al. (författare)
  • Serum Amyloid P Component Ameliorates Neurological Damage Caused by Expressing a Lysozyme Variant in the Central Nervous System of Drosophila melanogaster
  • 2016
  • Ingår i: PLOS ONE. - : PUBLIC LIBRARY SCIENCE. - 1932-6203. ; 11:7, s. e0159294-
  • Tidskriftsartikel (refereegranskat)abstract
    • Lysozyme amyloidosis is a hereditary disease in which mutations in the gene coding for lysozyme leads to misfolding and consequently accumulation of amyloid material. To improve understanding of the processes involved we expressed human wild type (WT) lysozyme and the disease-associated variant F57I in the central nervous system (CNS) of a Drosophila melanogaster model of lysozyme amyloidosis, with and without co-expression of serum amyloid p component (SAP). SAP is known to be a universal constituent of amyloid deposits and to associate with lysozyme fibrils. There are clear indications that SAP may play an important role in lysozyme amyloidosis, which requires further elucidation. We found that flies expressing the amyloidogenic variant F57I in the CNS have a shorter lifespan than flies expressing WT lysozyme. We also identified apoptotic cells in the brains of F57I flies demonstrating that the flies neurological functions are impaired when F57I is expressed in the nerve cells. However, co-expression of SAP in the CNS prevented cell death and restored the F57I flies lifespan. Thus, SAP has the apparent ability to protect nerve cells from damage caused by F57I. Furthermore, it was found that co-expression of SAP prevented accumulation of insoluble forms of lysozyme in both WT- and F57I-expressing flies. Our findings suggest that the F57I mutation affects the aggregation process of lysozyme resulting in the formation of cytotoxic species and that SAP is able to prevent cell death in the F57I flies by preventing accumulation of toxic F57I structures.
  •  
24.
  • Helmfors, Linda, 1983- (författare)
  • Understanding the dual nature of lysozyme: part villain – part hero : A Drosophila melanogaster model of lysozyme amyloidosis
  • 2014
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Amyloid proteins are a distinct class of proteins that can misfold into β-sheet rich structures that later mature to form the characteristic species known as amyloid fibrils, and accumulate in tissues in the human body. The misfolding event is often caused by mutations (or outer factors such as changes in pH) that destabilize the native protein structure. The mature amyloid fibrils were initially believed to be associated with diseases connected to protein misfolding such as Alzheimer’s disease (AD), Parkinson’s disease, transthyretin amyloidosis and lysozyme amyloidosis. However, now it is known that many different factors are involved in these diseases such as failure in protein clearance, lysosomal dysfunction and formation of intermediate misfolded protein species, which possess cytotoxic properties, preceding the formation of mature fibrils.In this thesis the amyloidogenic protein lysozyme has been examined in vivo by using Drosophila melanogaster (fruit fly) as a model organism. The effects of over-expressing human lysozyme and amyloidogenic variants in Drosophila have been investigated both in the absence and presence of the serum amyloid P component (SAP), a protein known to interact with amyloid species. In addition, the role of lysozyme in AD has been investigated by  co-expressing human lysozyme and amyloid β in Drosophila.The lysozyme protein is an enzyme naturally found in bodily fluids such as tears, breast milk and saliva. It is engaged in the body’s defense and acts by hydrolyzing the cell wall of invading bacteria. Certain disease-associated point mutations in the gene encoding lysozyme destabilize the protein and cause it to misfold which results in systemic amyloidosis. To investigate the in vivo misfolding behavior of lysozyme we developed and established a Drosophila model of lysozyme amyloidosis. SAP is commonly found attached to amyloid deposits in the body; however, the role of SAP in amyloid diseases is unknown. To investigate the effect of SAP in lysozyme misfolding, these two proteins were co-expressed in Drosophila.The amyloid β peptide is involved in AD, building up the plaques found in AD patient brains. These plaques trigger neuroinflammation and since lysozyme is upregulated during various inflammation conditions, a possible role of lysozyme in AD was investigated by overexpressing lysozyme in a Drosophila model of AD. Interaction between lysozyme and the amyloid β protein was also studied by biophysical measurements.During my work with this thesis, the dual nature of lysozyme emerged; on the one hand a villain, twisted by mutations, causing the lysozyme amyloidosis disease. On the other hand a hero, delaying the toxicity and maybe the neurological damage caused by the amyloid β peptide.
  •  
25.
  •  
26.
  • Kanmert, Daniel, et al. (författare)
  • In Vitro Amyloid Fibril Formation of Human IgG-Fc
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Both light and heavy chains of human antibodies are known to be associated with immunoglobulin related amyloidosis, but in vitro formation of amyloid fibrils has previously only been reported for light chain sequences. Here we show that fibrillation of the Fc fragment of human IgG of all subclasses can be induced by heating to at least 75°C at neutral pH and physiological salt concentration. The observed protein assemblies share key properties with those constituting amyloid, i.e. they are thioflavinophilic and congophilic and have a typical fibril appearance in the transmission electron microscope. This study of the amyloidogenic properties of human IgG-Fc, comprising the CH2 and CH3 domains of the IgG heavy chain, is important for increasing the understanding of which parts of IgG that could be involved in amyloid formation in vivo.
  •  
27.
  • Kanmert, Daniel, et al. (författare)
  • Thermal Induction of an Alternatively Folded State in Human IgG-Fc
  • 2011
  • Ingår i: Biochemistry. - : American Chemical Society. - 0006-2960 .- 1520-4995. ; 50:6, s. 981-988
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the formation of a non-native, folded state of human IgG4-Fc induced by a high temperature at neutral pH and at a physiological salt concentration. This structure is similar to the molten globule state in that it displays a high degree of secondary structure content and surface-exposed hydrophobic residues. However, it is highly resistant to chemical denaturation. The thermally induced state of human IgG4-Fc is thus associated with typical properties of the so-called alternatively folded state previously described for murine IgG, IgG-Fab, and individual antibody domains (V(L), V(H), C(H)1, and C(H)3) under acidic conditions in the presence of anions. Like some of these molecules, human IgG4-Fc in its alternative fold exists as a mixture of different oligomeric structures, dominated by an equilibrium between monomeric and heptameric species. Heating further induces the formation of fibrous structures in the micrometer range.
  •  
28.
  • Kumita, Janet R, et al. (författare)
  • Disease-related amyloidogenic variants of human lysozyme trigger the unfolded protein response and disturb eye development in Drosophila melanogaster
  • 2012
  • Ingår i: The FASEB Journal. - : Federation of American Society of Experimental Biology (FASEB). - 0892-6638 .- 1530-6860. ; 26:1, s. 192-202
  • Tidskriftsartikel (refereegranskat)abstract
    • We have created a Drosophila model of lysozyme amyloidosis to investigate the in vivo behavior of disease-associated variants. To achieve this objective, wild-type (WT) protein and the amyloidogenic variants F57I and D67H were expressed in Drosophila melanogaster using the UAS-gal4 system and both the ubiquitous and retinal expression drivers Act5C-gal4 and gmr-gal4. The nontransgenic w(1118) Drosophila line was used as a control throughout. We utilized ELISA experiments to probe lysozyme protein levels, scanning electron microscopy for eye phenotype classification, and immunohistochemistry to detect the unfolded protein response (UPR) activation. We observed that expressing the destabilized F57I and D67H lysozymes triggers UPR activation, resulting in degradation of these variants, whereas the WT lysozyme is secreted into the fly hemolymph. Indeed, the level of WT was up to 17 times more abundant than the variant proteins. In addition, the F57I variant gave rise to a significant disruption of the eye development, and this correlated to pronounced UPR activation. These results support the concept that the onset of familial amyloid disease is linked to an inability of the UPR to degrade completely the amyloidogenic lysozymes prior to secretion, resulting in secretion of these destabilized variants, thereby leading to deposition and associated organ damage.-Kumita, J. R., Helmfors, L., Williams, J., Luheshi, L. M., Menzer, L., Dumoulin, M., Lomas, D. A., Crowther, D. C., Dobson, C. M., Brorsson, A.-C. Disease-related amyloidogenic variants of human lysozyme trigger the unfolded protein response and disturb eye development in Drosophila melanogaster.
  •  
29.
  • Luheshi, Leila M., et al. (författare)
  • Sequestration of the A beta Peptide Prevents Toxicity and Promotes Degradation In Vivo
  • 2010
  • Ingår i: PLoS biology. - : Public Library of Science (PLoS). - 1544-9173 .- 1545-7885. ; 8:3, s. e1000334-
  • Tidskriftsartikel (refereegranskat)abstract
    • Protein aggregation, arising from the failure of the cell to regulate the synthesis or degradation of aggregation-prone proteins, underlies many neurodegenerative disorders. However, the balance between the synthesis, clearance, and assembly of misfolded proteins into neurotoxic aggregates remains poorly understood. Here we study the effects of modulating this balance for the amyloid-beta (A beta) peptide by using a small engineered binding protein (Z(A beta 3)) that binds with nanomolar affinity to A beta, completely sequestering the aggregation-prone regions of the peptide and preventing its aggregation. Co-expression of Z(A beta 3) in the brains of Drosophila melanogaster expressing either A beta(42) or the aggressive familial Alzheimer's disease (AD) associated E22G variant of A beta(42) abolishes their neurotoxic effects. Biochemical analysis indicates that monomer A beta binding results in degradation of the peptide in vivo. Complementary biophysical studies emphasize the dynamic nature of A beta aggregation and reveal that Z(A beta 3) not only inhibits the initial association of A beta monomers into oligomers or fibrils, but also dissociates pre-formed oligomeric aggregates and, although very slowly, amyloid fibrils. Toxic effects of peptide aggregation in vivo can therefore be eliminated by sequestration of hydrophobic regions in monomeric peptides, even when these are extremely aggregation prone. Our studies also underline how a combination of in vivo and in vitro experiments provide mechanistic insight with regard to the relationship between protein aggregation and clearance and show that engineered binding proteins may provide powerful tools with which to address the physiological and pathological consequences of protein aggregation.
  •  
30.
  • Luheshi, Leila M, et al. (författare)
  • Systematic in vivo analysis of the intrinsic determinants of amyloid Beta pathogenicity.
  • 2007
  • Ingår i: PLoS biology. - : Public Library of Science (PLoS). - 1545-7885. ; 5:11, s. e290-
  • Tidskriftsartikel (refereegranskat)abstract
    • Protein aggregation into amyloid fibrils and protofibrillar aggregates is associated with a number of the most common neurodegenerative diseases. We have established, using a computational approach, that knowledge of the primary sequences of proteins is sufficient to predict their in vitro aggregation propensities. Here we demonstrate, using rational mutagenesis of the Abeta42 peptide based on such computational predictions of aggregation propensity, the existence of a strong correlation between the propensity of Abeta42 to form protofibrils and its effect on neuronal dysfunction and degeneration in a Drosophila model of Alzheimer disease. Our findings provide a quantitative description of the molecular basis for the pathogenicity of Abeta and link directly and systematically the intrinsic properties of biomolecules, predicted in silico and confirmed in vitro, to pathogenic events taking place in a living organism.
  •  
31.
  • Macao, Bertil, 1969, et al. (författare)
  • Recombinant amyloid beta-peptide production by coexpression with an affibody ligand.
  • 2008
  • Ingår i: BMC biotechnology. - : Springer Science and Business Media LLC. - 1472-6750. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Oligomeric and fibrillar aggregates of the amyloid beta-peptide (Abeta) have been implicated in the pathogenesis of Alzheimer's disease (AD). The characterization of Abeta assemblies is essential for the elucidation of the mechanisms of Abeta neurotoxicity, but requires large quantities of pure peptide. Here we describe a novel approach to the recombinant production of Abeta. The method is based on the coexpression of the affibody protein ZAbeta3, a selected affinity ligand derived from the Z domain three-helix bundle scaffold. ZAbeta3 binds to the amyloidogenic central and C-terminal part of Abeta with nanomolar affinity and consequently inhibits aggregation. RESULTS: Coexpression of ZAbeta3 affords the overexpression of both major Abeta isoforms, Abeta(1-40) and Abeta(1-42), yielding 4 or 3 mg, respectively, of pure 15N-labeled peptide per liter of culture. The method does not rely on a protein-fusion or -tag and thus does not require a cleavage reaction. The purified peptides were characterized by NMR, circular dichroism, SDS-PAGE and size exclusion chromatography, and their aggregation propensities were assessed by thioflavin T fluorescence and electron microscopy. The data coincide with those reported previously for monomeric, largely unstructured Abeta. ZAbeta3 coexpression moreover permits the recombinant production of Abeta(1-42) carrying the Arctic (E22G) mutation, which causes early onset familial AD. Abeta(1-42)E22G is obtained in predominantly monomeric form and suitable, e.g., for NMR studies. CONCLUSION: The coexpression of an engineered aggregation-inhibiting binding protein offers a novel route to the recombinant production of amyloidogenic Abeta peptides that can be advantageously employed to study the molecular basis of AD. The presented expression system is the first for which expression and purification of the aggregation-prone Arctic variant (E22G) of Abeta(1-42) is reported.
  •  
32.
  • Museth, Anna Katrine, et al. (författare)
  • The ALS-Associated Mutation G93A in Human Copper-Zinc Superoxide Dismutase Selectively Destabilizes the Remote Metal Binding Region
  • 2009
  • Ingår i: BIOCHEMISTRY. - : American Chemical Society (ACS). - 0006-2960 .- 1520-4995. ; 48:37, s. 8817-8829
  • Tidskriftsartikel (refereegranskat)abstract
    • More than 100 distinct mutations in the gene (SOD 1) for human copper-zinc superoxide dismutase (CuZnSOD) have been associated with familial amyotrophic lateral sclerosis (fALS). Studies of these mutant proteins, which often have been performed under far from physiological conditions, have indicated effects oil protein stabilities, catalytic activity, kind metal binding affinities but with no common pattern. Also, with the knowledge that ALS is a late onset disease it is apparent that protein interactions which contribute to the disorder might, in the natural cellular milieu, depend on a delicate balance between intrinsic protein properties. In this study, we have used experimental conditions as near as possible to the in vivo conditions to reduce artifacts emanating from the experimental setup. Using H-1-N-15 HSQC NMR spectroscopy, we have analyzed hydrogen exchange at the amide groups of wild-type (wt) CuZnSOD and the fALS-associated G93A SOD variant in their fully metalated states. From analyses of the exchange pattern, we have characterized the local dynamics at 64% of all positions in detail in both the wt and G93A protein. The results show that the G93A mutation had no effect on the dynamics at a majority of the investigated positions. However, the mutation results in local destabilization at the site of the Mutation and also in stabilization at a few positions that were apparently scattered over the entire protein surface. Most remarkably, the mutation selectively destabilized the remote metal binding region. The results indicate that the metal binding region may affect the intermolecular protein-protein interactions which cause formation of protein aggregates.
  •  
33.
  •  
34.
  • Sandin, Linnea, et al. (författare)
  • Beneficial effects of increased lysozyme levels in Alzheimer’s disease modelled in Drosophila melanogaster
  • 2016
  • Ingår i: The FEBS Journal. - : John Wiley & Sons. - 1742-464X .- 1742-4658. ; 283:19, s. 3508-3522
  • Tidskriftsartikel (refereegranskat)abstract
    • Genetic polymorphisms of immune genes that associate with higher risk to develop Alzheimer’s disease (AD) have led to an increased research interest on the involvement of the immune system in AD pathogenesis. A link between amyloid pathology and immune gene expression was suggested in a genome-wide gene expression study of transgenic amyloid mouse models. In this study, the gene expression of lysozyme, a major player in the innate immune system, was found to be increased in a comparable pattern as the amyloid pathology developed in transgenic mouse models of AD. A similar pattern was seen at protein levels of lysozyme in human AD brain and CSF, but this lysozyme pattern was not seen in a tau transgenic mouse model. Lysozyme was demonstrated to be beneficial for different Drosophila melanogaster models of AD. In flies that expressed Aβ1-42 or AβPP together with BACE1 in the eyes, the rough eye phenotype indicative of toxicity was completely rescued by coexpression of lysozyme. In Drosophila flies bearing the Aβ1-42 variant with the Arctic gene mutation, lysozyme increased the fly survival and decreased locomotor dysfunction dose dependently. An interaction between lysozyme and Aβ1-42 in the Drosophila eye was discovered. We propose that the increased levels of lysozyme, seen in mouse models of AD and in human AD cases, were triggered by Aβ1-42 and caused a beneficial effect by binding of lysozyme to toxic species of Aβ1-42, which prevented these from exerting their toxic effects. These results emphasize the possibility of lysozyme as biomarker and therapeutic target for AD.
  •  
35.
  • Sandin, Linnea, 1984- (författare)
  • The influence of lysozyme and oligothiophenes on amyloid-β toxicity in models of Alzheimer’s disease
  • 2016
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Alzheimer’s disease (AD) is a neurodegenerative disease and the most common cause of dementia worldwide. Apart from dominantly inherited mutations, age is the major risk factor and as life expectancy increases the prevalence for AD escalates dramatically. AD causes substantial problems for the affected persons and their families, and the society suffers economically. To date the available treatments only temporarily relieve the symptoms, wherefore the development of a cure is of utmost importance. The etiology of AD is still inconclusive but many believe that small aggregates (oligomers) of the protein amyloid-β (Aβ) are central for the onset of AD.The aims of this thesis were to investigate how different molecules affect the aggregation and toxicity of Aβ. In paper I and II, two oligothiophenes were studied; p-FTAA and h-FTAA and in paper III and IV the inflammatory protein lysozyme was explored. Differentiated neuroblastoma cells and Drosophila melanogaster were used as models of AD to address the issue.The results show that p-FTAA rescues neuroblastoma cells from Aβ toxicity when Aβ is coaggregated with lysozyme. Various biophysical studies show that the co-aggregation increases the formation of fibrillar Aβ structures rich in β-sheets. Noteworthy, these Aβ fibrils were more resistant to both degradation and denaturation, and less prone to propagate seeding from Aβ monomers. Furthermore, h-FTAA, but not p-FTAA, was able to protect neuroblastoma cell toxicity when exposed to Aβ with the Arctic mutation (AβArc), which probably reflects the weaker binding of AβArc to p-FTAA, compared to h-FTAA.Lysozyme levels were increased in CSF from patients that were both biochemically and clinically diagnosed with AD. In mice models of AD it was revealed that the mRNA increase in lysozyme correlates to increased Aβ pathology, but not to tau pathology, indicating that Aβ could drive the expression of lysozyme. To evaluate the effect for increased expression of lysozyme, co-expression of lysozyme was achieved in flies that expressed Aβ in the retina of the eyes, or in flies that expressed AβArc in the central nervous system. In all AD fly models, co-expression of lysozyme protected the cells from the Aβ induced toxicity. Of note, flies that expressed the toxic AβArc in the CNS of the flies showed an improvement in both lifespan and activity. Finally, we demonstrate that Aβ aggregating in the presence of lysozyme inhibits the cellular uptake of Aβ and also the cytotoxic effect of Aβ.The work included in this thesis demonstrates that the oligothiophenes p-FTAA and h-FTAA, and also lysozyme have the potential to be used as treatment strategies for sporadic AD, but remarkable, also in familial AD with the highly toxic Arctic mutation. The protective mechanism of p-FTAA seems to be attributed to the ability to generate stable Aβ fibrils with reduced seeding capacity, and that lysozyme inhibits the neuronal uptake of Aβ, which could prevent both the intracellular toxicity and cell-to-cell transmission of Aβ.
  •  
36.
  • Sandin, Linnea, et al. (författare)
  • The Luminescent Conjugated Oligothiophene h-FTAA Attenuates the Toxicity of Different A beta Species
  • 2021
  • Ingår i: Biochemistry. - : American Chemical Society (ACS). - 0006-2960 .- 1520-4995. ; 60:37, s. 2773-2780
  • Tidskriftsartikel (refereegranskat)abstract
    • The prevailing opinion is that prefibrillar beta-amyloid (A beta) species, rather than end-stage amyloid fibrils, cause neuronal dysfunction in Alzheimers disease, although the mechanisms behind A beta neurotoxicity remain to be elucidated. Luminescent conjugated oligothiophenes (LCOs) exhibit spectral properties upon binding to amyloid proteins and have previously been reported to change the toxicity of A beta(1- 42) and prion protein. In a previous study, we showed that an LCO, pentamer formyl thiophene acetic acid (p-FTAA), changed the toxicity of A beta(1-42). Here we investigated whether an LCO, heptamer formyl thiophene acetic acid (h-FTAA), could change the toxicity of A beta(1-42) by comparing its behavior with that of p-FTAA. Moreover, we investigated the effects on toxicity when A ss with the Arctic mutation (A beta Arc) was aggregated with both LCOs. Cell viability assays on SH-SY5Y neuroblastoma cells demonstrated that h-FTAA has a stronger impact on A beta(1-42) toxicity than does p-FTAA. Interestingly, h-FTAA, but not p-FTAA, rescued the A beta(Arc)-mediated toxicity. Aggregation kinetics and binding assay experiments with A beta(1-42) and A beta(Arc) when aggregated with both LCOs showed that h-FTAA and p-FTAA either interact with different species or affect the aggregation in different ways. In conclusion, h-FTAA protects against A beta(1-42) and A beta(Arc) toxicity, thus showing h-FTAA to be a useful tool for improving our understanding of the process of A beta aggregation linked to cytotoxicity.
  •  
37.
  • von Below, Bernhard, 1952, et al. (författare)
  • Student-centred GP ambassadors: Perceptions of experienced clinical tutors in general practice undergraduate training
  • 2015
  • Ingår i: Scandinavian Journal of Primary Health Care. - : Informa UK Limited. - 0281-3432 .- 1502-7724. ; 33:2, s. 142-149
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective. To explore experienced general practitioner (GP) tutor perceptions of a skilled GP tutor of medical students. Design. Interview study based on focus groups. Setting. Twenty GPs experienced in tutoring medical students at primary health care centres in two Swedish regions were interviewed. Method. Four focus-group interviews were analysed using qualitative content analysis. Subjects. Twenty GP tutors, median age 50, specifically selected according to age, gender, and location participated in two focus groups in Gothenburg and Malmo, respectively. Main outcome measures. Meaning units in the texts were extracted, coded and condensed into categories and themes. Results. Three main themes emerged: "Professional as GP and ambassador to general practice", "Committed and student-centred educator", and "Coordinator of the learning environment". Conclusion. Experienced GP tutors describe their skills as a clinical tutor as complex and diversified. A strong professional identity within general practice is vital and GP tutors describe themselves as ambassadors to general practice, essential to the process of recruiting a new generation of general practitioners. Leaders of clinical education and health care planners must understand the complexity in a clinical tutor's assignment and provide adequate support, time, and resources in order to facilitate a sustainable tutorship and a good learning environment, which could also improve the necessary recruitment of future GPs.
  •  
38.
  •  
39.
  • Yanamandra, Kiran, 1977-, et al. (författare)
  • Amyloid formation by the pro-inflammatory S100A8/A9 proteins in the ageing prostate.
  • 2009
  • Ingår i: PloS one. - : Public Library of Science (PLoS). - 1932-6203. ; 4:5, s. e5562-
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: The conversion of soluble peptides and proteins into polymeric amyloid structures is a hallmark of many age-related degenerative disorders, including Alzheimer's disease, type II diabetes and a variety of systemic amyloidoses. We report here that amyloid formation is linked to another major age-related phenomenon--prostate tissue remodelling in middle-aged and elderly men. METHODOLOGY/PRINCIPAL FINDINGS: By using multidisciplinary analysis of corpora amylacea inclusions in prostate glands of patients diagnosed with prostate cancer we have revealed that their major components are the amyloid forms of S100A8 and S100A9 proteins associated with numerous inflammatory conditions and types of cancer. In prostate protease rich environment the amyloids are stabilized by dystrophic calcification and lateral thickening. We have demonstrated that material closely resembling CA can be produced from S100A8/A9 in vitro under native and acidic conditions and shows the characters of amyloids. This process is facilitated by calcium or zinc, both of which are abundant in ex vivo inclusions. These observations were supported by computational analysis of the S100A8/A9 calcium-dependent aggregation propensity profiles. We found DNA and proteins from Escherichia coli in CA bodies, suggesting that their formation is likely to be associated with bacterial infection. CA inclusions were also accompanied by the activation of macrophages and by an increase in the concentration of S100A8/A9 in the surrounding tissues, indicating inflammatory reactions. CONCLUSIONS/SIGNIFICANCE: These findings, taken together, suggest a link between bacterial infection, inflammation and amyloid deposition of pro-inflammatory proteins S100A8/A9 in the prostate gland, such that a self-perpetuating cycle can be triggered and may increase the risk of malignancy in the ageing prostate. The results provide strong support for the prediction that the generic ability of polypeptide chains to convert into amyloids could lead to their involvement in an increasing number of otherwise apparently unrelated diseases, particularly those associated with ageing.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-39 av 39
Typ av publikation
tidskriftsartikel (25)
annan publikation (6)
doktorsavhandling (4)
konferensbidrag (2)
forskningsöversikt (2)
Typ av innehåll
refereegranskat (28)
övrigt vetenskapligt/konstnärligt (10)
populärvet., debatt m.m. (1)
Författare/redaktör
Brorsson, Ann-Christ ... (33)
Kågedal, Katarina (9)
Dobson, Christopher ... (7)
Sandin, Linnea (6)
Jonsson, Bengt-Haral ... (5)
Nilsson, Peter (4)
visa fler...
Nath, Sangeeta (4)
Lomas, David A. (4)
Janefjord, Camilla (3)
Kanmert, Daniel (3)
Bolognesi, Benedetta (2)
Blennow, Kaj (2)
Mattsson, Bengt, 194 ... (2)
Enander, Karin (2)
Zetterberg, Henrik (2)
Garner, Brett (2)
Vendruscolo, Michele (2)
Aronsson, Göran (2)
Macao, Bertil, 1969 (2)
Haffling, Ann-Christ ... (2)
Blennow, Kaj, 1958 (1)
Zetterberg, Henrik, ... (1)
Vogl, Thomas (1)
Bergh, Anders (1)
Berglund, Anders (1)
Ståhl, Stefan (1)
Agholme, Lotta (1)
Hallbeck, Martin (1)
Marcusson, Jan (1)
Domert, Jakob (1)
Hammarström, Per (1)
Tibell, Lena, 1952- (1)
Shchukarev, Andrey (1)
Johansson, Leif (1)
Olsson, Jan (1)
Alexeyev, Oleg (1)
Elgh, Fredrik (1)
Otzen, Daniel, Profe ... (1)
Lundqvist, Martin (1)
Wingsle, Gunnar (1)
Lindgren, Mikael (1)
Brorsson, Annika (1)
Halliday, Glenda (1)
Appelqvist, Hanna (1)
Morozova-Roche, Ludm ... (1)
Dobson, C.M. (1)
Prokop, Stefan (1)
Armstrong, Andrea (1)
Sahlman, Lena (1)
Härd, Torleif, 1959 (1)
visa färre...
Lärosäte
Linköpings universitet (35)
Umeå universitet (6)
Göteborgs universitet (5)
Kungliga Tekniska Högskolan (2)
Lunds universitet (1)
Sveriges Lantbruksuniversitet (1)
Språk
Engelska (38)
Svenska (1)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (14)
Medicin och hälsovetenskap (13)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy