SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Brown Devin L.) "

Search: WFRF:(Brown Devin L.)

  • Result 1-18 of 18
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Shungin, Dmitry, et al. (author)
  • New genetic loci link adipose and insulin biology to body fat distribution.
  • 2015
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 518:7538, s. 187-378
  • Journal article (peer-reviewed)abstract
    • Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms.
  •  
2.
  • Speliotes, Elizabeth K., et al. (author)
  • Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index
  • 2010
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 42:11, s. 937-948
  • Journal article (peer-reviewed)abstract
    • Obesity is globally prevalent and highly heritable, but its underlying genetic factors remain largely elusive. To identify genetic loci for obesity susceptibility, we examined associations between body mass index and ~2.8 million SNPs in up to 123,865 individuals with targeted follow up of 42 SNPs in up to 125,931 additional individuals. We confirmed 14 known obesity susceptibility loci and identified 18 new loci associated with body mass index (P < 5 × 10−8), one of which includes a copy number variant near GPRC5B. Some loci (at MC4R, POMC, SH2B1 and BDNF) map near key hypothalamic regulators of energy balance, and one of these loci is near GIPR, an incretin receptor. Furthermore, genes in other newly associated loci may provide new insights into human body weight regulation.
  •  
3.
  • Woo, Daniel, et al. (author)
  • Meta-Analysis of Genome-Wide Association Studies Identifies 1q22 as a Susceptibility Locus for Intracerebral Hemorrhage.
  • 2014
  • In: American Journal of Human Genetics. - : Elsevier BV. - 0002-9297. ; 94:4, s. 511-521
  • Journal article (peer-reviewed)abstract
    • Intracerebral hemorrhage (ICH) is the stroke subtype with the worst prognosis and has no established acute treatment. ICH is classified as lobar or nonlobar based on the location of ruptured blood vessels within the brain. These different locations also signal different underlying vascular pathologies. Heritability estimates indicate a substantial genetic contribution to risk of ICH in both locations. We report a genome-wide association study of this condition that meta-analyzed data from six studies that enrolled individuals of European ancestry. Case subjects were ascertained by neurologists blinded to genotype data and classified as lobar or nonlobar based on brain computed tomography. ICH-free control subjects were sampled from ambulatory clinics or random digit dialing. Replication of signals identified in the discovery cohort with p < 1 × 10(-6) was pursued in an independent multiethnic sample utilizing both direct and genome-wide genotyping. The discovery phase included a case cohort of 1,545 individuals (664 lobar and 881 nonlobar cases) and a control cohort of 1,481 individuals and identified two susceptibility loci: for lobar ICH, chromosomal region 12q21.1 (rs11179580, odds ratio [OR] = 1.56, p = 7.0 × 10(-8)); and for nonlobar ICH, chromosomal region 1q22 (rs2984613, OR = 1.44, p = 1.6 × 10(-8)). The replication included a case cohort of 1,681 individuals (484 lobar and 1,194 nonlobar cases) and a control cohort of 2,261 individuals and corroborated the association for 1q22 (p = 6.5 × 10(-4); meta-analysis p = 2.2 × 10(-10)) but not for 12q21.1 (p = 0.55; meta-analysis p = 2.6 × 10(-5)). These results demonstrate biological heterogeneity across ICH subtypes and highlight the importance of ascertaining ICH cases accordingly.
  •  
4.
  • Anderson, Christopher D., et al. (author)
  • Genetic variants in CETP increase risk of intracerebral hemorrhage
  • 2016
  • In: Annals of Neurology. - : Wiley. - 1531-8249 .- 0364-5134. ; 80:5, s. 730-740
  • Journal article (peer-reviewed)abstract
    • OBJECTIVE: In observational epidemiologic studies, higher plasma high-density lipoprotein cholesterol (HDL-C) has been associated with increased risk of intracerebral hemorrhage (ICH). DNA sequence variants that decrease cholesteryl ester transfer protein (CETP) gene activity increase plasma HDL-C; as such, medicines that inhibit CETP and raise HDL-C are in clinical development. Here, we test the hypothesis that CETP DNA sequence variants associated with higher HDL-C also increase risk for ICH.METHODS: We performed 2 candidate-gene analyses of CETP. First, we tested individual CETP variants in a discovery cohort of 1,149 ICH cases and 1,238 controls from 3 studies, followed by replication in 1,625 cases and 1,845 controls from 5 studies. Second, we constructed a genetic risk score comprised of 7 independent variants at the CETP locus and tested this score for association with HDL-C as well as ICH risk.RESULTS: Twelve variants within CETP demonstrated nominal association with ICH, with the strongest association at the rs173539 locus (odds ratio [OR] = 1.25, standard error [SE] = 0.06, p = 6.0 × 10(-4) ) with no heterogeneity across studies (I(2) = 0%). This association was replicated in patients of European ancestry (p = 0.03). A genetic score of CETP variants found to increase HDL-C by ∼2.85mg/dl in the Global Lipids Genetics Consortium was strongly associated with ICH risk (OR = 1.86, SE = 0.13, p = 1.39 × 10(-6) ).INTERPRETATION: Genetic variants in CETP associated with increased HDL-C raise the risk of ICH. Given ongoing therapeutic development in CETP inhibition and other HDL-raising strategies, further exploration of potential adverse cerebrovascular outcomes may be warranted. Ann Neurol 2016;80:730-740.
  •  
5.
  • Falcone, Guido J., et al. (author)
  • Burden of Risk Alleles for Hypertension Increases Risk of Intracerebral Hemorrhage
  • 2012
  • In: Stroke: a journal of cerebral circulation. - 1524-4628. ; 43:11, s. 2877-2883
  • Journal article (peer-reviewed)abstract
    • Background and Purpose-Genetic variation influences risk of intracerebral hemorrhage (ICH). Hypertension (HTN) is a potent risk factor for ICH and several common genetic variants (single nucleotide polymorphisms [SNPs]) associated with blood pressure levels have been identified. We sought to determine whether the cumulative burden of blood pressure-related SNPs is associated with risk of ICH and pre-ICH diagnosis of HTN. Methods-We conducted a prospective multicenter case-control study in 2272 subjects of European ancestry (1025 cases and 1247 control subjects). Thirty-nine SNPs reported to be associated with blood pressure levels were identified from the National Human Genome Research Institute genomewide association study catalog. Single-SNP association analyses were performed for the outcomes ICH and pre-ICH HTN. Subsequently, weighted and unweighted genetic risk scores were constructed using these SNPs and entered as the independent variable in logistic regression models with ICH and pre-ICH HTN as the dependent variables. Results-No single SNP was associated with either ICH or pre-ICH HTN. The blood pressure-based unweighted genetic risk score was associated with risk of ICH (OR, 1.11; 95% CI, 1.02-1.21; P=0.01) and the subset of ICH in deep regions (OR, 1.18; 95% CI, 1.07-1.30; P=0.001), but not with the subset of lobar ICH. The score was associated with a history of HTN among control subjects (OR, 1.17; 95% CI, 1.04-1.31; P=0.009) and ICH cases (OR, 1.15; 95% CI, 1.01-1.31; P=0.04). Similar results were obtained when using a weighted score. Conclusion-Increasing numbers of high blood pressure-related alleles are associated with increased risk of deep ICH as well as with clinically identified HTN. (Stroke. 2012; 43: 2877-2883.)
  •  
6.
  • Phillips, Helen R. P., et al. (author)
  • Global distribution of earthworm diversity
  • 2019
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 366:6464, s. 480-
  • Journal article (peer-reviewed)abstract
    • Soil organisms, including earthworms, are a key component of terrestrial ecosystems. However, little is known about their diversity, their distribution, and the threats affecting them. We compiled a global dataset of sampled earthworm communities from 6928 sites in 57 countries as a basis for predicting patterns in earthworm diversity, abundance, and biomass. We found that local species richness and abundance typically peaked at higher latitudes, displaying patterns opposite to those observed in aboveground organisms. However, high species dissimilarity across tropical locations may cause diversity across the entirety of the tropics to be higher than elsewhere. Climate variables were found to be more important in shaping earthworm communities than soil properties or habitat cover. These findings suggest that climate change may have serious implications for earthworm communities and for the functions they provide.
  •  
7.
  • Rannikmaee, Kristiina, et al. (author)
  • Common variation in COL4A1/COL4A2 is associated with sporadic cerebral small vessel disease
  • 2015
  • In: Neurology. - 1526-632X. ; 84:9, s. 918-926
  • Journal article (peer-reviewed)abstract
    • Objectives:We hypothesized that common variants in the collagen genes COL4A1/COL4A2 are associated with sporadic forms of cerebral small vessel disease.Methods:We conducted meta-analyses of existing genotype data among individuals of European ancestry to determine associations of 1,070 common single nucleotide polymorphisms (SNPs) in the COL4A1/COL4A2 genomic region with the following: intracerebral hemorrhage and its subtypes (deep, lobar) (1,545 cases, 1,485 controls); ischemic stroke and its subtypes (cardioembolic, large vessel disease, lacunar) (12,389 cases, 62,004 controls); and white matter hyperintensities (2,733 individuals with ischemic stroke and 9,361 from population-based cohorts with brain MRI data). We calculated a statistical significance threshold that accounted for multiple testing and linkage disequilibrium between SNPs (p < 0.000084).Results:Three intronic SNPs in COL4A2 were significantly associated with deep intracerebral hemorrhage (lead SNP odds ratio [OR] 1.29, 95% confidence interval [CI] 1.14-1.46, p = 0.00003; r(2) > 0.9 between SNPs). Although SNPs associated with deep intracerebral hemorrhage did not reach our significance threshold for association with lacunar ischemic stroke (lead SNP OR 1.10, 95% CI 1.03-1.18, p = 0.0073), and with white matter hyperintensity volume in symptomatic ischemic stroke patients (lead SNP OR 1.07, 95% CI 1.01-1.13, p = 0.016), the direction of association was the same. There was no convincing evidence of association with white matter hyperintensities in population-based studies or with non-small vessel disease cerebrovascular phenotypes.Conclusions:Our results indicate an association between common variation in the COL4A2 gene and symptomatic small vessel disease, particularly deep intracerebral hemorrhage. These findings merit replication studies, including in ethnic groups of non-European ancestry.
  •  
8.
  • Schunkert, Heribert, et al. (author)
  • Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease
  • 2011
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 43:4, s. 153-333
  • Journal article (peer-reviewed)abstract
    • We performed a meta-analysis of 14 genome-wide association studies of coronary artery disease (CAD) comprising 22,233 individuals with CAD (cases) and 64,762 controls of European descent followed by genotyping of top association signals in 56,682 additional individuals. This analysis identified 13 loci newly associated with CAD at P < 5 x 10(-8) and confirmed the association of 10 of 12 previously reported CAD loci. The 13 new loci showed risk allele frequencies ranging from 0.13 to 0.91 and were associated with a 6% to 17% increase in the risk of CAD per allele. Notably, only three of the new loci showed significant association with traditional CAD risk factors and the majority lie in gene regions not previously implicated in the pathogenesis of CAD. Finally, five of the new CAD risk loci appear to have pleiotropic effects, showing strong association with various other human diseases or traits.
  •  
9.
  • Anderson, Christopher D., et al. (author)
  • Common Variants Within Oxidative Phosphorylation Genes Influence Risk of Ischemic Stroke and Intracerebral Hemorrhage
  • 2013
  • In: Stroke: a journal of cerebral circulation. - 1524-4628. ; 44:3, s. 612-619
  • Journal article (peer-reviewed)abstract
    • Background and Purpose-Previous studies demonstrated association between mitochondrial DNA variants and ischemic stroke (IS). We investigated whether variants within a larger set of oxidative phosphorylation (OXPHOS) genes encoded by both autosomal and mitochondrial DNA were associated with risk of IS and, based on our results, extended our investigation to intracerebral hemorrhage (ICH). Methods-This association study used a discovery cohort of 1643 individuals, a validation cohort of 2432 individuals for IS, and an extension cohort of 1476 individuals for ICH. Gene-set enrichment analysis was performed on all structural OXPHOS genes, as well as genes contributing to individual respiratory complexes. Gene-sets passing gene-set enrichment analysis were tested by constructing genetic scores using common variants residing within each gene. Associations between each variant and IS that emerged in the discovery cohort were examined in validation and extension cohorts. Results-IS was associated with genetic risk scores in OXPHOS as a whole (odds ratio [OR], 1.17; P=0.008) and complex I (OR, 1.06; P=0.050). Among IS subtypes, small vessel stroke showed association with OXPHOS (OR, 1.16; P=0.007), complex I (OR, 1.13; P=0.027), and complex IV (OR, 1.14; P=0.018). To further explore this small vessel association, we extended our analysis to ICH, revealing association between deep hemispheric ICH and complex IV (OR, 1.08; P=0.008). Conclusions-This pathway analysis demonstrates association between common genetic variants within OXPHOS genes and stroke. The associations for small vessel stroke and deep ICH suggest that genetic variation in OXPHOS influences small vessel pathobiology. Further studies are needed to identify culprit genetic variants and assess their functional consequences. (Stroke. 2013;44:612-619.)
  •  
10.
  • Biffi, Alessandro, et al. (author)
  • APOE genotype and extent of bleeding and outcome in lobar intracerebral haemorrhage: a genetic association study
  • 2011
  • In: Lancet Neurology. - 1474-4465. ; 10:8, s. 702-709
  • Journal article (peer-reviewed)abstract
    • Background Carriers of APOE epsilon 2 and epsilon 4 have an increased risk of intracerebral haemorrhage (ICH) in lobar regions, presumably because of the effects of these gene variants on risk of cerebral amyloid angiopathy. We aimed to assess whether these variants also associate with severity of ICH, in terms of haematoma volume at presentation and subsequent outcome. Methods We investigated the association of APOE epsilon 2 and epsilon 4 with ICH volume and outcomes in patients with primary ICH in three phases: a discovery phase of 865 individuals of European ancestry from the Genetics of Cerebral Hemorrhage on Anticoagulation study, and replication phases of 946 Europeans (replication 1) and 214 African-Americans (replication 2) from an additional six studies. We also assessed the association of APOE variants with ICH volume and outcomes in meta-analyses of results from all three phases, and the association of APOE epsilon 4 with mortality in a further meta-analysis including data from previous reports. Admission ICH volume was quantified on CT scan. We assessed functional outcome (modified Rankin scale score 3-6) and mortality at 90 days. We used linear regression to establish the effect of genotype on haematoma volume and logistic regression to assess the effect on outcome from ICH. Findings For patients with lobar ICH, carriers of the APOE epsilon 2 allele had larger ICH volumes than did non-carriers in the discovery phase (p=2. 5x10(-5)), in both replication phases (p=0.008 in Europeans and p=0.016 in African-Americans), and in the meta-analysis (p=3.2x10(-8)). In the meta-analysis, each copy of APOE epsilon 2 increased haematoma size by a mean of 5.3 mL (95% CI 4.7-5.9; p=0.004). Carriers of APOE epsilon 2 had increased mortality (odds ratio [OR] 1.50, 95% CI 1.23-1.82; p=2.45x10(-5)) and poorer functional outcomes (modified Rankin scale score 3-6; 1-52, 1.25-1.85; p=1.74x10(-5)) compared with non-carriers after lobar ICH. APOE epsilon 4 was not associated with lobar ICH volume, functional outcome, or mortality in the discovery phase, replication phases, or meta-analysis of these three phases; in our further meta-analysis of 2194 patients, this variant did not increase risk of mortality (1.08,0.86-1.36; p=0.52). APOE allele variants were not associated with deep ICH volume, functional outcome, or mortality. Interpretation Vasculopathic changes associated with the APOE epsilon 2 allele might have a role in the severity and clinical course of lobar ICH. Screening of patients who have ICH to identify the epsilon 2 variant might allow identification of those at increased risk of mortality and poor functional outcomes.
  •  
11.
  •  
12.
  • Chung, Jaeyoon, et al. (author)
  • Genome-wide association study of cerebral small vessel disease reveals established and novel loci
  • 2019
  • In: Brain : a journal of neurology. - : Oxford University Press (OUP). - 1460-2156. ; 142:10, s. 3176-3189
  • Journal article (peer-reviewed)abstract
    • Intracerebral haemorrhage and small vessel ischaemic stroke (SVS) are the most acute manifestations of cerebral small vessel disease, with no established preventive approaches beyond hypertension management. Combined genome-wide association study (GWAS) of these two correlated diseases may improve statistical power to detect novel genetic factors for cerebral small vessel disease, elucidating underlying disease mechanisms that may form the basis for future treatments. Because intracerebral haemorrhage location is an adequate surrogate for distinct histopathological variants of cerebral small vessel disease (lobar for cerebral amyloid angiopathy and non-lobar for arteriolosclerosis), we performed GWAS of intracerebral haemorrhage by location in 1813 subjects (755 lobar and 1005 non-lobar) and 1711 stroke-free control subjects. Intracerebral haemorrhage GWAS results by location were meta-analysed with GWAS results for SVS from MEGASTROKE, using 'Multi-Trait Analysis of GWAS' (MTAG) to integrate summary data across traits and generate combined effect estimates. After combining intracerebral haemorrhage and SVS datasets, our sample size included 241 024 participants (6255 intracerebral haemorrhage or SVS cases and 233 058 control subjects). Genome-wide significant associations were observed for non-lobar intracerebral haemorrhage enhanced by SVS with rs2758605 [MTAG P-value (P) = 2.6 × 10-8] at 1q22; rs72932727 (P = 1.7 × 10-8) at 2q33; and rs9515201 (P = 5.3 × 10-10) at 13q34. In the GTEx gene expression library, rs2758605 (1q22), rs72932727 (2q33) and rs9515201 (13q34) are significant cis-eQTLs for PMF1 (P = 1 × 10-4 in tibial nerve), NBEAL1, FAM117B and CARF (P < 2.1 × 10-7 in arteries) and COL4A2 and COL4A1 (P < 0.01 in brain putamen), respectively. Leveraging S-PrediXcan for gene-based association testing with the predicted expression models in tissues related with nerve, artery, and non-lobar brain, we found that experiment-wide significant (P < 8.5 × 10-7) associations at three genes at 2q33 including NBEAL1, FAM117B and WDR12 and genome-wide significant associations at two genes including ICA1L at 2q33 and ZCCHC14 at 16q24. Brain cell-type specific expression profiling libraries reveal that SEMA4A, SLC25A44 and PMF1 at 1q22 and COL4A1 and COL4A2 at 13q34 were mainly expressed in endothelial cells, while the genes at 2q33 (FAM117B, CARF and NBEAL1) were expressed in various cell types including astrocytes, oligodendrocytes and neurons. Our cross-phenotype genetic study of intracerebral haemorrhage and SVS demonstrates novel genome-wide associations for non-lobar intracerebral haemorrhage at 2q33 and 13q34. Our replication of the 1q22 locus previous seen in traditional GWAS of intracerebral haemorrhage, as well as the rediscovery of 13q34, which had previously been reported in candidate gene studies with other cerebral small vessel disease-related traits strengthens the credibility of applying this novel genome-wide approach across intracerebral haemorrhage and SVS.
  •  
13.
  • Devan, William J., et al. (author)
  • Heritability Estimates Identify a Substantial Genetic Contribution to Risk and Outcome of Intracerebral Hemorrhage
  • 2013
  • In: Stroke: a journal of cerebral circulation. - 1524-4628. ; 44:6, s. 1578-1583
  • Journal article (peer-reviewed)abstract
    • Background and Purpose-Previous studies suggest that genetic variation plays a substantial role in occurrence and evolution of intracerebral hemorrhage (ICH). Genetic contribution to disease can be determined by calculating heritability using family-based data, but such an approach is impractical for ICH because of lack of large pedigree-based studies. However, a novel analytic tool based on genome-wide data allows heritability estimation from unrelated subjects. We sought to apply this method to provide heritability estimates for ICH risk, severity, and outcome. Methods-We analyzed genome-wide genotype data for 791 ICH cases and 876 controls, and determined heritability as the proportion of variation in phenotype attributable to captured genetic variants. Contribution to heritability was separately estimated for the APOE (encoding apolipoprotein E) gene, an established genetic risk factor, and for the rest of the genome. Analyzed phenotypes included ICH risk, admission hematoma volume, and 90-day mortality. Results-ICH risk heritability was estimated at 29% (SE, 11%) for non-APOE loci and at 15% (SE, 10%) for APOE. Heritability for 90-day ICH mortality was 41% for non-APOE loci and 10% (SE, 9%) for APOE. Genetic influence on hematoma volume was also substantial: admission volume heritability was estimated at 60% (SE, 70%) for non-APOE loci and at 12% (SE, 4%) for APOE. Conclusions-Genetic variation plays a substantial role in ICH risk, outcome, and hematoma volume. Previously reported risk variants account for only a portion of inherited genetic influence on ICH pathophysiology, pointing to additional loci yet to be identified.
  •  
14.
  • Falcone, Guido J., et al. (author)
  • Genetically Elevated LDL Associates with Lower Risk of Intracerebral Hemorrhage
  • 2020
  • In: Annals of Neurology. - : Wiley. - 0364-5134 .- 1531-8249. ; 88:1, s. 56-66
  • Journal article (peer-reviewed)abstract
    • Objective: Observational studies point to an inverse correlation between low-density lipoprotein (LDL) cholesterol levels and risk of intracerebral hemorrhage (ICH), but it remains unclear whether this association is causal. We tested the hypothesis that genetically elevated LDL is associated with reduced risk of ICH. Methods: We constructed one polygenic risk score (PRS) per lipid trait (total cholesterol, LDL, high-density lipoprotein [HDL], and triglycerides) using independent genomewide significant single nucleotide polymorphisms (SNPs) for each trait. We used data from 316,428 individuals enrolled in the UK Biobank to estimate the effect of each PRS on its corresponding trait, and data from 1,286 ICH cases and 1,261 matched controls to estimate the effect of each PRS on ICH risk. We used these estimates to conduct Mendelian Randomization (MR) analyses. Results: We identified 410, 339, 393, and 317 lipid-related SNPs for total cholesterol, LDL, HDL, and triglycerides, respectively. All four PRSs were strongly associated with their corresponding trait (all p < 1.00 × 10-100). While one SD increase in the PRSs for total cholesterol (odds ratio [OR] = 0.92; 95% confidence interval [CI] = 0.85–0.99; p = 0.03) and LDL cholesterol (OR = 0.88; 95% CI = 0.81–0.95; p = 0.002) were inversely associated with ICH risk, no significant associations were found for HDL and triglycerides (both p > 0.05). MR analyses indicated that 1mmol/L (38.67mg/dL) increase of genetically instrumented total and LDL cholesterol were associated with 23% (OR = 0.77; 95% CI = 0.65–0.98; p = 0.03) and 41% lower risks of ICH (OR = 0.59; 95% CI = 0.42–0.82; p = 0.002), respectively. Interpretation: Genetically elevated LDL levels were associated with lower risk of ICH, providing support for a potential causal role of LDL cholesterol in ICH. ANN NEUROL 2020.
  •  
15.
  • Marini, Sandro, et al. (author)
  • 17p12 Influences Hematoma Volume and Outcome in Spontaneous Intracerebral Hemorrhage
  • 2018
  • In: Stroke. - 0039-2499. ; 49:7, s. 1618-1625
  • Journal article (peer-reviewed)abstract
    • Background and Purpose-Hematoma volume is an important determinant of clinical outcome in spontaneous intracerebral hemorrhage (ICH). We performed a genome-wide association study (GWAS) of hematoma volume with the aim of identifying novel biological pathways involved in the pathophysiology of primary brain injury in ICH. Methods-We conducted a 2-stage (discovery and replication) case-only genome-wide association study in patients with ICH of European ancestry. We utilized the admission head computed tomography to calculate hematoma volume via semiautomated computer-Assisted technique. After quality control and imputation, 7 million genetic variants were available for association testing with ICH volume, which was performed separately in lobar and nonlobar ICH cases using linear regression. Signals with P<5×10- 8 were pursued in replication and tested for association with admission Glasgow coma scale and 3-month post-ICH dichotomized (0-2 versus 3-6) modified Rankin Scale using ordinal and logistic regression, respectively. Results-The discovery phase included 394 ICH cases (228 lobar and 166 nonlobar) and identified 2 susceptibility loci: A genomic region on 22q13 encompassing PARVB (top single-nucleotide polymorphism rs9614326: β, 1.84; SE, 0.32; P=4.4×10-8) for lobar ICH volume and an intergenic region overlying numerous copy number variants on 17p12 (top single-nucleotide polymorphism rs11655160: β, 0.95; SE, 0.17; P=4.3×10-8) for nonlobar ICH volume. The replication included 240 ICH cases (71 lobar and 169 nonlobar) and corroborated the association for 17p12 (P=0.04; meta-Analysis P=2.5×10-9; heterogeneity, P=0.16) but not for 22q13 (P=0.49). In multivariable analysis, rs11655160 was also associated with lower admission Glasgow coma scale (odds ratio, 0.17; P=0.004) and increased risk of poor 3-month modified Rankin Scale (odds ratio, 1.94; P=0.045). Conclusions-We identified 17p12 as a novel susceptibility risk locus for hematoma volume, clinical severity, and functional outcome in nonlobar ICH. Replication in other ethnicities and follow-up translational studies are needed to elucidate the mechanism mediating the observed association.
  •  
16.
  • Ade, Peter, et al. (author)
  • The Simons Observatory : science goals and forecasts
  • 2019
  • In: Journal of Cosmology and Astroparticle Physics. - : IOP Publishing. - 1475-7516. ; :2
  • Journal article (peer-reviewed)abstract
    • The Simons Observatory (SO) is a new cosmic microwave background experiment being built on Cerro Toco in Chile, due to begin observations in the early 2020s. We describe the scientific goals of the experiment, motivate the design, and forecast its performance. SO will measure the temperature and polarization anisotropy of the cosmic microwave background in six frequency bands centered at: 27, 39, 93, 145, 225 and 280 GHz. The initial con figuration of SO will have three small-aperture 0.5-m telescopes and one large-aperture 6-m telescope, with a total of 60,000 cryogenic bolometers. Our key science goals are to characterize the primordial perturbations, measure the number of relativistic species and the mass of neutrinos, test for deviations from a cosmological constant, improve our understanding of galaxy evolution, and constrain the duration of reionization. The small aperture telescopes will target the largest angular scales observable from Chile, mapping approximate to 10% of the sky to a white noise level of 2 mu K-arcmin in combined 93 and 145 GHz bands, to measure the primordial tensor-to-scalar ratio, r, at a target level of sigma(r) = 0.003. The large aperture telescope will map approximate to 40% of the sky at arcminute angular resolution to an expected white noise level of 6 mu K-arcmin in combined 93 and 145 GHz bands, overlapping with the majority of the Large Synoptic Survey Telescope sky region and partially with the Dark Energy Spectroscopic Instrument. With up to an order of magnitude lower polarization noise than maps from the Planck satellite, the high-resolution sky maps will constrain cosmological parameters derived from the damping tail, gravitational lensing of the microwave background, the primordial bispectrum, and the thermal and kinematic Sunyaev-Zel'dovich effects, and will aid in delensing the large-angle polarization signal to measure the tensor-to-scalar ratio. The survey will also provide a legacy catalog of 16,000 galaxy clusters and more than 20,000 extragalactic sources.
  •  
17.
  • Biffi, Alessandro, et al. (author)
  • Variants at APOE Influence Risk of Deep and Lobar Intracerebral Hemorrhage
  • 2010
  • In: Annals of Neurology. - : Wiley. - 1531-8249 .- 0364-5134. ; 68:6, s. 934-943
  • Journal article (peer-reviewed)abstract
    • Objective: Prior studies investigating the association between APOE alleles epsilon 2/epsilon 4 and risk of intracerebral hemorrhage (ICH) have been inconsistent and limited to small sample sizes, and did not account for confounding by population stratification or determine which genetic risk model was best applied. Methods: We performed a large-scale genetic association study of 2189 ICH cases and 4041 controls from 7 cohorts, which were analyzed using additive models for epsilon 2 and epsilon 4. Results were subsequently meta-analyzed using a random effects model. A proportion of the individuals (322 cases, 357 controls) had available genome-wide data to adjust for population stratification. Results: Alleles epsilon 2 and epsilon 4 were associated with lobar ICH at genome-wide significance levels (odds ratio [OR] = 1.82, 95% confidence interval [CI] = 1.50-2.23, p = 6.6 x 10(-10); and OR = 2.20, 95%CI = 1.85-2.63, p = 2.4 x 10(-11), respectively). Restriction of analysis to definite/probable cerebral amyloid angiopathy ICH uncovered a stronger effect. Allele epsilon 4 was also associated with increased risk for deep ICH (OR = 1.21, 95% CI = 1.08-1.36, p = 2.6 x 10(-4)). Risk prediction evaluation identified the additive model as best for describing the effect of APOE genotypes. Interpretation: APOE epsilon 2 and epsilon 4 are independent risk factors for lobar ICH, consistent with their known associations with amyloid biology. In addition, we present preliminary findings on a novel association between APOE epsilon 4 and deep ICH. Finally, we demonstrate that an additive model for these APOE variants is superior to other forms of genetic risk modeling previously applied. ANN NEUROL 2010;68:934-943
  •  
18.
  • Razavi-Shearer, Devin M., et al. (author)
  • Adjusted estimate of the prevalence of hepatitis delta virus in 25 countries and territories
  • 2024
  • In: JOURNAL OF HEPATOLOGY. - 0168-8278 .- 1600-0641. ; 80:2, s. 232-242
  • Journal article (peer-reviewed)abstract
    • Background & Aims: Hepatitis delta virus (HDV) is a satellite RNA virus that requires the hepatitis B virus (HBV) for assembly and propagation. Individuals infected with HDV progress to advanced liver disease faster than HBV-monoinfected individuals. Recent studies have estimated the global prevalence of anti-HDV antibodies among the HBV-infected population to be 5-15%. This study aimed to better understand HDV prevalence at the population level in 25 countries/territories. Methods: We conducted a literature review to determine the prevalence of anti-HDV and HDV RNA in hepatitis B surface antigen (HBsAg)-positive individuals in 25 countries/territories. Virtual meetings were held with experts from each setting to discuss the findings and collect unpublished data. Data were weighted for patient segments and regional heterogeneity to estimate the prevalence in the HBV-infected population. The findings were then combined with The Polaris Observatory HBV data to estimate the anti-HDV and HDV RNA prevalence in each country/territory at the population level. Results: After adjusting for geographical distribution, disease stage and special populations, the anti-HDV prevalence among the HBsAg+ population changed from the literature estimate in 19 countries. The highest anti-HDV prevalence was 60.1% in Mongolia. Once adjusted for the size of the HBsAg+ population and HDV RNA positivity rate, China had the highest absolute number of HDV RNA+ cases. Conclusions: We found substantially lower HDV prevalence than previously reported, as prior meta-analyses primarily focused on studies conducted in groups/regions that have a higher probability of HBV infection: tertiary care centers, specific risk groups or geographical regions. There is large uncertainty in HDV prevalence estimates. The implementation of reflex testing would improve estimates, while also allowing earlier linkage to care for HDV RNA+ individuals. The logistical and economic burden of reflex testing on the health system would be limited, as only HBsAg+ cases would be screened.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-18 of 18
Type of publication
journal article (18)
Type of content
peer-reviewed (18)
Author/Editor
Meschia, James F (12)
Lindgren, Arne (12)
Selim, Magdy (12)
Rosand, Jonathan (11)
Worrall, Bradford B. (11)
Anderson, Christophe ... (11)
show more...
Silliman, Scott L. (11)
Slowik, Agnieszka (11)
Woo, Daniel (11)
Brown, Devin L. (11)
Greenberg, Steven M. (10)
Tirschwell, David L. (10)
Schmidt, Reinhold (10)
Roquer, Jaume (10)
Jimenez-Conde, Jordi (10)
Norrving, Bo (9)
Biffi, Alessandro (9)
Montaner, Joan (8)
Kidwell, Chelsea S. (8)
Falcone, Guido J. (8)
Schwab, Kristin (7)
Ayres, Alison M. (7)
Viswanathan, Anand (7)
Hansen, Björn (7)
Jagiella, Jeremiasz ... (7)
Schmidt, Helena (7)
Devan, William J. (6)
Rost, Natalia S. (6)
Goldstein, Joshua N. (6)
Broderick, Joseph P. (6)
Elosua, Roberto (6)
Langefeld, Carl D. (5)
Giralt-Steinhauer, E ... (5)
Cuadrado-Godia, Elis ... (5)
Radmanesh, Farid (4)
Salomaa, Veikko (3)
Deloukas, Panos (3)
Dichgans, Martin (3)
Clarke, Robert (3)
Kraft, Peter (3)
Thorleifsson, Gudmar (3)
Thorsteinsdottir, Un ... (3)
Stefansson, Kari (3)
Gieger, Christian (3)
Peters, Annette (3)
Wichmann, H. Erich (3)
Samani, Nilesh J. (3)
Valant, Valerie (3)
Battey, Thomas W K (3)
Flaherty, Matthew L. (3)
show less...
University
Lund University (15)
Karolinska Institutet (4)
University of Gothenburg (3)
Umeå University (2)
Uppsala University (2)
Stockholm University (1)
show more...
Högskolan Dalarna (1)
Swedish University of Agricultural Sciences (1)
show less...
Language
English (18)
Research subject (UKÄ/SCB)
Medical and Health Sciences (16)
Natural sciences (2)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view