SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Bryceson YT) "

Search: WFRF:(Bryceson YT)

  • Result 1-50 of 141
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  •  
3.
  •  
4.
  • Babol-Pokora, K, et al. (author)
  • Molecular Genetics Diversity of Primary Hemophagocytic Lymphohistiocytosis among Polish Pediatric Patients
  • 2021
  • In: Archivum immunologiae et therapiae experimentalis. - : Springer Science and Business Media LLC. - 1661-4917 .- 0004-069X. ; 69:1, s. 31-
  • Journal article (peer-reviewed)abstract
    • Hemophagocytic lymphohistiocytosis (HLH) is a clinical syndrome of life-threatening inflammation caused by an excessive, prolonged and ineffective immune response. An increasing number of HLH cases is recognized in Poland, but the genetic causes of familial HLH (FHL) have not been reported. We investigated the molecular genetics and associated outcomes of pediatric patients who met HLH criteria. We studied 54 patients with HLH, 36 of whom received genetic studies. Twenty-five patients were subjected to direct sequencing of the PRF1, UNC13D, STX11, XIAP and SH2D1A genes. Additionally, 11 patients were subjected to targeted next-generation sequencing. In our study group, 17 patients (31%) were diagnosed with primary HLH, with bi-allelic FHL variants identified in 13 (36%) patients whereas hemizygous changes were identified in 4 patients with X-linked lymphoproliferative diseases. In addition, one patient was diagnosed with X-linked immunodeficiency with magnesium defect, Epstein–Barr virus infection and neoplasia due to a hemizygous MAGT1 variant; another newborn was diagnosed with auto-inflammatory syndrome caused by MVK variants. The majority (65%) of FHL patients carried UNC13D pathogenic variants, whereas PRF1 variants occurred in two patients. Novel variants in UNC13D, PRF1 and XIAP were detected. Epstein–Barr virus was the most common trigger noted in 23 (65%) of the patients with secondary HLH. In three patients with secondary HLH, heterozygous variants of FHL genes were found. Overall survival for the entire study group was 74% with a median of 3.6 years of follow-up. Our results highlight the diversity of molecular causes of primary HLH in Poland.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  • Bryceson, YT, et al. (author)
  • A prospective evaluation of degranulation assays in the rapid diagnosis of familial hemophagocytic syndromes
  • 2012
  • In: Blood. - : American Society of Hematology. - 1528-0020 .- 0006-4971. ; 119:12, s. 2754-2763
  • Journal article (peer-reviewed)abstract
    • Familial hemophagocytic lymphohistiocytosis (FHL) is a life-threatening disorder of immune regulation caused by defects in lymphocyte cytotoxicity. Rapid differentiation of primary, genetic forms from secondary forms of hemophagocytic lymphohistiocytosis (HLH) is crucial for treatment decisions. We prospectively evaluated the performance of degranulation assays based on surface up-regulation of CD107a on natural killer (NK) cells and cytotoxic T lymphocytes in a cohort of 494 patients referred for evaluation for suspected HLH. Seventy-five of 77 patients (97%) with FHL3-5 and 11 of 13 patients (85%) with Griscelli syndrome type 2 or Chediak-Higashi syndrome had abnormal resting NK-cell degranulation. In contrast, NK-cell degranulation was normal in 14 of 16 patients (88%) with X-linked lymphoproliferative disease and in 8 of 14 patients (57%) with FHL2, who were identified by diminished intracellular SLAM-associated protein (SAP), X-linked inhibitor of apoptosis protein (XIAP), and perforin expression, respectively. Among 66 patients with a clinical diagnosis of secondary HLH, 13 of 59 (22%) had abnormal resting NK-cell degranulation, whereas 0 of 43 had abnormal degranulation using IL-2–activated NK cells. Active disease or immunosuppressive therapy did not impair the assay performance. Overall, resting NK-cell degranulation below 5% provided a 96% sensitivity for a genetic degranulation disorder and a specificity of 88%. Therefore, degranulation assays allow a rapid and reliable classification of patients, benefiting treatment decisions.
  •  
10.
  •  
11.
  • Bryceson, YT, et al. (author)
  • Arrestin NK cell cytotoxicity
  • 2008
  • In: Nature immunology. - : Springer Science and Business Media LLC. - 1529-2916 .- 1529-2908. ; 9:8, s. 835-836
  • Journal article (other academic/artistic)
  •  
12.
  • Bryceson, YT, et al. (author)
  • Cytolytic granule polarization and degranulation controlled by different receptors in resting NK cells
  • 2005
  • In: The Journal of experimental medicine. - : Rockefeller University Press. - 0022-1007 .- 1540-9538. ; 202:7, s. 1001-1012
  • Journal article (peer-reviewed)abstract
    • The relative contribution to cytotoxicity of each of the multiple NK cell activation receptors has been difficult to assess. Using Drosophila insect cells, which express ligands of human NK cell receptors, we show that target cell lysis by resting NK cells is controlled by different receptor signals for cytolytic granule polarization and degranulation. Intercellular adhesion molecule (ICAM)-1 on insect cells was sufficient to induce polarization of granules, but not degranulation, in resting NK cells. Conversely, engagement of the Fc receptor CD16 by rabbit IgG on insect cells induced degranulation without specific polarization. Lysis by resting NK cells occurred when polarization and degranulation were induced by the combined presence of ICAM-1 and IgG on insect cells. Engagement of receptor 2B4 by CD48 on insect cells induced weak polarization and no degranulation. However, coengagement of 2B4 and CD16 by their respective ligands resulted in granule polarization and cytotoxicity in the absence of leukocyte functional antigen-1–mediated adhesion to target cells. These data show that cytotoxicity by resting NK cells is controlled tightly by separate or cooperative signals from different receptors for granule polarization and degranulation.
  •  
13.
  • Bryceson, YT, et al. (author)
  • Defective cytotoxic lymphocyte degranulation in syntaxin-11 deficient familial hemophagocytic lymphohistiocytosis 4 (FHL4) patients
  • 2007
  • In: Blood. - : American Society of Hematology. - 0006-4971 .- 1528-0020. ; 110:6, s. 1906-1915
  • Journal article (peer-reviewed)abstract
    • Familial hemophagocytic lymphohistiocytosis (FHL) is typically an early onset, fatal disease characterized by a sepsislike illness with cytopenia, hepatosplenomegaly, and deficient lymphocyte cytotoxicity. Disease-causing mutations have been identified in genes encoding perforin (PRF1/FHL2), Munc13-4 (UNC13D/FHL3), and syntaxin-11 (STX11/FHL4). In contrast to mutations leading to loss of perforin and Munc13-4 function, it is unclear how syntaxin-11 loss-of-function mutations contribute to disease. We show here that freshly isolated, resting natural killer (NK) cells and CD8+ T cells express syntaxin-11. In infants, NK cells are the predominant perforin-containing cell type. NK cells from FHL4 patients fail to degranulate when encountering susceptible target cells. Unexpectedly, IL-2 stimulation partially restores degranulation and cytotoxicity by NK cells, which could explain the less severe disease progression observed in FHL4 patients, compared with FHL2 and FHL3 patients. Since the effector T-cell compartment is still immature in infants, our data suggest that the observed defect in NK-cell degranulation may contribute to the pathophysiology of FHL, that evaluation of NK-cell degranulation in suspected FHL patients may facilitate diagnosis, and that these new insights may offer novel therapeutic possibilities.
  •  
14.
  •  
15.
  •  
16.
  •  
17.
  •  
18.
  • Bryceson, YT, et al. (author)
  • Minimal requirement for induction of natural cytotoxicity and intersection of activation signals by inhibitory receptors
  • 2009
  • In: Blood. - : American Society of Hematology. - 1528-0020 .- 0006-4971. ; 114:13, s. 2657-2666
  • Journal article (peer-reviewed)abstract
    • Natural killer (NK) cells provide innate control of infected and neoplastic cells. Multiple receptors have been implicated in natural cytotoxicity, but their individual contribution remains unclear. Here, we studied the activation of primary, resting human NK cells by Drosophila cells expressing ligands for receptors NKG2D, DNAM-1, 2B4, CD2, and LFA-1. Each receptor was capable of inducing inside-out signals for LFA-1, promoting adhesion, but none induced degranulation. Rather, release of cytolytic granules required synergistic activation through coengagement of receptors, shown here for NKG2D and 2B4. Although engagement of NKG2D and 2B4 was not sufficient for strong target cell lysis, collective engagement of LFA-1, NKG2D, and 2B4 defined a minimal requirement for natural cytotoxicity. Remarkably, inside-out signaling induced by each one of these receptors, including LFA-1, was inhibited by receptor CD94/NKG2A binding to HLA-E. Strong inside-out signals induced by the combination of NKG2D and 2B4 or by CD16 could overcome CD94/NKG2A inhibition. In contrast, degranulation induced by these receptors was still subject to inhibition by CD94/NKG2A. These results reveal multiple layers in the activation pathway for natural cytotoxicity and that steps as distinct as inside-out signaling to LFA-1 and signals for granule release are sensitive to inhibition by CD94/NKG2A.
  •  
19.
  • Bryceson, YT, et al. (author)
  • Molecular mechanisms of natural killer cell activation
  • 2011
  • In: Journal of innate immunity. - : S. Karger AG. - 1662-8128 .- 1662-811X. ; 3:3, s. 216-226
  • Journal article (peer-reviewed)abstract
    • With an array of activating and inhibitory receptors, natural killer (NK) cells can specifically eradicate infected and transformed cells. Target cell killing is achieved through directed release of lytic granules. Recognition of target cells also induces production of chemokines and cytokines that can coordinate immune responses. Upon contact with susceptible cells, a multiplicity of activating receptors can induce signals for adhesion. Engagement of the integrin leukocyte functional antigen-1 mediates firm adhesion, provides signals for granule polarization and orchestrates the structure of an immunological synapse that facilitates efficient target cell killing. Other activating receptors apart from leukocyte functional antigen-1 signal for lytic granule exocytosis, a process that requires overcoming a threshold for activation of phospholipase C-γ, which in turn induces STIM1- and ORAI1-dependent store-operated Ca<sup>2+</sup> entry as well as exocytosis mediated by the SNARE-containing protein syntaxin-11 and regulators thereof. Cytokine and chemokine release follows a different secretory pathway which also requires phospholipase C-γ activation and store-operated Ca<sup>2+</sup> entry. Recent studies of human NK cells have provided insights into a hierarchy of effector functions that result in graded responses by NK cell populations. Responses display cellular heterogeneity and are influenced by environmental cues. This review highlights recent knowledge gained on the molecular pathways for and regulation of NK cell activation.
  •  
20.
  •  
21.
  •  
22.
  • Bryceson, YT, et al. (author)
  • Synergy among receptors on resting NK cells for the activation of natural cytotoxicity and cytokine secretion
  • 2006
  • In: Blood. - : American Society of Hematology. - 0006-4971 .- 1528-0020. ; 107:1, s. 159-166
  • Journal article (peer-reviewed)abstract
    • Freshly isolated, resting natural killer (NK) cells are generally less lytic against target cells than in vitro interleukin 2 (IL-2)-activated NK cells. To investigate the basis for this difference, the contribution of several receptors to activation of human NK cells was examined. Target-cell lysis by IL-2-activated NK cells in a redirected, antibody-dependent cytotoxicity assay was triggered by a number of receptors. In contrast, cytotoxicity by resting NK cells was induced only by CD16, and not by NKp46, NKG2D, 2B4 (CD244), DNAM-1 (CD226), or CD2. Calcium flux in resting NK cells was induced with antibodies to CD16 and, to a weaker extent, antibodies to NKp46 and 2B4. Although NKp46 did not enhance CD16-mediated calcium flux, it synergized with all other receptors. 2B4 synergized with 3 other receptors, NKG2D and DNAM-1 each synergized with 2 other receptors, and CD2 synergized with NKp46 only. Resting NK cells were induced to secrete tumor necrosis factor α (TNF-α) and interferon γ (IFN-γ), and to kill target cells by engagement of specific, pair-wise combinations of receptors. Therefore, natural cytotoxicity by resting NK cells is induced only by mutual costimulation of nonactivating receptors. These results reveal distinct and specific patterns of synergy among receptors on resting NK cells.
  •  
23.
  •  
24.
  •  
25.
  • Campbell, TM, et al. (author)
  • IL2RB maintains immune harmony
  • 2019
  • In: The Journal of experimental medicine. - : Rockefeller University Press. - 1540-9538 .- 0022-1007. ; 216:6, s. 1231-1233
  • Journal article (peer-reviewed)abstract
    • How the IL-2 receptor β-chain specifically shapes immunity has remained enigmatic. In this issue of JEM, Zhang et al. (https://doi.org/10.1084/jem.20182304) and Fernandez et al. (https://doi.org/10.1084/jem.20182015) independently report the first observations of autosomal recessive mutations in IL2RB, revealing a requirement for IL2RB in immunity and peripheral immune tolerance.
  •  
26.
  •  
27.
  • Campbell, TM, et al. (author)
  • Respiratory viral infections in otherwise healthy humans with inherited IRF7 deficiency
  • 2022
  • In: The Journal of experimental medicine. - : Rockefeller University Press. - 1540-9538 .- 0022-1007. ; 219:7
  • Journal article (peer-reviewed)abstract
    • Autosomal recessive IRF7 deficiency was previously reported in three patients with single critical influenza or COVID-19 pneumonia episodes. The patients’ fibroblasts and plasmacytoid dendritic cells produced no detectable type I and III IFNs, except IFN-β. Having discovered four new patients, we describe the genetic, immunological, and clinical features of seven IRF7-deficient patients from six families and five ancestries. Five were homozygous and two were compound heterozygous for IRF7 variants. Patients typically had one episode of pulmonary viral disease. Age at onset was surprisingly broad, from 6 mo to 50 yr (mean age 29 yr). The respiratory viruses implicated included SARS-CoV-2, influenza virus, respiratory syncytial virus, and adenovirus. Serological analyses indicated previous infections with many common viruses. Cellular analyses revealed strong antiviral immunity and expanded populations of influenza- and SARS-CoV-2–specific memory CD4+ and CD8+ T cells. IRF7-deficient individuals are prone to viral infections of the respiratory tract but are otherwise healthy, potentially due to residual IFN-β and compensatory adaptive immunity.
  •  
28.
  •  
29.
  •  
30.
  •  
31.
  •  
32.
  •  
33.
  •  
34.
  •  
35.
  •  
36.
  • Cichocki, F, et al. (author)
  • ARID5B regulates metabolic programming in human adaptive NK cells
  • 2018
  • In: The Journal of experimental medicine. - : Rockefeller University Press. - 1540-9538 .- 0022-1007. ; 215:9, s. 2379-2395
  • Journal article (peer-reviewed)abstract
    • Natural killer (NK) cells with adaptive immunological properties expand and persist in response to human cytomegalovirus. Here, we explored the metabolic processes unique to these cells. Adaptive CD3−CD56dimCD57+NKG2C+ NK cells exhibited metabolic hallmarks of lymphocyte memory, including increased oxidative mitochondrial respiration, mitochondrial membrane potential, and spare respiratory capacity. Mechanistically, we found that a short isoform of the chromatin-modifying transcriptional regulator, AT-rich interaction domain 5B (ARID5B), was selectively induced through DNA hypomethylation in adaptive NK cells. Knockdown and overexpression studies demonstrated that ARID5B played a direct role in promoting mitochondrial membrane potential, expression of genes encoding electron transport chain components, oxidative metabolism, survival, and IFN-γ production. Collectively, our data demonstrate that ARID5B is a key regulator of metabolism in human adaptive NK cells, which, if targeted, may be of therapeutic value.
  •  
37.
  •  
38.
  •  
39.
  •  
40.
  •  
41.
  •  
42.
  • Cichocki, F, et al. (author)
  • Transcriptional regulation of Munc13-4 expression in cytotoxic lymphocytes is disrupted by an intronic mutation associated with a primary immunodeficiency
  • 2014
  • In: The Journal of experimental medicine. - : Rockefeller University Press. - 1540-9538 .- 0022-1007. ; 211:6, s. 1079-1091
  • Journal article (peer-reviewed)abstract
    • Autosomal recessive mutations in UNC13D, the gene that encodes Munc13-4, are associated with familial hemophagocytic lymphohistiocytosis type 3 (FHL3). Munc13-4 expression is obligatory for exocytosis of lytic granules, facilitating cytotoxicity by T cells and natural killer (NK) cells. The mechanisms regulating Munc13-4 expression are unknown. Here, we report that Munc13-4 is highly expressed in differentiated human NK cells and effector CD8+ T lymphocytes. A UNC13D c.118-308C&gt;T mutation, causative of FHL3, disrupted binding of the ETS family member ELF1 to a conserved intronic sequence. This mutation impairs UNC13D intron 1 recruitment of STAT4 and the chromatin remodeling complex component BRG1, diminishing active histone modifications at the locus. The intronic sequence acted as an overall enhancer of Munc13-4 expression in cytotoxic lymphocytes in addition to representing an alternative promoter encoding a novel Munc13-4 isoform. Mechanistically, T cell receptor engagement facilitated STAT4-dependent Munc13-4 expression in naive CD8+ T lymphocytes. Collectively, our data demonstrates how chromatin remodeling within an evolutionarily conserved regulatory element in intron 1 of UNC13D regulates the induction of Munc13-4 expression in cytotoxic lymphocytes and suggests that an alternative Munc13-4 isoform is required for lymphocyte cytotoxicity. Thus, mutations associated with primary immunodeficiencies may cause disease by disrupting transcription factor binding.
  •  
43.
  •  
44.
  •  
45.
  •  
46.
  •  
47.
  •  
48.
  •  
49.
  •  
50.
  • Fauriat, C, et al. (author)
  • Regulation of human NK-cell cytokine and chemokine production by target cell recognition
  • 2010
  • In: Blood. - : American Society of Hematology. - 1528-0020 .- 0006-4971. ; 115:11, s. 2167-2176
  • Journal article (peer-reviewed)abstract
    • Natural killer (NK)–cell recognition of infected or neoplastic cells can induce cytotoxicity and cytokine secretion. So far, it has been difficult to assess the relative contribution of multiple NK-cell activation receptors to cytokine and chemokine production upon target cell recognition. Using Drosophila cells expressing ligands for the NK-cell receptors LFA-1, NKG2D, DNAM-1, 2B4, and CD16, we studied the minimal requirements for secretion by freshly isolated, human NK cells. Target cell stimulation induced secretion of predominately proinflammatory cytokines and chemokines. Release of chemokines MIP-1α, MIP-1β, and RANTES was induced within 1 hour of stimulation, whereas release of TNF-α and IFN-γ occurred later. Engagement of CD16, 2B4, or NKG2D sufficed for chemokine release, whereas induction of TNF-α and IFN-γ required engagement of additional receptors. Remarkably, our results revealed that, upon target cell recognition, CD56dim NK cells were more prominent cytokine and chemokine producers than CD56bright NK cells. The present data demonstrate how specific target cell ligands dictate qualitative and temporal aspects of NK-cell cytokine and chemokine responses. Conceptually, the results point to CD56dim NK cells as an important source of cytokines and chemokines upon recognition of aberrant cells, producing graded responses depending on the multiplicity of activating receptors engaged.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-50 of 141

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view