SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Bugianesi Elisabetta) "

Search: WFRF:(Bugianesi Elisabetta)

  • Result 1-28 of 28
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  •  
3.
  • Anstee, Quentin M., et al. (author)
  • Genome-wide association study of non-alcoholic fatty liver and steatohepatitis in a histologically-characterised cohort
  • 2020
  • In: Journal of Hepatology. - : Elsevier. - 0168-8278 .- 1600-0641. ; 73:3, s. 505-515
  • Journal article (peer-reviewed)abstract
    • BACKGROUND AND AIMS: Genetic factors associated with non-alcoholic fatty liver disease (NAFLD) remain incompletely understood. To date, most GWAS studies have adopted radiologically assessed hepatic triglyceride content as reference phenotype and so cannot address steatohepatitis or fibrosis. We describe a genome-wide association study (GWAS) encompassing the full spectrum of histologically characterized NAFLD.METHODS: The GWAS involved 1483 European NAFLD cases and 17781 genetically-matched population controls. A replication cohort of 559 NAFLD cases and 945 controls was genotyped to confirm signals showing genome-wide or close to genome-wide significance.RESULTS: Case-control analysis identified signals showing p-values ≤ 5 x 10-8 at four locations (chromosome (chr) 2 GCKR/C2ORF16; chr4 HSD17B13; chr19 TM6SF2; chr22 PNPLA3) together with two other signals with p<1 x10-7 (chr1 near LEPR and chr8 near IDO2/TC1). Case-only analysis of quantitative traits steatosis, disease activity score, NAS and fibrosis showed that the PNPLA3 signal (rs738409) was genome-wide significantly associated with steatosis, fibrosis and NAS score and identified a new signal (PYGO1 rs62021874) with close to genome-wide significance for steatosis (p=8.2 x 10-8). Subgroup case-control analysis for NASH confirmed the PNPLA3 signal. The chr1 LEPR SNP also showed genome-wide significance for this phenotype. Considering the subgroup with advanced fibrosis (≥F3), the signals on chromosomes 2, 19 and 22 remained genome-wide significant. With the exception of GCKR/C2ORF16, the genome-wide significant signals replicated.CONCLUSIONS: This study confirms PNPLA3 as a risk factor for the full histological spectrum of NAFLD at genome-wide significance levels, with important contributions from TM6SF2 and HSD17B13. PYGO1 is a novel steatosis modifier, suggesting relevance of Wnt signalling pathways in NAFLD pathogenesis.
  •  
4.
  • Armandi, Angelo, et al. (author)
  • Serum ferritin levels can predict long-term outcomes in patients with metabolic dysfunction-associated steatotic liver disease
  • 2024
  • In: Gut. - : BMJ PUBLISHING GROUP. - 0017-5749 .- 1468-3288.
  • Journal article (peer-reviewed)abstract
    • Objective Hyperferritinaemia is associated with liver fibrosis severity in patients with metabolic dysfunction-associated steatotic liver disease (MASLD), but the longitudinal implications have not been thoroughly investigated. We assessed the role of serum ferritin in predicting long-term outcomes or death. Design We evaluated the relationship between baseline serum ferritin and longitudinal events in a multicentre cohort of 1342 patients. Four survival models considering ferritin with confounders or non-invasive scoring systems were applied with repeated five-fold cross-validation schema. Prediction performance was evaluated in terms of Harrell's C-index and its improvement by including ferritin as a covariate. Results Median follow-up time was 96 months. Liver-related events occurred in 7.7%, hepatocellular carcinoma in 1.9%, cardiovascular events in 10.9%, extrahepatic cancers in 8.3% and all-cause mortality in 5.8%. Hyperferritinaemia was associated with a 50% increased risk of liver-related events and 27% of all-cause mortality. A stepwise increase in baseline ferritin thresholds was associated with a statistical increase in C-index, ranging between 0.02 (lasso-penalised Cox regression) and 0.03 (ridge-penalised Cox regression); the risk of developing liver-related events mainly increased from threshold 215.5 mu g/L (median HR=1.71 and C-index=0.71) and the risk of overall mortality from threshold 272 mu g/L (median HR=1.49 and C-index=0.70). The inclusion of serum ferritin thresholds (215.5 mu g/L and 272 mu g/L) in predictive models increased the performance of Fibrosis-4 and Non-Alcoholic Fatty Liver Disease Fibrosis Score in the longitudinal risk assessment of liver-related events (C-indices>0.71) and overall mortality (C-indices>0.65). Conclusions This study supports the potential use of serum ferritin values for predicting the long-term prognosis of patients with MASLD.
  •  
5.
  • Baselli, Guido A, et al. (author)
  • Rare ATG7 genetic variants predispose patients to severe fatty liver disease.
  • 2022
  • In: Journal of hepatology. - : Elsevier BV. - 1600-0641 .- 0168-8278. ; 77:3, s. 596-606
  • Journal article (peer-reviewed)abstract
    • Nonalcoholic fatty liver disease (NAFLD) is the leading cause of liver disorders and has a strong heritable component. The aim of this study was to identify new loci contributing to severe NAFLD by examining rare variants.We performed whole-exome sequencing in individuals with NAFLD and advanced fibrosis or hepatocellular carcinoma (n=301) and examined the enrichment of likely pathogenic rare variants vs. the general population, followed by validation at gene level.In patients with severe NAFLD, we observed an enrichment of the p.P426L variant (rs143545741 C>T; OR 5.26, 2.1-12.6; p=0.003) of autophagy-related 7 (ATG7), which we characterized as a loss-of-function, vs. the general population, and an enrichment in rare variants affecting the catalytic domain (OR 13.9, 1.9-612; p=0.002). In the UK Biobank cohort, loss-of-function ATG7 variants increased the risk of cirrhosis and hepatocellular carcinoma (OR 3.30, 1.1-7.5 and OR 12.30, 2.6-36, respectively; p<0.001 for both). The low-frequency loss-of-function p.V471A variant (rs36117895 T>C) was also associated with severe NAFLD in the clinical cohort (OR=1.7, 1.2-2.5; p=0.003), predisposed to hepatocellular ballooning (p=0.007) evolving to fibrosis in a Liver biopsy cohort (n=2268), and was associated with liver injury in the UK Biobank (AST levels, p<0.001), with a larger effect in severely obese individuals where it was linked to hepatocellular carcinoma (p=0.009). ATG7 protein localized to periportal hepatocytes, more so in the presence of ballooning. In the Liver Transcriptomic cohort (n=125) ATG7 expression correlated with suppression of the TNFα pathway, which was conversely upregulated in p.V471A carriers.We identified rare and low-frequency ATG7 loss-of-function variants as modifiers of NAFLD progression by impairing autophagy and facilitating ballooning and inflammation.•We found that rare mutations in a gene called autophagy related (ATG7) increase the risk of developing severe liver disease in individuals with dysmetabolism. •These mutations cause an alteration in protein function and impairment of self-renewal of cellular content, leading to liver damage and inflammation.
  •  
6.
  • Bianco, Cristina, et al. (author)
  • Non-invasive stratification of hepatocellular carcinoma risk in non-alcoholic fatty liver using polygenic risk scores.
  • 2021
  • In: Journal of hepatology. - : Elsevier BV. - 1600-0641 .- 0168-8278. ; 74:4, s. 775-782
  • Journal article (peer-reviewed)abstract
    • Hepatocellular carcinoma (HCC) risk stratification in individuals with dysmetabolism is a major unmet need. Genetic predisposition contributes to non-alcoholic fatty liver disease (NAFLD). We aimed to exploit robust polygenic risk scores (PRS) that can be evaluated in the clinic to gain insight into the causal relationship between NAFLD and HCC, and to improve HCC risk stratification.We examined at-risk individuals (NAFLD cohort, n=2,566; 226 with HCC; and a replication cohort of 427 German patients with NAFLD) and the general population (UK Biobank [UKBB] cohort, n=364,048; 202 with HCC). Variants in PNPLA3-TM6SF2-GCKR-MBOAT7 were combined in a hepatic fat PRS (PRS-HFC), and then adjusted for HSD17B13 (PRS-5).In the NAFLD cohort, the adjusted impact of genetic risk variants on HCC was proportional to the predisposition to fatty liver (p=0.002) with some heterogeneity in the effect. PRS predicted HCC more robustly than single variants (p<10-13). The association between PRS and HCC was mainly mediated through severe fibrosis, but was independent of fibrosis in clinically relevant subgroups, and was also observed in those without severe fibrosis (p<0.05). In the UKBB cohort, PRS predicted HCC independently of classical risk factors and cirrhosis (p<10-7). In the NAFLD cohort, we identified high PRS cut-offs (≥0.532/0.495 for PRS-HFC/PRS-5) that in the UKBB cohort detected HCC with ∼90% specificity but limited sensitivity; PRS predicted HCC both in individuals with (p<10-5) and without cirrhosis (p<0.05).Our results are consistent with a causal relationship between hepatic fat and HCC. PRS improved the accuracy to detect HCC and may help stratify HCC risk in individuals with dysmetabolism, including those without severe liver fibrosis. Further studies are needed to validate our findings.
  •  
7.
  •  
8.
  • Cherubini, Alessandro, et al. (author)
  • Interaction between estrogen receptor-α and PNPLA3 p.I148M variant drives fatty liver disease susceptibility in women.
  • 2023
  • In: Nature medicine. - 1546-170X. ; 29:10, s. 2643-55
  • Journal article (peer-reviewed)abstract
    • Fatty liver disease (FLD) caused by metabolic dysfunction is the leading cause of liver disease and the prevalence is rising, especially in women. Although during reproductive age women are protected against FLD, for still unknown and understudied reasons some develop rapidly progressive disease at the menopause. The patatin-like phospholipase domain-containing 3 (PNPLA3) p.I148M variant accounts for the largest fraction of inherited FLD variability. In the present study, we show that there is a specific multiplicative interaction between female sex and PNPLA3 p.I148M in determining FLD in at-risk individuals (steatosis and fibrosis, P<10-10; advanced fibrosis/hepatocellular carcinoma, P=0.034) and in the general population (P<10-7 for alanine transaminase levels). In individuals with obesity, hepatic PNPLA3 expression was higher in women than in men (P=0.007) and in mice correlated with estrogen levels. In human hepatocytes and liver organoids, PNPLA3 was induced by estrogen receptor-α (ER-α) agonists. By chromatin immunoprecipitation and luciferase assays, we identified and characterized an ER-α-binding site within a PNPLA3 enhancer and demonstrated via CRISPR-Cas9 genome editing that this sequence drives PNPLA3 p.I148M upregulation, leading to lipid droplet accumulation and fibrogenesis in three-dimensional multilineage spheroids with stellate cells. These data suggest that a functional interaction between ER-α and PNPLA3 p.I148M variant contributes to FLD in women.
  •  
9.
  • Donati, Benedetta, et al. (author)
  • Telomerase reverse transcriptase germline mutations and hepatocellular carcinoma in patients with nonalcoholic fatty liver disease.
  • 2017
  • In: Cancer medicine. - : Wiley. - 2045-7634. ; 6:8, s. 1930-1940
  • Journal article (peer-reviewed)abstract
    • In an increasing proportion of cases, hepatocellular carcinoma (HCC) develops in patients with nonalcoholic fatty liver disease (NAFLD). Mutations in telomerase reverse transcriptase (hTERT) are associated with familial liver diseases. The aim of this study was to examine telomere length and germline hTERT mutations as associated with NAFLD-HCC. In 40 patients with NAFLD-HCC, 45 with NAFLD-cirrhosis and 64 healthy controls, peripheral blood telomere length was evaluated by qRT-PCR and hTERT coding regions and intron-exon boundaries sequenced. We further analyzed 78 patients affected by primary liver cancer (NAFLD-PLC, 76 with HCC). Enrichment of rare coding mutations (allelic frequency <0.001) was evaluated by Burden test. Functional consequences were estimated in silico and by over-expressing protein variants in HEK-293 cells. We found that telomere length was reduced in individuals with NAFLD-HCC versus those with cirrhosis (P=0.048) and healthy controls (P=0.0006), independently of age and sex. We detected an enrichment of hTERT mutations in NAFLD-HCC, that was confirmed when we further considered a larger cohort of NAFLD-PLC, and was more marked in female patients (P=0.03). No mutations were found in cirrhosis and local controls, and only one in 503 healthy Europeans from the 1000 Genomes Project (allelic frequency=0.025 vs. <0.001; P=0.0005). Mutations with predicted functional impact, including the frameshift Glu113Argfs*79 and missense Glu668Asp, cosegregated with liver disease in two families. Three patients carried missense mutations (Ala67Val in homozygosity, Pro193Leu and His296Pro in heterozygosity) in the N-terminal template-binding domain (P=0.037 for specific enrichment). Besides Glu668Asp, the Ala67Val variant resulted in reduced intracellular protein levels. In conclusion, we detected an association between shorter telomeres in peripheral blood and rare germline hTERT mutations and NAFLD-HCC.
  •  
10.
  • Dongiovanni, Paola, et al. (author)
  • Protein phosphatase 1 regulatory subunit 3B gene variation protects against hepatic fat accumulation and fibrosis in individuals at high risk of nonalcoholic fatty liver disease.
  • 2018
  • In: Hepatology communications. - : Ovid Technologies (Wolters Kluwer Health). - 2471-254X. ; 2:6, s. 666-675
  • Journal article (peer-reviewed)abstract
    • Nonalcoholic fatty liver disease (NAFLD) is a major cause of liver damage and has a strong genetic component. The rs4841132 G>A variant, modulating the expression of protein phosphatase 1 regulatory subunit 3B (PPP1R3B), which is involved in glycogen synthesis, has been reported to reduce the risk of NAFLD but at the same time may favor liver disease by facilitating glycogen accumulation. The aim of this study was to assess the impact of rs4841132 on development of histologic steatosis and fibrosis in 1,388 European individuals in a liver biopsy cohort, on NAFLD hepatocellular carcinoma in a cross-sectional Italian cohort (n = 132 cases), and on liver disease at the population level in the United Kingdom Biobank cohort. We investigated the underlying mechanism by examining the impact of the variant on gene expression profiles. In the liver biopsy cohort, the rs4841132 minor A allele was associated with protection against steatosis (odds ratio [OR], 0.63; 95% confidence interval [CI], 0.42-0.95; P = 0.03) and clinically significant fibrosis (OR, 0.35; 95% CI, 0.14-0.87; P = 0.02) and with reduced circulating cholesterol (P = 0.02). This translated into protection against hepatocellular carcinoma development (OR, 0.22; 95% CI, 0.07-0.70; P = 0.01). At the population level, the rs4841132 variation was not associated with nonalcoholic or nonviral diseases of the liver but was associated with lower cholesterol (P = 1.7 × 10-8). In individuals with obesity, the A allele protecting against steatosis was associated with increased PPP1R3B messenger RNA expression and activation of lipid oxidation and with down-regulation of pathways related to lipid metabolism, inflammation, and cell cycle. Conclusion: The rs4841132 A allele is associated with protection against hepatic steatosis and fibrosis in individuals at high risk of NAFLD but not in the general population and against dyslipidemia. The mechanism may be related to modulation of PPP1R3B expression and hepatic lipid metabolism. (Hepatology Communications 2018;2:666-675).
  •  
11.
  • Govaere, Olivier, et al. (author)
  • A proteo-transcriptomic map of non-alcoholic fatty liver disease signatures
  • 2023
  • In: Nature Metabolism. - : NATURE PORTFOLIO. - 2522-5812. ; 5:4, s. 572-578
  • Journal article (peer-reviewed)abstract
    • Govaere et al. integrate circulating protein data from more than 300 patients with non-alcoholic fatty liver disease (NAFLD) with transcriptomics and develop a non-invasive diagnostics tool to identify patients with at-risk NAFLD based on body mass index, type 2 diabetes status and four circulating proteins. Non-alcoholic fatty liver disease (NAFLD) is a common, progressive liver disease strongly associated with the metabolic syndrome. It is unclear how progression of NAFLD towards cirrhosis translates into systematic changes in circulating proteins. Here, we provide a detailed proteo-transcriptomic map of steatohepatitis and fibrosis during progressive NAFLD. In this multicentre proteomic study, we characterize 4,730 circulating proteins in 306 patients with histologically characterized NAFLD and integrate this with transcriptomic analysis in paired liver tissue. We identify circulating proteomic signatures for active steatohepatitis and advanced fibrosis, and correlate these with hepatic transcriptomics to develop a proteo-transcriptomic signature of 31 markers. Deconvolution of this signature by single-cell RNA sequencing reveals the hepatic cell types likely to contribute to proteomic changes with disease progression. As an exemplar of use as a non-invasive diagnostic, logistic regression establishes a composite model comprising four proteins (ADAMTSL2, AKR1B10, CFHR4 and TREM2), body mass index and type 2 diabetes mellitus status, to identify at-risk steatohepatitis.
  •  
12.
  • Govaere, Olivier, et al. (author)
  • Transcriptomic profiling across the nonalcoholic fatty liver disease spectrum reveals gene signatures for steatohepatitis and fibrosis
  • 2020
  • In: Science Translational Medicine. - Washington, DC, United States : American Association for the Advancement of Science (AAAS). - 1946-6234 .- 1946-6242. ; 12:572
  • Journal article (peer-reviewed)abstract
    • The mechanisms that drive nonalcoholic fatty liver disease (NAFLD) remain incompletely understood. This large multicenter study characterized the transcriptional changes that occur in liver tissue across the NAFLD spectrum as disease progresses to cirrhosis to identify potential circulating markers. We performed high-throughput RNA sequencing on a discovery cohort comprising histologically characterized NAFLD samples from 206 patients. Unsupervised clustering stratified NAFLD on the basis of disease activity and fibrosis stage with differences in age, aspartate aminotransferase (AST), type 2 diabetes mellitus, and carriage of PNPLA3 rs738409, a genetic variant associated with NAFLD. Relative to early disease, we consistently identified 25 differentially expressed genes as fibrosing steatohepatitis progressed through stages F2 to F4. This 25-gene signature was independently validated by logistic modeling in a separate replication cohort (n = 175), and an integrative analysis with publicly available single-cell RNA sequencing data elucidated the likely relative contribution of specific intrahepatic cell populations. Translating these findings to the protein level, SomaScan analysis in more than 300 NAFLD serum samples confirmed that circulating concentrations of proteins AKR1B10 and GDF15 were strongly associated with disease activity and fibrosis stage. Supporting the biological plausibility of these data, in vitro functional studies determined that endoplasmic reticulum stress up-regulated expression of AKR1B10, GDF15, and PDGFA, whereas GDF15 supplementation tempered the inflammatory response in macrophages upon lipid loading and lipopolysaccharide stimulation. This study provides insights into the pathophysiology of progressive fibrosing steatohepatitis, and proof of principle that transcriptomic changes represent potentially tractable and clinically relevant markers of disease progression.
  •  
13.
  • Hardy, Timothy, et al. (author)
  • The European NAFLD Registry : A real-world longitudinal cohort study of nonalcoholic fatty liver disease
  • 2020
  • In: Contemporary Clinical Trials. - : Elsevier. - 1551-7144 .- 1559-2030. ; 98
  • Journal article (peer-reviewed)abstract
    • Non-Alcoholic Fatty Liver Disease (NAFLD), a progressive liver disease that is closely associated with obesity, type 2 diabetes, hypertension and dyslipidaemia, represents an increasing global public health challenge. There is significant variability in the disease course: the majority exhibit only fat accumulation in the liver but a significant minority develop a necroinflammatory form of the disease (non-alcoholic steatohepatitis, NASH) that may progress to cirrhosis and hepatocellular carcinoma. At present our understanding of pathogenesis, disease natural history and long-term outcomes remain incomplete. There is a need for large, well characterised patient cohorts that may be used to address these knowledge gaps and to support the development of better biomarkers and novel therapies. The European NAFLD Registry is an international, prospectively recruited observational cohort study that aims to establish a large, highly-phenotyped patient cohort and linked bioresource. Here we describe the infrastructure, data management and monitoring plans, and the standard operating procedures implemented to ensure the timely and systematic collection of high-quality data and samples. Already recruiting subjects at secondary/tertiary care centres across Europe, the Registry is supporting the European Union IMI2-funded LITMUS Liver Investigation: Testing Marker Utility in Steatohepatitis consortium, which is a major international effort to robustly validate biomarkers that diagnose, risk stratify and/or monitor NAFLD progression and liver fibrosis stage. The European NAFLD Registry has the demonstrable capacity to support research and biomarker development at scale and pace.
  •  
14.
  • Johnson, Katherine, et al. (author)
  • Increased serum miR-193a-5p during non-alcoholic fatty liver disease progression : Diagnostic and mechanistic relevance
  • 2022
  • In: JHEP Reports. - : Elsevier. - 2589-5559. ; 4:2
  • Journal article (peer-reviewed)abstract
    • Background & Aims: Serum microRNA (miRNA) levels are known to change in non-alcoholic fatty liver disease (NAFLD) and may serve as useful biomarkers. This study aimed to profile miRNAs comprehensively at all NAFLD stages.Methods: We profiled 2,083 serum miRNAs in a discovery cohort (183 cases with NAFLD representing the complete NAFLD spectrum and 10 population controls). miRNA libraries generated by HTG EdgeSeq were sequenced by Illumina NextSeq. Selected serum miRNAs were profiled in 372 additional cases with NAFLD and 15 population controls by quantitative reverse transcriptase PCR.Results: Levels of 275 miRNAs differed between cases and population controls. Fewer differences were seen within individual NAFLD stages, but miR-193a-5p consistently showed increased levels in all comparisons. Relative to NAFL/non-alcoholic steatohepatitis (NASH) with mild fibrosis (stage 0/1), 3 miRNAs (miR-193a-5p, miR-378d, and miR378d) were increased in cases with NASH and clinically significant fibrosis (stages 2-4), 7 (miR193a-5p, miR-378d, miR-378e, miR-320b, miR-320c, miR-320d, and miR-320e) increased in cases with NAFLD activity score (NAS) 5-8 compared with lower NAS, and 3 (miR-193a-5p, miR-378d, and miR-378e) increased but 1 (miR-19b-3p) decreased in steatosis, activity, and fibrosis (SAF) activity score 2-4 compared with lower SAF activity. The significant findings for miR-193a-5p were replicated in the additional cohort with NAFLD. Studies in Hep G2 cells showed that following palmitic acid treatment, miR-193a-5p expression decreased significantly. Gene targets for miR-193a-5p were investigated in liver RNAseq data for a case subgroup (n = 80); liver GPX8 levels correlated positively with serum miR-193a-5p.Conclusions: Serum miR-193a-5p levels correlate strongly with NAFLD activity grade and fibrosis stage. MiR-193a-5p may have a role in the hepatic response to oxidative stress and is a potential clinically tractable circulating biomarker for progressive NAFLD.Lay summary: MicroRNAs (miRNAs) are small pieces of nucleic acid that may turn expression of genes on or off. These molecules can be detected in the blood circulation, and their levels in blood may change in liver disease including non-alcoholic fatty liver disease (NAFLD). To see if we could detect specific miRNA associated with advanced stages of NAFLD, we carried out miRNA sequencing in a group of 183 patients with NAFLD of varying severity together with 10 population controls. We found that a number of miRNAs showed changes, mainly increases, in serum levels but that 1 particular miRNA miR-193a-5p consistently increased. We confirmed this increase in a second group of cases with NAFLD. Measuring this miRNA in a blood sample may be a useful way to determine whether a patient has advanced NAFLD without an invasive liver biopsy.
  •  
15.
  •  
16.
  • Lee, Jenny, et al. (author)
  • Machine learning algorithm improves the detection of NASH (NAS-based) and at-risk NASH: A development and validation study
  • 2023
  • In: Hepatology. - : LIPPINCOTT WILLIAMS & WILKINS. - 0270-9139 .- 1527-3350. ; 78:1, s. 258-271
  • Journal article (peer-reviewed)abstract
    • Background and Aims: Detecting NASH remains challenging, while at-risk NASH (steatohepatitis and F >= 2) tends to progress and is of interest for drug development and clinical application. We developed prediction models by supervised machine learning techniques, with clinical data and biomarkers to stage and grade patients with NAFLD. Approach and Results: Learning data were collected in the Liver Investigation: Testing Marker Utility in Steatohepatitis metacohort (966 biopsy-proven NAFLD adults), staged and graded according to NASH CRN. Conditions of interest were the clinical trial definition of NASH (NAS >= 4;53%), at-risk NASH (NASH with F >= 2;35%), significant (F >= 2;47%), and advanced fibrosis (F >= 3;28%). Thirty-five predictors were included. Missing data were handled by multiple imputations. Data were randomly split into training/validation (75/25) sets. A gradient boosting machine was applied to develop 2 models for each condition: clinical versus extended (clinical and biomarkers). Two variants of the NASH and at-risk NASH models were constructed: direct and composite models.Clinical gradient boosting machine models for steatosis/inflammation/ballooning had AUCs of 0.94/0.79/0.72. There were no improvements when biomarkers were included. The direct NASH model produced AUCs (clinical/extended) of 0.61/0.65. The composite NASH model performed significantly better (0.71) for both variants. The composite at-risk NASH model had an AUC of 0.83 (clinical and extended), an improvement over the direct model. Significant fibrosis models had AUCs (clinical/extended) of 0.76/0.78. The extended advanced fibrosis model (0.86) performed significantly better than the clinical version (0.82). Conclusions: Detection of NASH and at-risk NASH can be improved by constructing independent machine learning models for each component, using only clinical predictors. Adding biomarkers only improved the accuracy of fibrosis.
  •  
17.
  • McGlinchey, Aidan J, 1984-, et al. (author)
  • Metabolic signatures across the full spectrum of non-alcoholic fatty liver disease
  • 2022
  • In: JHEP Reports. - : Elsevier. - 2589-5559. ; 4:5
  • Journal article (peer-reviewed)abstract
    • Background & Aims: Non-alcoholic fatty liver disease (NAFLD) is a progressive liver disease with potentially severe complications including cirrhosis and hepatocellular carcinoma. Previously, we have identified circulating lipid signatures associating with liver fat content and non-alcoholic steatohepatitis (NASH). Here, we develop a metabolomic map across the NAFLD spectrum, defining interconnected metabolic signatures of steatosis (non-alcoholic fatty liver, NASH, and fibrosis).Methods: We performed mass spectrometry analysis of molecular lipids and polar metabolites in serum samples from the European NAFLD Registry patients (n = 627), representing the full spectrum of NAFLD. Using various univariate, multivariate, and machine learning statistical approaches, we interrogated metabolites across 3 clinical perspectives: steatosis, NASH, and fibrosis.Results: Following generation of the NAFLD metabolic network, we identify 15 metabolites unique to steatosis, 18 to NASH, and 15 to fibrosis, with 27 common to all. We identified that progression from F2 to F3 fibrosis coincides with a key pathophysiological transition point in disease natural history, with n = 73 metabolites altered.Conclusions: Analysis of circulating metabolites provides important insights into the metabolic changes during NAFLD progression, revealing metabolic signatures across the NAFLD spectrum and features that are specific to NAFL, NASH, and fibrosis. The F2-F3 transition marks a critical metabolic transition point in NAFLD pathogenesis, with the data pointing to the pathophysiological importance of metabolic stress and specifically oxidative stress.Clinical Trials registration: The study is registered at Clinicaltrials.gov (NCT04442334).Lay summary: Non-alcoholic fatty liver disease is characterised by the build-up of fat in the liver, which progresses to liver dysfunction, scarring, and irreversible liver failure, and is markedly increasing in its prevalence worldwide. Here, we measured lipids and other small molecules (metabolites) in the blood with the aim of providing a comprehensive molecular overview of fat build-up, liver fibrosis, and diagnosed severity. We identify a key metabolic 'watershed' in the progression of liver damage, separating severe disease from mild, and show that specific lipid and metabolite profiles can help distinguish and/or define these cases.
  •  
18.
  • McGlinchey, Aidan J, 1984-, et al. (author)
  • Metabolomics approaches to identify biomarkers of nonalcoholic fatty liver disease
  • 2020
  • In: Journal of Hepatology. - : Elsevier. - 0168-8278 .- 1600-0641. ; 73:Suppl. 1, s. S438-S438
  • Journal article (other academic/artistic)abstract
    • Background and Aims: Nonalcoholic fatty liver disease (NAFLD) is a progressive liver disease that is strongly associated with type 2 diabetes. Accurate, non-invasive diagnostic tests to deliniate the different stages: degree of steatosis, grade of nonalcoholic steatohepatitis (NASH) and stage fibrosis represent an unmet medical need. In our previous studies, we successfully identified specific serum molecular lipid signatures which associate with the amount of liver fat as well as with NASH. Here we report underlying associations between clinical data, lipidomic profiles, metabolic profiles and clinical outcomes, including downstream identification of potential biomarkers for various stages of the disease.Method: We leverage several statistical and machine-learning approaches to analyse clinical, lipidomic and metabolomic profiles of individuals from the European Horizon 2020 project: Elucidating Pathways of Steatohepatitis (EPoS). We interrogate data on patients representing the full spectrum of NAFLD/NASH derived from the EPoS European NAFLD Registry (n = 627). We condense the EPoS lipidomic data into lipid clusters and subsequently apply non-rejection-rate-pruned partial correlation network techniques to facilitate network analysis between the datasets of lipidomic, metabolomic and clinical data. For biomarker identification, random forest ensemble classification and neural network machine learning approaches were used to both search for valid disease biomarkers and to assess the relative improvement over clinical-data-only classification versus addition of our lipidomic and metabolomic datasets.Results: We found that steatosis grade was strongly associated with (1) an increase of triglycerides with low carbon number and double bond count as well as (2) a decrease of specific phospholipids, including lysophosphatidylcholines. In addition to the network topology as a result itself, we also present lipid clusters (LCs) of interest to the derived network of proposed interactions in our NAFLD data from the EPoS cohort, along with our proposed biomarkers for various disease outcomes, as put forward by our current machine learning analyses.Conclusion: Our findings suggest that dysregulation of lipid metabolism in progressive stages of NAFLD is reflected in circulation and may thus hold diagnostic value as well as offer new insights about the NAFLD pathogenesis. Using this cohort as a proof-of-concept, we demonstrate current progress in tuning the accuracy of neural network and random forest approaches with a view to predicting various subtypes of NAFLD patient using a minimal set of lipidomic and metabolic markers. A detailed network-based picture emerges between lipids, polar metabolites and clinical variables. Lipidomic/metabolomic markers may provide an alternative method of NAFLD patient classification and risk stratification to guide therapy.
  •  
19.
  • McGlinchey, Aidan J, 1984-, et al. (author)
  • The Metabolomics of Non-Alcoholic Fatty Liver Disease : Of Networks and Biomarkers
  • 2021
  • In: Journal of Hepatology. - : Elsevier. - 0168-8278 .- 1600-0641. ; 75:Suppl. 2, s. S579-S580
  • Journal article (other academic/artistic)abstract
    • Background and aims: Non-alcoholic fatty liver disease (NAFLD), the leading cause of chronic liver disease, affects 25%+ of people worldwide. Detailed understanding of the metabolomics of NAFLD, and non-invasive diagnostic techniques for the stages of NAFLD are unavailable. We identify specific serum molecular lipid signatures to these ends.First, we leverage lipidomic and polar metabolomic data (n = 643) subjects, to produce a clear, meaningful interaction map, linking lipids, metabolites, clinical factors and disease outcomes. We find non-spurious associations therein, as features of interest, and for downstream analysis.Third, NAFLD fibrosis biomarker identification was performed using machine learning, with our candidate lipids/metabolites to be forwarded to a successor project; the LITMUS project, towards clinically-applicable, non-invasive, sensitive and specific classification of NAFLD patients.Method: Serum lipids and polar metabolites were measured by mass spectrometry in the EPoS cohort of patients (n = 176 lipids and n = 36 polar metabolites), combined with clinical data from (n = 643 subjects), followed by model-based clustering, giving 10 lipid clusters (LCs).Correlations were calculated pairwise between (1) all LCs, (2) “input” clinical data (height, weight, BMI, blood platelet count) and (3) outcomes (fibrosis, steatosis, NAS score, etc.). Non-rejection rates (NRRs) were calculated for relationships, remove spurious associations (NRR > 0.4). We project the remaining associations as a network; a novel metabolomic overview NAFLD.ANOVA and Tukey’s Honest Significant Differences (Tukey HSDs) revealed detailed metabolic signatures across NAFLD, fibrosis and steatosis stages.Random forest machine learning was used to classify NAFLD patients: LOW (0-1 fibrosis grade) or HIGH (2–4 fibrosis grade), using individual lipids and metabolites, identifying putative biomarkers.Results: In linewith our previous findings, many lipids associate with steatosis and fibrosis in NAFLD. Our novel overview network revealsas sociations between specific LCs and clinical variables, such as TGs (LC3), and a subgroup of TGs of lowest and highest carbon numbers (LC9) along with PC (O)s (LC7) positively associating with NAFLD score and fibrosis. Conversely, LPCs (LC4), particularly sphingomyelins (SMs, LC6), negatively associated with these variables. Many other metabolites changing across NAFLD stages beg further discussion.Conclusion: In addition to generation of a novel metabolomic network of NAFLD, we demonstrate feasibility of lipidomic and metabolomic data to classify NAFLD patients’fibrosis grades (median AUC: 0.765), competitive with gold-standard clinical variables (age, BMI, sex, diabetes, liver AST/ALT, platelet count) (median AUC: 0.778). These biomarkers are being taken forward (LITMUS project) to develop clinical testing.
  •  
20.
  • Mcteer, Matthew, et al. (author)
  • Machine learning approaches to enhance diagnosis and staging of patients with MASLD using routinely available clinical information
  • 2024
  • In: PLOS ONE. - : PUBLIC LIBRARY SCIENCE. - 1932-6203. ; 19:2
  • Journal article (peer-reviewed)abstract
    • Aims Metabolic dysfunction Associated Steatotic Liver Disease (MASLD) outcomes such as MASH (metabolic dysfunction associated steatohepatitis), fibrosis and cirrhosis are ordinarily determined by resource-intensive and invasive biopsies. We aim to show that routine clinical tests offer sufficient information to predict these endpoints.Methods Using the LITMUS Metacohort derived from the European NAFLD Registry, the largest MASLD dataset in Europe, we create three combinations of features which vary in degree of procurement including a 19-variable feature set that are attained through a routine clinical appointment or blood test. This data was used to train predictive models using supervised machine learning (ML) algorithm XGBoost, alongside missing imputation technique MICE and class balancing algorithm SMOTE. Shapley Additive exPlanations (SHAP) were added to determine relative importance for each clinical variable.Results Analysing nine biopsy-derived MASLD outcomes of cohort size ranging between 5385 and 6673 subjects, we were able to predict individuals at training set AUCs ranging from 0.719-0.994, including classifying individuals who are At-Risk MASH at an AUC = 0.899. Using two further feature combinations of 26-variables and 35-variables, which included composite scores known to be good indicators for MASLD endpoints and advanced specialist tests, we found predictive performance did not sufficiently improve. We are also able to present local and global explanations for each ML model, offering clinicians interpretability without the expense of worsening predictive performance.Conclusions This study developed a series of ML models of accuracy ranging from 71.9-99.4% using only easily extractable and readily available information in predicting MASLD outcomes which are usually determined through highly invasive means.
  •  
21.
  • Mozes, Ferenc E., et al. (author)
  • Performance of non-invasive tests and histology for the prediction of clinical outcomes in patients with non-alcoholic fatty liver disease: an individual participant data meta-analysis
  • 2023
  • In: The Lancet Gastroenterology & Hepatology. - : ELSEVIER INC. - 2468-1253. ; 8:8, s. 704-713
  • Journal article (peer-reviewed)abstract
    • Background Histologically assessed liver fibrosis stage has prognostic significance in patients with non-alcoholic fatty liver disease (NAFLD) and is accepted as a surrogate endpoint in clinical trials for non-cirrhotic NAFLD. Our aim was to compare the prognostic performance of non-invasive tests with liver histology in patients with NAFLD. Methods This was an individual participant data meta-analysis of the prognostic performance of histologically assessed fibrosis stage (F0-4), liver stiffness measured by vibration-controlled transient elastography (LSM-VCTE), fibrosis-4 index (FIB-4), and NAFLD fibrosis score (NFS) in patients with NAFLD. The literature was searched for a previously published systematic review on the diagnostic accuracy of imaging and simple non-invasive tests and updated to Jan 12, 2022 for this study. Studies were identified through PubMed/MEDLINE, EMBASE, and CENTRAL, and authors were contacted for individual participant data, including outcome data, with a minimum of 12 months of follow-up. The primary outcome was a composite endpoint of all-cause mortality, hepatocellular carcinoma, liver transplantation, or cirrhosis complications (ie, ascites, variceal bleeding, hepatic encephalopathy, or progression to a MELD score >= 15). We calculated aggregated survival curves for trichotomised groups and compared them using stratified log-rank tests (histology: F0-2 vs F3 vs F4; LSM: <10 vs 10 to <20 vs >= 20 kPa; FIB-4: <1<middle dot>3 vs 1<middle dot>3 to <= 2<middle dot>67 vs >2<middle dot>67; NFS: <-1<middle dot>455 vs -1<middle dot>455 to <= 0<middle dot>676 vs >0<middle dot>676), calculated areas under the time-dependent receiver operating characteristic curves (tAUC), and performed Cox proportional-hazards regression to adjust for confounding. This study was registered with PROSPERO, CRD42022312226.Findings Of 65 eligible studies, we included data on 2518 patients with biopsy-proven NAFLD from 25 studies (1126 [44<middle dot>7%] were female, median age was 54 years [IQR 44-63), and 1161 [46<middle dot>1%] had type 2 diabetes). After a median follow-up of 57 months [IQR 33-91], the composite endpoint was observed in 145 (5<middle dot>8%) patients. Stratified log-rank tests showed significant differences between the trichotomised patient groups (p<0<middle dot>0001 for all comparisons). The tAUC at 5 years were 0<middle dot>72 (95% CI 0<middle dot>62-0<middle dot>81) for histology, 0<middle dot>76 (0<middle dot>70-0<middle dot>83) for LSM-VCTE, 0<middle dot>74 (0<middle dot>64-0<middle dot>82) for FIB-4, and 0<middle dot>70 (0<middle dot>63-0<middle dot>80) for NFS. All index tests were significant predictors of the primary outcome after adjustment for confounders in the Cox regression.Interpretation Simple non-invasive tests performed as well as histologically assessed fibrosis in predicting clinical outcomes in patients with NAFLD and could be considered as alternatives to liver biopsy in some cases.
  •  
22.
  • Pavlides, Michael, et al. (author)
  • Liver investigation: Testing marker utility in steatohepatitis (LITMUS): Assessment & validation of imaging modality performance across the NAFLD spectrum in a prospectively recruited cohort study (the LITMUS imaging study): Study protocol
  • 2023
  • In: Contemporary Clinical Trials. - : ELSEVIER SCIENCE INC. - 1551-7144 .- 1559-2030. ; 134
  • Journal article (peer-reviewed)abstract
    • Non-alcoholic fatty liver disease (NAFLD) is the liver manifestation of the metabolic syndrome with global prevalence reaching epidemic levels. Despite the high disease burden in the population only a small proportion of those with NAFLD will develop progressive liver disease, for which there is currently no approved pharmacotherapy. Identifying those who are at risk of progressive NAFLD currently requires a liver biopsy which is problematic. Firstly, liver biopsy is invasive and therefore not appropriate for use in a condition like NAFLD that affects a large proportion of the population. Secondly, biopsy is limited by sampling and observer dependent variability which can lead to misclassification of disease severity. Non-invasive biomarkers are therefore needed to replace liver biopsy in the assessment of NAFLD. Our study addresses this unmet need. The LITMUS Imaging Study is a prospectively recruited multi-centre cohort study evaluating magnetic resonance imaging and elastography, and ultrasound elastography against liver histology as the reference standard. Imaging biomarkers and biopsy are acquired within a 100-day window. The study employs standardised processes for imaging data collection and analysis as well as a real time central monitoring and quality control process for all the data submitted for analysis. It is anticipated that the high-quality data generated from this study will underpin changes in clinical practice for the benefit of people with NAFLD. Study Registration: clinicaltrials.gov: NCT05479721
  •  
23.
  • Pelusi, Serena, et al. (author)
  • Rare Pathogenic Variants Predispose to Hepatocellular Carcinoma in Nonalcoholic Fatty Liver Disease.
  • 2019
  • In: Scientific reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 9:1
  • Journal article (peer-reviewed)abstract
    • Nonalcoholic fatty liver disease (NAFLD) is a rising cause of hepatocellular carcinoma (HCC). We examined whether inherited pathogenic variants in candidate genes (n=181) were enriched in patients with NAFLD-HCC. To this end, we resequenced peripheral blood DNA of 142 NAFLD-HCC, 59 NAFLD with advanced fibrosis, and 50 controls, and considered 404 healthy individuals from 1000G. Pathogenic variants were defined according to ClinVar, likely pathogenic as rare variants predicted to alter protein activity. In NAFLD-HCC patients, we detected an enrichment in pathogenic (p=0.024), and likely pathogenic variants (p=1.9*10-6), particularly in APOB (p=0.047). APOB variants were associated with lower circulating triglycerides and higher HDL cholesterol (p<0.01). A genetic risk score predicted NAFLD-HCC (OR 4.96, 3.29-7.55; p=5.1*10-16), outperforming the diagnostic accuracy of common genetic risk variants, and of clinical risk factors (p<0.05). In conclusion, rare pathogenic variants in genes involved in liver disease and cancer predisposition are associated with NAFLD-HCC development.
  •  
24.
  • Ratziu, Vladimir, et al. (author)
  • Cost of non-alcoholic steatohepatitis in Europe and the USA: The GAIN study
  • 2020
  • In: JHEP Reports. - : Elsevier. - 2589-5559 .- 2589-5559. ; 2:5
  • Journal article (peer-reviewed)abstract
    • BackgroundXX1Aims: Non-alcoholic steatohepatitis (NASH) leads to cirrhosis and is associated with a substantial socioeconomic burden, which, coupled with rising prevalence, is a growing public health challenge. However, there are few real-world data available describing the impact of NASH.Methods: The Global Assessment of the Impact of NASH (GAIN) study is a prevalence-based burden of illness study across Europe (France, Germany, Italy, Spain, and the UK) and the USA. Physicians provided demographic, clinical, and economic patient information via an online survey. In total, 3,754 patients found to have NASH on liver biopsy were stratified by fibrosis score and by biomarkers as either early or advanced fibrosis. Per-patient costs were estimated using national unit price data and extrapolated to the population level to calculate the economic burden. Of the patients, 767 (20%) provided information on indirect costs and health-related quality of life using the EuroQOL 5-D (EQ-5D; n = 749) and Chronic Liver Disease Questionnaire - Non-Alcoholic Fatty Liver Disease (CLDQ-NAFLD) (n = 723).Results: Mean EQ-5D and CLDQ-NAFLD index scores were 0.75 and 4.9, respectively. For 2018, the mean total annual per patient cost of NASH was (sic)2,763, (sic)4,917, and (sic)5,509 for direct medical, direct non-medical, and indirect costs, respectively. National per-patient cost was highest in the USA and lowest in France. Costs increased with fibrosis and decompensation, driven by hospitalisation and comorbidities. Indirect costs were driven by work loss.Conclusions: The GAIN study provides real-world data on the direct medical, direct non-medical, and indirect costs associated with NASH, including patient-reported outcomes in Europe and the USA, showing a substantial burden on health services and individuals. (C) 2020 The Author(s). Published by Elsevier B.V. on behalf of European Association for the Study of the Liver (EASL).
  •  
25.
  • Sen, Partho, 1983-, et al. (author)
  • Genome-scale metabolic modeling of human hepatocytes reveals dysregulation of glycosphingolipid pathways in progressive non-alcoholic fatty liver disease
  • 2021
  • In: Journal of Hepatology. - : Elsevier. - 0168-8278 .- 1600-0641. ; 75:Suppl. 2, s. S256-S256
  • Journal article (other academic/artistic)abstract
    • Background and aims: Non-alcoholic fatty liver disease (NAFLD) is a spectrum of chronic liver diseases intertwined with the metabolic disorders. The prevalence of NAFLD is rapidly increasing worldwide, while the pathologyand the underlying mechanism driving NAFLD is not fully understood. In NAFLD, a series of metabolic changes takes place in the liver. However, the alteration of the metabolic pathways in the human liver along the progression of NAFLD,i.e., transition from non-alcoholic steatosis (NAFL) to steatohepatitis (NASH) through cirrhosis remains to be discovered. Here, we sought to examine the metabolic pathways of the human liver across the full histological spectrum of NAFLD.Method: We analyzed the whole liver tissue transcriptomic (RNA-Seq)1 and serum metabolomics data obtained from a large cohort of histologically characterized patients derived from the European NAFLD Registry (n = 206), and developed genome-scale metabolic models (GEMs) of human hepatocytes at different stages of NAFLD. The integrative approach employed in this study has enabled us to understand the regulation of the metabolic pathways of human liver in NAFL, and with progressive NASH-associated fibrosis (F0-F4).Results: Our study identified several metabolic signatures in the liver and blood of these patients, specifically highlighting the alteration of vitamins (A, E) and glycosphingolipids, and their link with complex glycosaminoglycans in advanced fibrosis. Furthermore, by applying genome-scale metabolic modeling, we were able to identify the metabolic differences among carriers of widely validated genetic variants associated with NAFLD/NASH disease severity in three genes (PNPLA3,TM6SF2andHSD17B13).Conclusion: The study provides insights into the underlying pathways of the progressive-fibrosing steatohepatitis. Of note, there is a marked dysregulation of the glycosphingolipid metabolism in the liver of the patients with advanced fibrosis.
  •  
26.
  • Sen, Parho, et al. (author)
  • Metabolism of human liver on a genome scale in non-alcoholic fatty liver disease
  • 2020
  • In: Journal of Hepatology. - : Elsevier. - 0168-8278 .- 1600-0641. ; 73:Suppl. 1, s. S671-S672
  • Journal article (other academic/artistic)abstract
    • Background and Aims: Non-alcoholic fatty liver disease (NAFLD) is a major risk factor leading to chronic liver disease and type 2 diabetes. By using patient-matched liver transcriptomics and serum metabolomics data from the EPoS European NAFLD Registry cohort, we conducted genome-scale metabolic modeling (GSMM) to dissect hepatic metabolism across the full spectrum of NAFLD, from steatosis (NAFL) to NASH-cirrhosis.Method: We compared the genome-scale metabolic networks across different stages of NAFLD together with healthy controls (HC, n = 10), with the patients divided into three groups: steatosis (n = 60), NASH (n = 139; F0: n = 4, F1 n = 28, F2: n = 53, F3: n = 54) and cirrhosis (n = 14). Based on transcriptomics data obtained from the liver biopsy of the patients enrolled in the European NAFLD Registry, genome-scale metabolic models of the liver were developed and contextualized for these conditions. GSMM, as a scaffold, connects metabolic genes (i.e., enzymes) and metabolic pathways. Moreover, genome-scale networks can be constrained with multi-‘omics’ datasets, and thus connect an organism’s genotype to phenotype.Results: GSMM revealed that similar metabolic functions are perturbed in NAFL and NASH, while additional metabolic processes were regulated in advanced fibrosis/cirrhosis. The primary liver processes such as glycerophospholipid metabolism, chondroitin/heparan sulfate, bile acid and fatty acid biosynthesis and oxidation (carnitine shuttle in mitochondria) were affected. Lipid precursors for VLDL particles were upregulated in NAFL. Integrative analysis of transcriptomics and serum metabolomics data also revealed that several microbial pathways are up-regulated in NAFLD and may contribute to pathogenesis.Conclusion: A GSMM approach has identified common and specific liver metabolic pathways across different stages of NAFLD progression. Data were cross-validated by serum metabolomics, where in addition analysis also revealed that specific microbially-produced metabolites are elevated in NAFLD as compared to controls. These results provide important insights into the changes in hepatic metabolism occurring during NAFLD/NASH pathogenesis.
  •  
27.
  • Sen, Partho, 1983-, et al. (author)
  • Quantitative modeling of human liver reveals dysregulation of glycosphingolipid pathways in nonalcoholic fatty liver disease
  • 2022
  • In: iScience. - : Cell Press. - 2589-0042. ; 25:9
  • Journal article (peer-reviewed)abstract
    • Nonalcoholic fatty liver disease (NAFLD) is an increasingly prevalent disease that is associated with multiple metabolic disturbances, yet the metabolic pathways underlying its progression are poorly understood. Here, we studied metabolic pathways of the human liver across the full histological spectrum of NAFLD. We analyzed whole liver tissue transcriptomics and serum metabolomics data obtained from a large, prospectively enrolled cohort of 206 histologically characterized patients derived from the European NAFLD Registry and developed genome-scale metabolic models (GEMs) of human hepatocytes at different stages of NAFLD. We identified several metabolic signatures in the liver and blood of these patients, specifically highlighting the alteration of vitamins (A, E) and glycosphingolipids, and their link with complex glycosaminoglycans in advanced fibrosis. Furthermore, we derived GEMs and identified metabolic signatures of three common NAFLD-associated gene variants (PNPLA3, TM6SF2, and HSD17B13). The study demonstrates dysregulated liver metabolic pathways which may contribute to the progression of NAFLD.
  •  
28.
  • Vali, Yasaman, et al. (author)
  • Biomarkers for staging fibrosis and non-alcoholic steatohepatitis in non-alcoholic fatty liver disease (the LITMUS project) : a comparative diagnostic accuracy study
  • 2023
  • In: The Lancet Gastroenterology & Hepatology. - : Elsevier Ltd. - 2468-1253. ; 8:8, s. 714-725
  • Journal article (peer-reviewed)abstract
    • Background: The reference standard for detecting non-alcoholic steatohepatitis (NASH) and staging fibrosis—liver biopsy—is invasive and resource intensive. Non-invasive biomarkers are urgently needed, but few studies have compared these biomarkers in a single cohort. As part of the Liver Investigation: Testing Marker Utility in Steatohepatitis (LITMUS) project, we aimed to evaluate the diagnostic accuracy of 17 biomarkers and multimarker scores in detecting NASH and clinically significant fibrosis in patients with non-alcoholic fatty liver disease (NAFLD) and identify their optimal cutoffs as screening tests in clinical trial recruitment. Methods: This was a comparative diagnostic accuracy study in people with biopsy-confirmed NAFLD from 13 countries across Europe, recruited between Jan 6, 2010, and Dec 29, 2017, from the LITMUS metacohort of the prospective European NAFLD Registry. Adults (aged ≥18 years) with paired liver biopsy and serum samples were eligible; those with excessive alcohol consumption or evidence of other chronic liver diseases were excluded. The diagnostic accuracy of the biomarkers was expressed as the area under the receiver operating characteristic curve (AUC) with liver histology as the reference standard and compared with the Fibrosis-4 index for liver fibrosis (FIB-4) in the same subgroup. Target conditions were the presence of NASH with clinically significant fibrosis (ie, at-risk NASH; NAFLD Activity Score ≥4 and F≥2) or the presence of advanced fibrosis (F≥3), analysed in all participants with complete data. We identified thres holds for each biomarker for reducing the number of biopsy-based screen failures when recruiting people with both NASH and clinically significant fibrosis for future trials. Findings: Of 1430 participants with NAFLD in the LITMUS metacohort with serum samples, 966 (403 women and 563 men) were included after all exclusion criteria had been applied. 335 (35%) of 966 participants had biopsy-confirmed NASH and clinically significant fibrosis and 271 (28%) had advanced fibrosis. For people with NASH and clinically significant fibrosis, no single biomarker or multimarker score significantly reached the predefined AUC 0·80 acceptability threshold (AUCs ranging from 0·61 [95% CI 0·54–0·67] for FibroScan controlled attenuation parameter to 0·81 [0·75–0·86] for SomaSignal), with accuracy mostly similar to FIB-4. Regarding detection of advanced fibrosis, SomaSignal (AUC 0·90 [95% CI 0·86–0·94]), ADAPT (0·85 [0·81–0·89]), and FibroScan liver stiffness measurement (0·83 [0·80–0·86]) reached acceptable accuracy. With 11 of 17 markers, histological screen failure rates could be reduced to 33% in trials if only people who were marker positive had a biopsy for evaluating eligibility. The best screening performance for NASH and clinically significant fibrosis was observed for SomaSignal (number needed to test [NNT] to find one true positive was four [95% CI 4–5]), then ADAPT (six [5–7]), MACK-3 (seven [6–8]), and PRO-C3 (nine [7–11]). Interpretation: None of the single markers or multimarker scores achieved the predefined acceptable AUC for replacing biopsy in detecting people with both NASH and clinically significant fibrosis. However, several biomarkers could be applied in a prescreening strategy in clinical trial recruitment. The performance of promising markers will be further evaluated in the ongoing prospective LITMUS study cohort. Funding: The Innovative Medicines Initiative 2 Joint Undertaking. © 2023 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-28 of 28
Type of publication
journal article (27)
conference paper (1)
Type of content
peer-reviewed (21)
other academic/artistic (7)
Author/Editor
Bugianesi, Elisabett ... (28)
Anstee, Quentin M. (17)
Ratziu, Vlad (17)
Petta, Salvatore (15)
Govaere, Olivier (13)
Ekstedt, Mattias (11)
show more...
Tiniakos, Dina (11)
Allison, Michael (11)
Valenti, Luca (11)
Daly, Ann K. (10)
Orešič, Matej, 1967- (9)
Miele, Luca (9)
Bedossa, Pierre (8)
Aithal, Guruprasad P ... (8)
Cockell, Simon (8)
Schattenberg, Jörn M ... (8)
Romeo, Stefano, 1976 (7)
Yki-Jarvinen, Hannel ... (7)
Dufour, Jean-Francoi ... (7)
Prati, Daniele (7)
Francque, Sven (7)
Schattenberg, Joern ... (7)
Romero-Gomez, Manuel (7)
Pelusi, Serena (7)
Hyötyläinen, Tuulia, ... (6)
McGlinchey, Aidan J, ... (6)
Meroni, Marica (6)
Dongiovanni, Paola (6)
Baselli, Guido (6)
Clement, Karine (5)
Soardo, Giorgio (5)
Kechagias, Stergios (4)
Darlay, Rebecca (4)
Palmer, Jeremy (4)
Vacca, Michele (4)
Day, Christopher P. (4)
Cordell, Heather J. (4)
Fracanzani, Anna Lud ... (4)
Mancina, Rosellina M ... (3)
Burt, Alastair D. (3)
Liu, Yang-Lin (3)
Invernizzi, Pietro (3)
Schattenberg, Jorn M ... (3)
Younes, Ramy (3)
Rosso, Chiara (3)
Liguori, Antonio (3)
Aller, Rocio (3)
Grieco, Antonio (3)
Vidal-Puig, Antonio (3)
Cherubini, Alessandr ... (3)
show less...
University
Linköping University (13)
Örebro University (9)
University of Gothenburg (7)
Karolinska Institutet (3)
Stockholm School of Economics (2)
Language
English (28)
Research subject (UKÄ/SCB)
Medical and Health Sciences (24)
Natural sciences (1)
Social Sciences (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view