SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Butman David) "

Search: WFRF:(Butman David)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Casas-Ruiz, Joan P., et al. (author)
  • Integrating terrestrial and aquatic ecosystems to constrain estimates of land-atmosphere carbon exchange
  • 2023
  • In: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 14:1
  • Journal article (peer-reviewed)abstract
    • In this Perspective, we put forward an integrative framework to improve estimates of land-atmosphere carbon exchange based on the accumulation of carbon in the landscape as constrained by its lateral export through rivers. The framework uses the watershed as the fundamental spatial unit and integrates all terrestrial and aquatic ecosystems as well as their hydrologic carbon exchanges. Application of the framework should help bridge the existing gap between land and atmosphere-based approaches and offers a platform to increase communication and synergy among the terrestrial, aquatic, and atmospheric research communities that is paramount to advance landscape carbon budget assessments.
  •  
2.
  • Kuhn, Catherine, et al. (author)
  • Performance of Landsat-8 and Sentinel-2 surface reflectance products for river remote sensing retrievals of chlorophyll-a and turbidity
  • 2019
  • In: Remote Sensing of Environment. - : Elsevier. - 0034-4257 .- 1879-0704. ; 224, s. 104-118
  • Journal article (peer-reviewed)abstract
    • Rivers and other freshwater systems play a crucial role in ecosystems, industry, transportation and agriculture. Despite the > 40 years of inland water observations made possible by optical remote sensing, a standardized reflectance product for inland waters is yet forthcoming. The aim of this work is to compare the standard USGS land surface reflectance product to two Landsat-8 and Sentinel-2 aquatic remote sensing reflectance products over the Amazon, Columbia and Mississippi rivers. Landsat-8 reflectance products from all three routines are then evaluated for their comparative performance in retrieving chlorophyll-a and turbidity in reference to ship borne, underway in situ validation measurements. The land surface product shows the best agreement (4% Mean Absolute Percent Difference) with field measurements of radiometry collected on the Amazon River and generates 36% higher reflectance values in the visible bands compared to aquatic methods (ACOLITE and SeaDAS) with larger differences between land and aquatic products observed in Sentinel-2 (0.01 sr(-1)) compared to Landsat-8 (0.001 sr(-1)). Choice of atmospheric correction routine can bias Landsat-8 retrievals of chlorophyll-a and turbidity by as much as 59% and 35% respectively. Using a more restrictive time window for matching in situ and satellite imagery can reduce differences by 5-31% depending on correction technique. This work highlights the challenges of satellite retrievals over rivers and underscores the need for future optical and biogeochemical research aimed at improving our understanding of the absorbing and scattering properties of river water and their relationships to remote sensing reflectance.
  •  
3.
  • Raymond, Peter A., et al. (author)
  • Global carbon dioxide emissions from inland waters
  • 2013
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 503:7476, s. 355-359
  • Journal article (peer-reviewed)abstract
    • Carbon dioxide (CO2) transfer from inland waters to the atmosphere, known as CO2 evasion, is a component of the global carbon cycle. Global estimates of CO2 evasion have been hampered, however, by the lack of a framework for estimating the inland water surface area and gas transfer velocity and by the absence of a global CO2 database. Here we report regional variations in global inland water surface area, dissolved CO2 and gas transfer velocity. We obtain global CO2 evasion rates of 1.8(-0.25)(+0.25) petagrams of carbon (Pg C) per year from streams and rivers and 0.32(-0.26)(+0.52) Pg C yr(-1) from lakes and reservoirs, where the upper and lower limits are respectively the 5th and 95th confidence interval percentiles. The resulting global evasion rate of 2.1 Pg C yr(-1) is higher than previous estimates owing to a larger stream and river evasion rate. Our analysis predicts global hotspots in stream and river evasion, with about 70 per cent of the flux occurring over just 20 per cent of the land surface. The source of inland water CO2 is still not known with certainty and new studies are needed to research the mechanisms controlling CO2 evasion globally.
  •  
4.
  • Xenopoulos, Marguerite A., et al. (author)
  • How humans alter dissolved organic matter composition in freshwater: relevance for the Earth’s biogeochemistry
  • 2021
  • In: Biogeochemistry. - : Springer Nature. - 0168-2563 .- 1573-515X. ; 154:2, s. 323-348
  • Journal article (peer-reviewed)abstract
    • Dissolved organic matter (DOM) is recognized for its importance in freshwater ecosystems, but historical reliance on DOM quantity rather than indicators of DOM composition has led to an incomplete understanding of DOM and an underestimation of its role and importance in biogeochemical processes. A single sample of DOM can be composed of tens of thousands of distinct molecules. Each of these unique DOM molecules has their own chemical properties and reactivity or role in the environment. Human activities can modify DOM composition and recent research has uncovered distinct DOM pools laced with human markers and footprints. Here we review how land use change, climate change, nutrient pollution, browning, wildfires, and dams can change DOM composition which in turn will affect internal processing of freshwater DOM. We then describe how human-modified DOM can affect biogeochemical processes. Drought, wildfires, cultivated land use, eutrophication, climate change driven permafrost thaw, and other human stressors can shift the composition of DOM in freshwater ecosystems increasing the relative contribution of microbial-like and aliphatic components. In contrast, increases in precipitation may shift DOM towards more relatively humic-rich, allochthonous forms of DOM. These shifts in DOM pools will likely have highly contrasting effects on carbon outgassing and burial, nutrient cycles, ecosystem metabolism, metal toxicity, and the treatments needed to produce clean drinking water. A deeper understanding of the links between the chemical properties of DOM and biogeochemical dynamics can help to address important future environmental issues, such as the transfer of organic contaminants through food webs, alterations to nitrogen cycling, impacts on drinking water quality, and biogeochemical effects of global climate change.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view