SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Caffee M.) "

Search: WFRF:(Caffee M.)

  • Result 1-30 of 30
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Sigl, M., et al. (author)
  • Timing and climate forcing of volcanic eruptions for the past 2,500 years
  • 2015
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 523:7562, s. 543-549
  • Journal article (peer-reviewed)abstract
    • Volcanic eruptions contribute to climate variability, but quantifying these contributions has been limited by inconsistencies in the timing of atmospheric volcanic aerosol loading determined from ice cores and subsequent cooling from climate proxies such as tree rings. Here we resolve these inconsistencies and show that large eruptions in the tropics and high latitudes were primary drivers of interannual-to-decadal temperature variability in the Northern Hemisphere during the past 2,500 years. Our results are based on new records of atmospheric aerosol loading developed from high-resolution, multi-parameter measurements from an array of Greenland and Antarctic ice cores as well as distinctive age markers to constrain chronologies. Overall, cooling was proportional to the magnitude of volcanic forcing and persisted for up to ten years after some of the largest eruptive episodes. Our revised timescale more firmly implicates volcanic eruptions as catalysts in the major sixth-century pandemics, famines, and socioeconomic disruptions in Eurasia and Mesoamerica while allowing multi-millennium quantification of climate response to volcanic forcing.
  •  
2.
  • Blomdin, Robin, et al. (author)
  • Timing and dynamics of glaciation in the Ikh Turgen Mountains, Altai region, High Asia
  • 2018
  • In: Quaternary Geochronology. - : Elsevier BV. - 1871-1014 .- 1878-0350. ; 47, s. 54-71
  • Journal article (peer-reviewed)abstract
    • Spanning the northern sector of High Asia, the Altai region contains a rich landform record of glaciation. We report the extent, chronologies, and dynamics of two paleoglaciers on opposite flanks of the Ikh Turgen mountains (In Russian: Chikhacheva Range), straddling the border between Russia and Mongolia, using a combination of remote sensing-based glacial geomorphological mapping, 10Be surface exposure dating, and geomorphometric analysis. On the eastern side (Mongolia), the Turgen-Asgat paleoglacier, with its potential for developing a large accumulation area (∼257 km2), expanded 40 km down valley, and mean ages from a latero-frontal moraine indicate deglaciation during marine oxygen isotope stage (MIS) 3 (45.1 ± 1.8 ka, n = 4) and MIS 2 (22.8 ± 3.3 ka, n = 5). These minimum age constraints are consistent with other 10Be glacial chronologies and paleoclimate records from the region, which indicates glacier culmination during cold and wet conditions coinciding with MIS 3 (piedmont-style glaciation; inferred for a few sites across the region) and glacier culmination during cold and dry conditions coinciding with MIS 2 (mainly valley-style glaciation; inferred from several sites across the region). On the western side (Russia), the Boguty paleoglacier had a smaller accumulation area (∼222 km2), and advanced 30 km down valley across a low gradient forefield. Surface exposure ages from two moraine complexes on this side of the mountains exhibit wide scatter (∼14–53 ka, n = 8), making paleoclimate inferences and comparison to other proxies difficult. Ice surface profile reconstructions imply that the two paleoglaciers likely shared an ice divide. © 2018 Elsevier B.V.
  •  
3.
  • Blomdin, Robin, et al. (author)
  • Evaluating the timing of former glacier expansions in the Tian Shan : A key step towards robust spatial correlations
  • 2016
  • In: Quaternary Science Reviews. - : Elsevier BV. - 0277-3791 .- 1873-457X. ; 153, s. 78-96
  • Journal article (peer-reviewed)abstract
    • The timing of past glaciation across the Tian Shan provides a proxy for past climate change in this critical area. Correlating glacial stages across the region is difficult but cosmogenic exposure ages have considerable potential. A drawback is the large observed scatter in Be-10 surface exposure data. To quantify the robustness of the dating, we compile, recalculate, and perform statistical analyses on sets of 10Be surface exposure ages from 25 moraines, consisting of 114 new and previously published ages. We assess boulder age scatter by dividing boulder groups into quality classes and rejecting boulder groups of poor quality. This allows us to distinguish and correlate robustly dated glacier limits, resulting in a more conservative chronology than advanced in previous publications. Our analysis shows that only one regional glacial stage can be reliably correlated across the Tian Shan, with glacier expansions occurring between 15 and 281 a during marine oxygen isotope stage (MIS) 2. However, there are examples of older more extensive indicators of glacial stages between MIS 3 and MIS 6. Paleoglacier extent during MIS 2 was mainly restricted to valley glaciation. Local deviations occur: in the central Kyrgyz Tian Shan paleoglaciers were more extensive and we propose that the topographic context explains this pattern. Correlation between glacial stages prior to late MIS 2 is less reliable, because of the low number of samples and/or the poor resolution of the dating. With the current resolution and spatial coverage of robustly-dated glacier limits we advise that paleoclimatic implications for the Tian Shan glacial chronology beyond MIS 2 are speculative and that continued work toward robust glacial chronologies is needed to resolve questions regarding drivers of past glaciation in the Tian Shan and Central Asia.
  •  
4.
  • Gribenski, Natacha, et al. (author)
  • Re-evaluation of MIS 3 glaciation using cosmogenic radionuclide and single grain luminescence ages, Kanas Valley, Chinese Altai
  • 2018
  • In: Journal of Quaternary Science. - : Wiley. - 0267-8179 .- 1099-1417. ; 33:1, s. 55-67
  • Journal article (peer-reviewed)abstract
    • Previous investigations observed a period of major glacial advances in Central Asia during marine oxygen isotope stage (MIS) 3 (57–29 ka), out of phase with global ice volume records. We have re-examined the Kanas moraine complex in the Altai Mountains of Central Asia, where an MIS 3 glaciation had been previously inferred. New and consistent cosmogenic exposure and single-grain luminescence ages indicate that the Kanas complex was formed during MIS 2 (29–12 ka), which brings its timing in line with the global ice volume record. We also identified a lateral moraine from a more extensive ice extent that dates to late MIS 5/MIS 4. To place our results in a wider contextual framework, we review the chronologies of another 26 proposed major MIS 3 glacial advances in Central Asia. For most of these sites, we find that the chronological data do not provide an unequivocal case for MIS 3 glaciation. Copyright © 2017 John Wiley & Sons, Ltd.
  •  
5.
  • Unsalan, Ozan, et al. (author)
  • The Sariçiçek howardite fall in Turkey : Source crater of HED meteorites on Vesta and impact risk of Vestoids
  • 2019
  • In: Meteoritics and Planetary Science. - Hoboken : John Wiley & Sons. - 1086-9379 .- 1945-5100. ; 54:5, s. 953-1008
  • Journal article (peer-reviewed)abstract
    • The Sariçiçek howardite meteorite shower consisting of 343 documented stones occurred on September 2, 2015 in Turkey and is the first documented howardite fall. Cosmogenic isotopes show that Sariçiçek experienced a complex cosmic‐ray exposure history, exposed during ~12–14 Ma in a regolith near the surface of a parent asteroid, and that an ~1 m sized meteoroid was launched by an impact 22 ± 2 Ma ago to Earth (as did one‐third of all HED meteorites). SIMS dating of zircon and baddeleyite yielded 4550.4 ± 2.5 Ma and 4553 ± 8.8 Ma crystallization ages for the basaltic magma clasts. The apatite U‐Pb age of 4525 ± 17 Ma, K‐Ar age of ~3.9 Ga, and the U,Th‐He ages of 1.8 ± 0.7 and 2.6 ± 0.3 Ga are interpreted to represent thermal metamorphic and impact‐related resetting ages, respectively. Petrographic; geochemical; and O‐, Cr‐, and Ti‐isotopic studies confirm that Sariçiçek belongs to the normal clan of HED meteorites. Petrographic observations and analysis of organic material indicate a small portion of carbonaceous chondrite material in the Sariçiçek regolith and organic contamination of the meteorite after a few days on soil. Video observations of the fall show an atmospheric entry at 17.3 ± 0.8 km s−1 from NW; fragmentations at 37, 33, 31, and 27 km altitude; and provide a pre‐atmospheric orbit that is the first dynamical link between the normal HED meteorite clan and the inner Main Belt. Spectral data indicate the similarity of Sariçiçek with the Vesta asteroid family (V‐class) spectra, a group of asteroids stretching to delivery resonances, which includes (4) Vesta. Dynamical modeling of meteoroid delivery to Earth shows that the complete disruption of a ~1 km sized Vesta family asteroid or a ~10 km sized impact crater on Vesta is required to provide sufficient meteoroids ≤4 m in size to account for the influx of meteorites from this HED clan. The 16.7 km diameter Antionia impact crater on Vesta was formed on terrain of the same age as given by the 4He retention age of Sariçiçek. Lunar scaling for crater production to crater counts of its ejecta blanket show it was formed ~22 Ma ago.
  •  
6.
  • Andersen, J. L., et al. (author)
  • Ice surface changes during recent glacial cycles along the Jutulstraumen and Penck Trough ice streams in western Dronning Maud Land, East Antarctica
  • 2020
  • In: Quaternary Science Reviews. - : Elsevier BV. - 0277-3791 .- 1873-457X. ; 249
  • Journal article (peer-reviewed)abstract
    • Reconstructing past ice-sheet surface changes is key to testing and improving ice-sheet models. Data constraining the past behaviour of the East Antarctic Ice Sheet are sparse, limiting our understanding of its response to past, present and future climate change. Here, we report the first cosmogenic multinuclide (Be-10, Al-26, Cl-36) data from bedrock and erratics on nunataks along the Jutulstraumen and Penck Trough ice streams in western Dronning Maud Land, East Antarctica. Spanning elevations between 741 and 2394 m above sea level, the samples have apparent exposure ages between 2 ka and 5 Ma. The highest-elevation bedrock sample indicates (near-) continuous minimum exposure since the Pliocene, with a low apparent erosion rate of 0.15 +/- 0.03 m Ma(-1), which is similar to results from eastern Dronning Maud Land. In contrast to studies in eastern Dronning Maud Land, however, our data show clear indications of a thicker-than-present ice sheet within the last glacial cycle, with a thinning of similar to 35-120 m during the Holocene (similar to 2-11 ka). Difficulties in separating suitable amounts of quartz from the often quartz-poor rock-types in the area, and cosmogenic nuclides inherited from exposure prior to the last deglaciation, prevented robust thinning estimates from elevational profiles. Nevertheless, the results clearly demonstrate ice-surface fluctuations of several hundred meters between the current grounding line and the edge of the polar plateau for the last glacial cycle, a constraint that should be considered in future ice-sheet model simulations.
  •  
7.
  • Goodfellow, Bradley W., et al. (author)
  • Arctic-alpine blockfields in the northern Swedish Scandes : late Quaternary - not Neogene
  • 2014
  • In: Earth Surface Dynamics. - : Copernicus GmbH. - 2196-6311 .- 2196-632X. ; 2:2, s. 383-401
  • Journal article (peer-reviewed)abstract
    • Autochthonous blockfield mantles may indicate alpine surfaces that have not been glacially eroded. These surfaces may therefore serve as markers against which to determine Quaternary erosion volumes in adjacent glacially eroded sectors. To explore these potential utilities, chemical weathering features, erosion rates, and regolith residence durations of mountain blockfields are investigated in the northern Swedish Scandes. This is done, firstly, by assessing the intensity of regolith chemical weathering along altitudinal transects descending from three blockfield-mantled summits. Clay / silt ratios, secondary mineral assemblages, and imaging of chemical etching of primary mineral grains in fine matrix are each used for this purpose. Secondly, erosion rates and regolith residence durations of two of the summits are inferred from concentrations of in situ-produced cosmogenic Be-10 and Al-26 in quartz at the blockfield surfaces. An interpretative model is adopted that includes temporal variations in nuclide production rates through surface burial by glacial ice and glacial isostasy-induced elevation changes of the blockfield surfaces. Together, our data indicate that these blockfields are not derived from remnants of intensely weathered Neogene weathering profiles, as is commonly considered. Evidence for this interpretation includes minor chemical weathering in each of the three examined blockfields, despite consistent variability according to slope position. In addition, average erosion rates of similar to 16.2 and similar to 6.7 mm ka(-1), calculated for the two blockfield-mantled summits, are low but of sufficient magnitude to remove present blockfield mantles, of up to a few metres in thickness, within a late Quaternary time frame. Hence, blockfield mantles appear to be replenished by regolith formation through, primarily physical, weathering processes that have operated during the Quaternary. The persistence of autochthonous blockfields over multiple glacial-interglacial cycles confirms their importance as key markers of surfaces that were not glacially eroded through, at least, the late Quaternary. However, presently blockfield-mantled surfaces may potentially be subjected to large spatial variations in erosion rates, and their Neogene regolith mantles may have been comprehensively eroded during the late Pliocene and early Pleistocene. Their role as markers by which to estimate glacial erosion volumes in surrounding landscape elements therefore remains uncertain.
  •  
8.
  • Jenniskens, Peter, et al. (author)
  • The Creston, California, meteorite fall and the origin of L chondrites
  • 2019
  • In: Meteoritics and Planetary Science. - : John Wiley & Sons. - 1086-9379 .- 1945-5100. ; 54:4, s. 699-720
  • Journal article (peer-reviewed)abstract
    • It has been proposed that all L chondrites resulted from an ongoing collisional cascade of fragments that originated from the formation of the ~500 Ma old asteroid family Gefion, located near the 5:2 mean‐motion resonance with Jupiter in the middle Main Belt. If so, L chondrite pre‐atmospheric orbits should be distributed as expected for that source region. Here, we present contradictory results from the orbit and collisional history of the October 24, 2015, L6 ordinary chondrite fall at Creston, CA (here reclassified to L5/6). Creston's short 1.30 ± 0.02 AU semimajor axis orbit would imply a long dynamical evolution if it originated from the middle Main Belt. Indeed, Creston has a high cosmic ray exposure age of 40–50 Ma. However, Creston's small meteoroid size and low 4.23 ± 0.07° inclination indicate a short dynamical lifetime against collisions. This suggests, instead, that Creston originated most likely in the inner asteroid belt and was delivered via the ν6 resonance. The U‐Pb systematics of Creston apatite reveals a Pb‐Pb age of 4,497.1 ± 3.7 Ma, and an upper intercept U‐Pb age of 4,496.7 ± 5.8 Ma (2σ), circa 70 Ma after formation of CAI, as found for other L chondrites. The K‐Ar (age ~4.3 Ga) and U,Th‐He (age ~1 Ga) chronometers were not reset at ~500 Ma, while the lower intercept U‐Pb age is poorly defined as 770 ± 320 Ma. So far, the three known L chondrites that impacted on orbits with semimajor axes a <2.0 AU all have high (>3 Ga) K‐Ar ages. This argues for a source of some of our L chondrites in the inner Main Belt. Not all L chondrites originate in a continuous population of Gefion family debris stretching across the 3:1 mean‐motion resonance.
  •  
9.
  • Jenniskens, Peter, et al. (author)
  • The impact and recovery of asteroid 2018 LA
  • 2021
  • In: Meteoritics and Planetary Science. - : John Wiley & Sons. - 1086-9379 .- 1945-5100. ; 56:4, s. 844-893
  • Journal article (peer-reviewed)abstract
    • The June 2, 2018 impact of asteroid 2018 LA over Botswana is only the second asteroid detected in space prior to impacting over land. Here, we report on the successful recovery of meteorites. Additional astrometric data refine the approach orbit and define the spin period and shape of the asteroid. Video observations of the fireball constrain the asteroid's position in its orbit and were used to triangulate the location of the fireball's main flare over the Central Kalahari Game Reserve. Twenty‐three meteorites were recovered. A consortium study of eight of these classifies Motopi Pan as an HED polymict breccia derived from howardite, cumulate and basaltic eucrite, and diogenite lithologies. Before impact, 2018 LA was a solid rock of ~156 cm diameter with high bulk density ~2.85 g cm−3, a relatively low albedo pV ~ 0.25, no significant opposition effect on the asteroid brightness, and an impact kinetic energy of ~0.2 kt. The orbit of 2018 LA is consistent with an origin at Vesta (or its Vestoids) and delivery into an Earth‐impacting orbit via the ν6 resonance. The impact that ejected 2018 LA in an orbit toward Earth occurred 22.8 ± 3.8 Ma ago. Zircons record a concordant U‐Pb age of 4563 ± 11 Ma and a consistent 207Pb/206Pb age of 4563 ± 6 Ma. A much younger Pb‐Pb phosphate resetting age of 4234 ± 41 Ma was found. From this impact chronology, we discuss what is the possible source crater of Motopi Pan and the age of Vesta's Veneneia impact basin.
  •  
10.
  • Lund Andersen, Jane, 1986-, et al. (author)
  • A topographic hinge-zone divides coastal and inland ice dynamic regimes in East Antarctica
  • 2023
  • In: Communications Earth & Environment. - : Springer Science and Business Media LLC. - 2662-4435. ; 4
  • Journal article (peer-reviewed)abstract
    • The impact of late Cenozoic climate on the East Antarctic Ice Sheet is uncertain. Poorly constrained patterns of relative ice thinning and thickening impair the reconstruction of past ice-sheet dynamics and global sea-level budgets. Here we quantify long-term ice cover of mountains protruding the ice-sheet surface in western Dronning Maud Land, using cosmogenic Chlorine-36, Aluminium-26, Beryllium-10, and Neon-21 from bedrock in an inverse modeling approach. We find that near-coastal sites experienced ice burial up to 75–97% of time since 1 Ma, while interior sites only experienced brief periods of ice burial, generally <20% of time since 1 Ma. Based on these results, we suggest that the escarpment in Dronning Maud Land acts as a hinge-zone, where ice-dynamic changes driven by grounding-line migration are attenuated inland from the coastal portions of the East Antarctic Ice Sheet, and where precipitation-controlled ice-thickness variations on the polar plateau taper off towards the coast.
  •  
11.
  • Menounos, B., et al. (author)
  • Cordilleran Ice Sheet mass loss preceded climate reversals near the Pleistocene Termination
  • 2017
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 358:6364, s. 781-784
  • Journal article (peer-reviewed)abstract
    • The Cordilleran Ice Sheet (CIS) once covered an area comparable to that of Greenland. Previous geologic evidence and numerical models indicate that the ice sheet covered much of westernmost Canada as late as 12.5 thousand years ago (ka). New data indicate that substantial areas throughout westernmost Canada were ice free prior to 12.5 ka and some as early as 14.0 ka, with implications for climate dynamics and the timing of meltwater discharge to the Pacific and Arctic oceans. Early Bolling-Allerod warmth halved the mass of the CIS in as little as 500 years, causing 2.5 to 3.0 meters of sea-level rise. Dozens of cirque and valley glaciers, along with the southern margin of the CIS, advanced into recently deglaciated regions during the Bolling-Allerod and Younger Dryas.
  •  
12.
  • Stroeven, Arjen, et al. (author)
  • Blockfields of Neogene origin: Challenging the paradigm
  • 2007
  • In: EOS.
  • Conference paper (peer-reviewed)abstract
    • The prevailing paradigm for cold-climate in situ blockfields is that they are remnants of Neogene deep weathering profiles. This opinion is frequently based on the presence of large quantities of interstitial silt and clay and/or the presence of clay minerals, such as gibbsite and kaolinite. Using in situ-produced cosmogenic isotopes 10Be and 26Al, XRD, and XRF to study blockfield regolith in the northern Swedish mountains, we challenge this paradigm. Incorporating surface burial by ice sheets, the isostatic response to ice sheet loading and unloading, and subaerial surface erosion, the cosmogenic data indicate that the regolith has been accumulating nuclides for up to 464.5 ka. The ubiquitous presence of chlorite makes it impossible to distinguish kaolinite according to standard XRD techniques. However, gibbsite is present in glacial till in addition to wet- location blockfield regolith. Coupled with the ubiquitous presence of poorly crystallized hydroxides, vermiculization in wet-locations, and an absence of smectite, incipient chemical weathering is indicated. Furthermore, XRF data indicate dominance of the interstitial fine matrix by a foreign component, likely of aeolian origin. All of our observations can be explained by processes operating within the Quaternary timeframe. Because we do not need to appeal to Neogene deep weathering to account for the characteristics of blockfields in the northern Swedish mountains we conclude that these blockfields may have Quaternary origins.
  •  
13.
  • Blomdin, Robin, 1986-, et al. (author)
  • Paleoglaciation on opposite flanks of the Ikh-Turgen Mountains, Central Asia : Importance of style of moraine deposition for 10-Be surface exposure dating
  • Other publication (other academic/artistic)abstract
    • The ages of marginal moraines that record extensive glacier expansions across the Altai Mountains of Central Asia are poorly documented. We present 18 10Be exposure ages from moraines in valleys on opposite flanks of the Ikh-Turgen Mountains. On the eastern side, exposure ages from a latero-frontal moraine indicate deglaciation during MIS 3 (45.3±2.7 ka) and MIS 2 (22.8±3.5 ka). Corresponding exposure ages, from the western side, indicate a more complex story with large scatter (~14-53 ka). Owing to their close proximity, the paleoglaciers should have responded similarly to climate forcing, yet they exhibited a distinctly different behavior. We propose that differences in glacier dynamics caused differences in ice-marginal depositional environments, explaining the scatter in exposure ages on the western side. This study shows the importance of style of deposition in chronological studies of glacial landforms and demonstrates that certain moraine types can be difficult to use as paleoclimate proxies.
  •  
14.
  • Fabel, D., et al. (author)
  • Cosmogenic nuclide calibration: The Baltic Ice Lake drainage
  • 2007
  • In: Quaternary International.
  • Conference paper (peer-reviewed)abstract
    • During retreat of the Fennoscandian ice sheet, a large ice-dammed lake formed along its south-eastern margin. The ice damming this Baltic Ice Lake (BIL) was breached at the northern tip of Mt Billingen, resulting in a catastrophic drainage of ~8000 km3 of meltwater and an associated lowering of the BIL by ~25 m. This event occurred at ~11,500 calibrated 14C yr, determined using bio-, litho, and chrono-stratigraphic data from numerous lake and bog cores in the immediate vicinity of Mt Billingen and the varve chronology from the Baltic Sea tied to the GRIP 18O record.The dramatic fall in the level of the BIL is recorded by raised shorelines, isolation of lake basins, and changes in the characteristics of marine sediments. We collected material for a pilot study from (1) scoured bedrock directly in the path of the meltwater outflow, (2) large (> 2m x 2m x 2m) sandstone boulders derived from the northern tip of Mt Billingen and transported by the flood, (3) bedrock from a meltwater-scoured area further down-current (called Klyftamon), and (4) cobbles from the surface of thick floodwater deposits downstream of the scoured Klyftamon bedrock surface. The results of 10Be analysis of these samplesare internally consistent between the sampling locations, and we compare these to the available 14C data in order to assess the validity of the site as a potential calibration site for cosmogenic nuclide methods
  •  
15.
  • Fu, Ping, 1982-, et al. (author)
  • Complex erosion patterns produced by the Haizishan paleo-ice cap
  • Other publication (other academic/artistic)abstract
    • Determining patterns and rates of glacial erosion is important in understanding landscape evolution, topographic relief production, geochemical cycles, climate change, and glacial thermal regimes of paleo glaciers and ice sheets. Combining in situ $^{10}$Be and $^{26}$Al apparent exposure age dating, geomorphological mapping, and field investigations, we examine glacial erosion patterns of the almost 4 000 km$^2$ Haizishan paleo-ice cap on the southeastern Tibetan Plateau. Our results show that ice caps developed several times on the low relief Haizishan Plateau and produced a zonal pattern of landscape modification. In locations where apparent exposure ages on bedrock are consistent with last deglaciation, complete resetting of the cosmogenic exposure age clock indicates that more than 2 m of glacial erosion occurred during the last major glaciation (which in this area correlates with the global Last Glacial Maximum (gLGM)).  However, older apparent exposure ages on bedrock and in saprolites profiles in areas known to have been covered by the paleo ice cap during gLGM indicate inheritance and thus limited or no erosion by the last ice cap in several areas, including the central zone of the paleo ice cap and at the head of an outlet glacier. Similarly, cosmogenic radionuclide depth profiles in saprolites show erosion of $>$2 m in an outlet valley bottom and in the mountains that make up the northern border of the paleo ice cap, while samples from saprolites in areas of otherwise scoured terrain have a large nuclide inheritance indicating limited erosion. As patterns of glacial erosion intensity are largely driven by basal thermal regime, our results are consistent with a hypothesis of complex thermal regimes for the paleo Haizishan ice cap during gLGM that was proposed previously on the basis of landform patterns. Future work, including glaciological modeling, is required to fully understand the implications and mechanisms of the complex thermal regime of this paleo ice cap.
  •  
16.
  • Fu, Ping, et al. (author)
  • Ice cap erosion patterns from bedrock Be-10 and Al-26, southeastern Tibetan Plateau
  • 2019
  • In: Earth Surface Processes and Landforms. - : Wiley. - 0197-9337 .- 1096-9837. ; 44:4, s. 918-932
  • Journal article (peer-reviewed)abstract
    • Quantifying glacial erosion contributes to our understanding of landscape evolution and topographic relief production in high altitude and high latitude areas. Combining in situ Be-10 and Al-26 analysis of bedrock, boulder, and river sand samples, geomorphological mapping, and field investigations, we examine glacial erosion patterns of former ice caps in the Shaluli Shan of the southeastern Tibetan Plateau. The general landform pattern shows a zonal pattern of landscape modification produced by ice caps of up to 4000 km(2) during pre-LGM (Last Glacial Maximum) glaciations, while the dating results and landforms on the plateau surface imply that the LGM ice cap further modified the scoured terrain into different zones. Modeled glacial erosion depth of 0-0.38 m per 100 ka bedrock sample located close to the western margin of the LGM ice cap, indicates limited erosion prior to LGM and Late Glacial moraine deposition. A strong erosion zone exists proximal to the LGM ice cap marginal zone, indicated by modeled glacial erosion depth >2.23 m per 100 ka from bedrock samples. Modeled glacial erosion depths of 0-1.77 m per 100 ka from samples collected along the edge of a central upland, confirm the presence of a zone of intermediate erosion in-between the central upland and the strong erosion zone. Significant nuclide inheritance in river sand samples from basins on the scoured plateau surface also indicate restricted glacial erosion during the last glaciation. Our study, for the first time, shows clear evidence for preservation of glacial landforms formed during previous glaciations under non-erosive ice on the Tibetan Plateau. As patterns of glacial erosion intensity are largely driven by the basal thermal regime, our results confirm earlier inferences from geomorphology for a concentric basal thermal pattern for the Haizishan ice cap during the LGM.
  •  
17.
  • Fu, Ping, 1982-, et al. (author)
  • Paleoglaciation of Shaluli Shan, southeastern Tibetan Plateau
  • 2013
  • In: Quaternary Science Reviews. - : Elsevier BV. - 0277-3791 .- 1873-457X. ; 64, s. 121-135
  • Journal article (peer-reviewed)abstract
    • Reconstructing the paleoglaciation of the Tibetan Plateau is critical to understanding linkages between regional climate changes and global climate changes, and here we focus on the glacial history of the Shaluli Shan, an area of the southeastern Tibetan Plateau that receives much of its precipitation from monsoon flow. Based on field investigation, geomorphological mapping, and Be-10 exposure dating of moraines, we identify glacial deposits from the Late Glacial, with minimum ages at 13.0 +/- 1.2 -17.1 +/- 1.6 ka, global Last Glacial Maximum (gLGM) at 21.6 +/- 2.0 ka, and pre-gLGM at 102.3 +/- 10.0-183.6 +/- 17.0 ka. These ages are consistent with and significantly extend the known range from most prior chronological work using terrestrial cosmogenic nuclides in this area, and include a set of dates for the Kuzhaori moraine that raise questions about prior chronologies based on the electron spin resonance technique. Ice caps about 4000 km(2) in size covered the Haizishan Plateau and the Xinlong Plateau during the global LGM, with large glaciers extending far down outlet valleys. The presence of ice cap glaciation, here, contrasts strongly to glaciation elsewhere in the Shaluli Shan and more central regions of the Tibetan Plateau where ice expansion remained constricted to valleys. This work provides important insights into the paleoclimate pattern and monsoon evolution of the Tibetan Plateau over past glacial cycles and indicates that the Shaluli Shan has a glacial chronology more consistent with the Northern Hemisphere paleo-ice sheets than other areas of the Tibetan Plateau.
  •  
18.
  • Goodfellow, Bradley, et al. (author)
  • Vertically mixed and unmixed: Do surface features tell the whole story? An investigation of glacial regolith profiles using in-situ produced cosmogenic radionuclides
  • 2007
  • In: EOS.
  • Conference paper (peer-reviewed)abstract
    • Whether a regolith is unmixed or mixed is critical to determining its erosion rate or age from in situ-produced cosmogenic nuclides. We use in situ-produced 10Be and 26Al in quartzite clasts extracted from depth profiles to investigate mixing of a periglacially-sorted till blanketing a plateau in the northern Swedish mountains. Our data indicate significant intra-site variations from a completely unmixed to a fully mixed regolith. We conclude that caution must be exercised in assuming that an entire regolith is either unmixed or mixed from interspersed depth profiles and that the degree of mixing may differ significantly from that indicated by observation of surface features. From the difference between the surface isotope concentration of an unmixed profile and the average isotope concentration of a fully mixed profile, we confirm that the regolith is a glacial till and that it could have been emplaced in a single event. Incorporating isotope concentrations, 26Al/10Be ratios, and an isostasy and ice sheet burial model we date the till emplacement to the Saalian glaciation (~ 200 to 130 ka).
  •  
19.
  • Gribenski, Natacha, 1986-, et al. (author)
  • Complex patterns of glacier advances during the late glacial in the Chagan Uzun Valley, Russian Altai
  • 2016
  • In: Quaternary Science Reviews. - : Elsevier BV. - 0277-3791 .- 1873-457X. ; 149, s. 288-305
  • Journal article (peer-reviewed)abstract
    • The Southern part of the Russian Altai Mountains is recognized for its evidence for catastrophic glacial lake outbursts. However, little is known about the late Pleistocene paleoglacial history, despite the interest in such reconstructions for constraining paleoclimate. In this study, we present a detailed paleoglaciological reconstruction of the Chagan Uzun Valley, in the Russian Altai Mountains, combining for the first time detailed geomorphological mapping, sedimentological logging, and in situ cosmogenic 10Be and 26Al surface exposure dating of glacially-transported boulders. The Chagan Uzun Valley exhibits the most impressive glacial landforms of this sector of the Altai, with extensive lobate moraine belts deposited in the intramontane Chuja Basin, reflecting a series of pronounced former glacial advances. Observations of “hillside-scale” folding and extensive faulting of pre-existing soft sediments within the outer moraine belts, together with the geomorphology, strongly indicate that these moraine belts were formed during surge-like events. Identification of surge-related features is essential for paleoclimate inference because these features correspond to a glacier system that is not in equilibrium with the contemporary climate, but instead largely influenced by various internal and external factors. Therefore, no strict relationship can be established between climatic variables and the pronounced distal glacial extent observed in the Chagan Uzun Valley/Chuja basin. In contrast, the inner (up-valley) glacial landforms of the Chagan Uzun valley were likely deposited during retreat of temperate valley glaciers, close to equilibrium with climate, and so most probably triggered by a general warming. Cosmogenic ages associated with the outermost, innermost, and intermediate stages all indicate deposition times clustered around 19 ka. However, the actual deposition time of the outermost moraine may slightly predate the 10Be ages due to shielding caused by subsequent lake water coverage. This chronology indicates a Marine Isotope Stage (MIS) 2 last maximum extent of the Chagan Uzun Glacier, and an onset of the deglaciation around 19 ka. This is consistent with other regional paleoclimate proxy records and with the Northern Hemisphere glaciation chronology. Finally, this study also highlights the highly dynamic environment in this area, with complex interactions between glacial events and the formation and drainage of lakes.
  •  
20.
  • Gribenski, Natacha, 1986-, et al. (author)
  • Major glaciation in Central Asia during MIS 3: reality or dating artefact?
  • Other publication (other academic/artistic)abstract
    • Previous investigations have concluded that a period of major glacial advances occurred during Marine Isotope Stage (MIS) 3 (57-29 ka) in Central Asia, out of phase with global ice volume records. We have re-examined the Kanas moraine complex in the Altai Mountains, where an MIS 3 glaciation has been previously inferred. New cosmogenic exposure and single grain luminescence ages indicate that the Kanas complex was formed during MIS 2 (29-12 ka); we regard the initial MIS 3 interpretation as a result of dating artefacts. Building on this example, we reanalyze chronological data associated with proposed major MIS 3 glacial advances in Central Asia (24 sites). We find that chronological data do not allow glaciation timing inferences for most of the sites, and that chronological evidence for major MIS 3 glacial advance only exists at one site.
  •  
21.
  •  
22.
  • Heyman, Jakob, et al. (author)
  • Palaeoglaciology of Bayan Har Shan, NE Tibetan Plateau : exposure ages reveal a missing LGM expansion
  • 2011
  • In: Quaternary Science Reviews. - : Elsevier BV. - 0277-3791 .- 1873-457X. ; 30:15-16, s. 1988-2001
  • Journal article (peer-reviewed)abstract
    • The Bayan Har Shan, a prominent upland area in the northeastern sector of the Tibetan Plateau, hosts an extensive glacial geological record. To reconstruct its palaeoglaciology we have determined (10)Be exposure ages based on 67 samples from boulders, surface pebbles, and sediment sections in conjunction with studies of the glacial geology (remote sensing and field studies) and numerical glacier modelling. Exposure ages from moraines and glacial sediments in Bayan Har Shan range from 3 ka to 129 ka, with a large disparity in exposure ages for individual sites and within the recognised four morphostratigraphical groups. The exposure age disparity cannot be explained by differences in inheritance without using unrealistic assumptions but it can be explained by differences in post-depositional shielding which produces exposure ages younger than the deglaciation age. We present a palaeoglaciological time-slice reconstruction in which the most restricted glaciation, with glaciers less than 10 km long, occurred before 40-65 ka. More extensive glaciations occurred before 60-100 ka and 95-165 ka. Maximum glaciation is poorly constrained but probably even older. The Bayan Hat Shan exposure age dataset indicates that glaciers on the northeastern Tibetan Plateau have remained surprisingly restricted for at least 40 ka, including the global last glacial maximum (LGM). This case of a missing LGM is further supported by high-resolution glacier modelling experiments.
  •  
23.
  • Heyman, Jakob, et al. (author)
  • Too young or too old: Evaluating cosmogenic exposure dating based on an analysis of compiled boulder exposure ages
  • 2011
  • In: Earth and Planetary Science Letters. - : Elsevier BV. - 0012-821X .- 1385-013X. ; 302:1-2, s. 71-80
  • Journal article (peer-reviewed)abstract
    • Cosmogenic exposure dating has greatly enhanced our ability to define glacial chronologies spanning several global cold periods, and glacial boulder exposure ages are now routinely used to constrain deglaciation ages. However, exposure dating involves assumptions about the geological history of the sample that are difficult to test and yet may have a profound effect on the inferred age. Two principal geological factors yield erroneous inferred ages: exposure prior to glaciation (yielding exposure ages that are too old) and incomplete exposure due to post-depositional shielding (yielding exposure ages that are too young). Here we show that incomplete exposure is more important than prior exposure, using datasets of glacial boulder 10Be exposure ages from theTibetan Plateau (1420 boulders), Northern Hemisphere palaeo-ice sheets (631 boulders), and present-day glaciers (208 boulders). No boulders from present-day glaciers and few boulders from the palaeo-ice sheets have exposure ages significantly older than independently known deglaciation ages, indicating that prior exposure is of limited significance. Further, while a simple post-depositional landform degradation model can predict the exposure age distribution of boulders from the Tibetan Plateau, a prior exposure model fails, indicating that incomplete exposure is important. The large global dataset demonstrates that, in the absence of other evidence, glacial boulder exposure ages should be viewed as minimum limiting deglaciation ages.
  •  
24.
  • Jenniskens, Peter, et al. (author)
  • Fall, recovery, and characterization of the Novato L6 chondrite breccia
  • 2014
  • In: Meteoritics and Planetary Science. - : Wiley. - 1086-9379. ; 49:8, s. 1388-1425
  • Journal article (peer-reviewed)abstract
    • The Novato L6 chondrite fragmental breccia fell in California on 17 October 2012, and was recovered after the Cameras for Allsky Meteor Surveillance (CAMS) project determined the meteor's trajectory between 95 and 46 km altitude. The final fragmentation from 42 to 22 km altitude was exceptionally well documented by digital photographs. The first sample was recovered before rain hit the area. First results from a consortium study of the meteorite's characterization, cosmogenic and radiogenic nuclides, origin, and conditions of the fall are presented. Some meteorites did not retain fusion crust and show evidence of spallation. Before entry, the meteoroid was 35 +/- 5 cm in diameter (mass 80 +/- 35 kg) with a cosmic-ray exposure age of 9 +/- 1 Ma, if it had a one-stage exposure history. A two-stage exposure history is more likely, with lower shielding in the last few Ma. Thermoluminescence data suggest a collision event within the last similar to 0.1 Ma. Novato probably belonged to the class of shocked L chondrites that have a common shock age of 470 Ma, based on the U, Th-He age of 420 +/- 220 Ma. The measured orbits of Novato, Jesenice, and Innisfree are consistent with a proposed origin of these shocked L chondrites in the Gefion asteroid family, perhaps directly via the 5: 2 mean-motion resonance with Jupiter. Novato experienced a stronger compaction than did other L6 chondrites of shock-stage S4. Despite this, a freshly broken surface shows a wide range of organic compounds.
  •  
25.
  • Kita, Noriko T., et al. (author)
  • Fall, classification, and exposure history of the Mifflin L5 chondrite
  • 2013
  • In: Meteoritics and Planetary Science. - : Wiley. - 1086-9379. ; 48:4, s. 641-655
  • Journal article (peer-reviewed)abstract
    • The Mifflin meteorite fell on the night of April 14, 2010, in southwestern Wisconsin. A bright fireball was observed throughout a wide area of the midwestern United States. The petrography, mineral compositions, and oxygen isotope ratios indicate that the meteorite is a L5 chondrite fragmental breccia with light/dark structure. The meteorite shows a low shock stage of S2, although some shock-melted veins are present. The U,Th-He age is 0.7Ga, and the K-Ar age is 1.8Ga, indicating that Mifflin might have been heated at the time of the 470Ma L-chondrite parent body breakup and that U, Th-He, and K-Ar ages were partially reset. The cosmogenic radionuclide data indicate that Mifflin was exposed to cosmic rays while its radius was 3065cm. Assuming this exposure geometry, a cosmic-ray exposure age of 25 +/- 3Ma is calculated from cosmogenic noble gas concentrations. The low 22Ne/21Ne ratio may, however, indicate a two-stage exposure with a longer first-stage exposure at high shielding. Mifflin is unusual in having a low radiogenic gas content combined with a low shock stage and no evidence of late stage annealing; this inconsistency remains unexplained.
  •  
26.
  • Lifton, Nathaniel, et al. (author)
  • Constraints on the late Quaternary glacial history of the Inylchek and Sary-Dzaz valleys from in situ cosmogenic Be-10 and Al-26, eastern Kyrgyz Tian Shan
  • 2014
  • In: Quaternary Science Reviews. - : Elsevier BV. - 0277-3791 .- 1873-457X. ; 101, s. 77-90
  • Journal article (peer-reviewed)abstract
    • Paleoclimatic constraints from regions at the confluence of major climate systems are particularly important in understanding past climate change. Using geomorphic mapping based on remote sensing and field investigations, combined with in situ cosmogenic Be-10 and Al-26 dating of boulders associated with glacial landforms, we investigate the chronology of past glaciation in the Inylchek and Sary-Dzaz valleys in the eastern Kyrgyz Tian Shan, a tectonically active area with some of the highest peaks in the world outside of the Himalayas. Cosmogenic Be-10 and (26) Al exposure ages of boulders on moraines record up to five glacial advances including: Lateglacial age lateral moraine remnants and meltwater channels in the upper Inylchek Valley; Last Glacial Maximum (LGM, Marine Oxygen Isotope Stage [MIS] 2) moraines in the Sary-Dzaz Valley and in a terminal moraine complex at the west end of the Inylchek Valley, overriding older moraines; an MIS 4 or 5 moraine remnant above the Inylchek terminal moraine complex; and an older high moraine remnant down-valley from the confluence of the Inylchek and Sary-Dzaz valleys. The evidence for glacial extent in this study is consistent with a limited ice expansion hypothesis for Tian Shan glaciation. Published results from the western and central Kyrgyz Tian Shan do not show evidence for significant LGM glacier expansion, which in combination with the results presented here, indicate a spatial variation in glacier records along the Tian Shan. This may reflect either paleoclimatic gradients or the impact of local physiographic conditions on responses to regional climate change, or both.
  •  
27.
  • Meier, Matthias, et al. (author)
  • A noble gas and cosmogenic radionuclide analysis of two ordinary chondrites from Almahata Sitta
  • 2012
  • In: Meteoritics and Planetary Science. - : Wiley. - 1086-9379. ; 47:6, s. 1075-1086
  • Journal article (peer-reviewed)abstract
    • We present the results of a noble gas (He, Ne, Ar) and cosmogenic radionuclide (10Be, 26Al, 36Cl) analysis of two chondritic fragments (#A100, L4 and #25, H5) found in the Almahata Sitta strewn field in Sudan. We confirm their earlier attribution to the same fall as the ureilites dominating the strewn field, based on the following findings: (1) both chondrite samples indicate a preatmospheric radius of approximately 300 g cm-2, consistent with the preatmospheric size of asteroid 2008 TC3 that produced the Almahata Sitta strewn field; (2) both have, within error, a 21Ne/26Al-based cosmic ray exposure age of approximately 20 Ma, identical to the reported ages of Almahata Sitta ureilites; (3) both exhibit hints of ureilitic Ar in the trapped component. We discuss a possible earlier irradiation phase for the two fragments of approximately 1020 Ma, visible only in cosmogenic 38Ar. We also discuss the approximately 3.8 Ga (4He) and approximately 4.6 Ga (40Ar) gas retention ages, measured in both chondritic fragments. These imply that the two chondrite fragments were incorporated into the ureilite host early in solar system evolution, and that the parent asteroid from which 2008 TC3 is derived has not experienced a large break-up event in the last 3.8 Ga.
  •  
28.
  • Stroeven, Arjen P., et al. (author)
  • A new Scandinavian reference Be-10 production rate
  • 2015
  • In: Quaternary Geochronology. - : Elsevier BV. - 1871-1014 .- 1878-0350. ; 29, s. 104-115
  • Journal article (peer-reviewed)abstract
    • An important constraint on the reliability of cosmogenic nuclide exposure dating is the rigorous determination of production rates. We present a new dataset for Be-10 production rate calibration from Mount Billingen, southern Sweden, the site of the final drainage of the Baltic Ice Lake, an event dated to 11,620 +/- 100 cal yr BP. Five samples of flood-scoured bedrock surfaces (58.5 degrees N, 13.7 degrees E, 105-120 m a.s.I.) unambiguously connected to the drainage event yield a reference Be-10 production rate of 4.19 +/- 0.20 atoms g(-1) yr(-1) for the CRONUS-Earth online calculator Lm scaling and 4.02 +/- 0.18 atoms g(-1) yr(-1) for the nuclide specific LSDn scaling. We also recalibrate the reference Be-10 production rates for four sites in Norway and combine three of these with the Billingen results to derive a tightly clustered Scandinavian reference Be-10 production rate of 4.13 +/- 0.11 atoms g(-1) yr(-1) for the CRONUS Lm scaling and 3.95 +/- 0.10 atoms g(-1) yr(-1) for the LSDn scaling scheme. (C) 2015 Elsevier B.V. All rights reserved.
  •  
29.
  • Stroeven, Arjen P., et al. (author)
  • Deglaciation of Fennoscandia
  • 2016
  • In: Quaternary Science Reviews. - : Elsevier BV. - 0277-3791 .- 1873-457X. ; 147:SI, s. 91-121
  • Journal article (peer-reviewed)abstract
    • To provide a new reconstruction of the deglaciation of the Fennoscandian Ice Sheet, in the form of calendar-year time-slices, which are particularly useful for ice sheet modelling, we have compiled and synthesized published geomorphological data for eskers, ice-marginal formations, lineations, marginal meltwater channels, striae, ice-dammed lakes, and geochronological data from radiocarbon, varve, optically-stimulated luminescence, and cosmogenic nuclide dating. This is summarized as a deglaciation map of the Fennoscandian Ice Sheet with isochrons marking every 1000 years between 22 and 13 cal kyr BP and every hundred years between 11.6 and final ice decay after 9.7 cal kyr BP. Deglaciation patterns vary across the Fennoscandian Ice Sheet domain, reflecting differences in climatic and geomorphic settings as well as ice sheet basal thermal conditions and terrestrial versus marine margins. For example, the ice sheet margin in the high-precipitation coastal setting of the western sector responded sensitively to climatic variations leaving a detailed record of prominent moraines and other ice-marginal deposits in many fjords and coastal valleys. Retreat rates across the southern sector differed between slow retreat of the terrestrial margin in western and southern Sweden and rapid retreat of the calving ice margin in the Baltic Basin. Our reconstruction is consistent with much of the published research. However, the synthesis of a large amount of existing and new data support refined reconstructions in some areas. For example, the LGM extent of the ice sheet in northwestern Russia was located far east and it occurred at a later time than the rest of the ice sheet, at around 17-15 cal kyr BP. We also propose a slightly different chronology of moraine formation over southern Sweden based on improved correlations of moraine segments using new LiDAR data and tying the timing of moraine formation to Greenland ice core cold stages. Retreat rates vary by as much as an order of magnitude in different sectors of the ice sheet, with the lowest rates on the high-elevation and maritime Norwegian margin. Retreat rates compared to the climatic information provided by the Greenland ice core record show a general correspondence between retreat rate and climatic forcing, although a close match between retreat rate and climate is unlikely because of other controls, such as topography and marine versus terrestrial margins. Overall, the time slice reconstructions of Fennoscandian Ice Sheet deglaciation from 22 to 9.7 cal kyr BP provide an important dataset for understanding the contexts that underpin spatial and temporal patterns in retreat of the Fennoscandian Ice Sheet, and are an important resource for testing and refining ice sheet models.
  •  
30.
  • Stroeven, Arjen P., et al. (author)
  • Importance of sampling across an assemblage of glacial landforms for interpreting cosmogenic ages of deglaciation
  • 2011
  • In: Quaternary Research. - : Cambridge University Press (CUP). - 0033-5894 .- 1096-0287. ; 76:1, s. 148-156
  • Journal article (peer-reviewed)abstract
    • Deglaciation chronologies for some sectors of former ice sheets are relatively poorly constrained because of the paucity of features or materials traditionally used to constrain the timing of deglaciation. In areas without good deglaciation varve chronologies and/or without widespread occurrence of material that indicates the start of earliest organic radiocarbon accumulations suitable for radiocarbon dating, typically only general patterns and chronologies of deglaciation have been deduced. However, mid-latitude ice sheets that had warm-based conditions close to their margins often produced distinctive deglaciation landform assemblages, including eskers, deltas, meltwater channels and aligned lineation systems. Because these features were formed or significantly altered during the last glaciation, boulder or bedrock samples from them have the potential to yield reliable deglaciation ages using terrestrial cosmogenic nuclides (TCN) for exposure age dating. Here we present the results of a methodological study designed to examine the consistency of TCN-based deglaciation ages from a range of deglaciation landforms at a site in northern Norway. The strong coherence between exposure ages across several landforms indicates great potential for using TCN techniques on features such as eskers, deltas and meltwater channels to enhance the temporal resolution of ice-sheet deglaciation chronologies over a range of spatial scales.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-30 of 30

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view