SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Campillay A.) "

Search: WFRF:(Campillay A.)

  • Result 1-16 of 16
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Hsiao, E. Y., et al. (author)
  • Strong near-infrared carbon in the Type Ia supernova iPTF13ebh
  • 2015
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 578
  • Journal article (peer-reviewed)abstract
    • We present near-infrared (NIR) time-series spectroscopy, as well as complementary ultraviolet (UV), optical, and NIR data, of the Type Ia supernova (SN Ia) iPTF13ebh, which was discovered within two days from the estimated time of explosion. The first NIR spectrum was taken merely 2 : 3 days after explosion and may be the earliest NIR spectrum yet obtained of a SN Ia. The most striking features in the spectrum are several NIR C I lines, and the C I lambda 1.0693 mu m line is the strongest ever observed in a SN Ia. Interestingly, no strong optical C II counterparts were found, even though the optical spectroscopic time series began early and is densely cadenced. Except at the very early epochs, within a few days from the time of explosion, we show that the strong NIR C I compared to the weaker optical C II appears to be general in SNe Ia. iPTF13ebh is a fast decliner with Delta m(15)(B) = 1.79 +/- 0.01, and its absolute magnitude obeys the linear part of the width-luminosity relation. It is therefore categorized as a transitional event, on the fast-declining end of normal SNe Ia as opposed to subluminous/91bg-like objects. iPTF13ebh shows NIR spectroscopic properties that are distinct from both the normal and subluminous/91bg-like classes, bridging the observed characteristics of the two classes. These NIR observations suggest that composition and density of the inner core are similar to that of 91bg-like events, and that it has a deep-reaching carbon burning layer that is not observed in more slowly declining SNe Ia. There is also a substantial difference between the explosion times inferred from the early-time light curve and the velocity evolution of the Si II lambda 0.6355 mu m line, implying a long dark phase of similar to 4 days.
  •  
2.
  • Fraser, M., et al. (author)
  • SN 2009md : another faint supernova from a low-mass progenitor
  • 2011
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 417, s. 1417-1433
  • Journal article (peer-reviewed)abstract
    • We present adaptive optics imaging of the core-collapse supernova (SN) 2009md, which we use together with archival Hubble Space Telescope data to identify a coincident progenitor candidate. We find the progenitor to have an absolute magnitude of V=-4.63+0.3-0.4 mag and a colour of V-I= 2.29+0.25-0.39 mag, corresponding to a progenitor luminosity of log L/L&sun;˜ 4.54 ± 0.19 dex. Using the stellar evolution code STARS, we find this to be consistent with a red supergiant progenitor with M= 8.5+6.5-1.5 M&sun;. The photometric and spectroscopic evolution of SN 2009md is similar to that of the class of sub-luminous Type IIP SNe; in this paper we compare the evolution of SN 2009md primarily to that of the sub-luminous SN 2005cs. We estimate the mass of 56Ni ejected in the explosion to be (5.4 ± 1.3) × 10-3 M&sun; from the luminosity on the radioactive tail, which is in agreement with the low 56Ni masses estimated for other sub-luminous Type IIP SNe. From the light curve and spectra, we show the SN explosion had a lower energy and ejecta mass than the normal Type IIP SN 1999em. We discuss problems with stellar evolutionary models, and the discrepancy between low observed progenitor luminosities (log L/L&sun;˜4.3-5 dex) and model luminosities after the second dredge-up for stars in this mass range, and consider an enhanced carbon burning rate as a possible solution. In conclusion, SN 2009md is a faint SN arising from the collapse of a progenitor close to the lower mass limit for core collapse. This is now the third discovery of a low-mass progenitor star producing a low-energy explosion and low 56Ni ejected mass, which indicates that such events arise from the lowest end of the mass range that produces a core-collapse SN (7-8 M&sun;).
  •  
3.
  • Holmbo, S., et al. (author)
  • Discovery and progenitor constraints on the Type Ia supernova 2013gy
  • 2019
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 627
  • Journal article (peer-reviewed)abstract
    • We present an early-phase g-band light curve and visual-wavelength spectra of the normal Type Ia supernova (SN) 2013gy. The light curve is constructed by determining the appropriate S-corrections to transform KAIT natural-system B- and V-band photometry and Carnegie Supernova Project natural-system g-band photometry to the Pan-STARRS1 g-band natural photometric system. A Markov chain Monte Carlo calculation provides a best-fit single power-law function to the first ten epochs of photometry described by an exponent of 2.16(-0.06)(+0.06) and a time of first light of MJD 56629.4(-0.1)(+0.1), which is 1.93(-0.13)(+0.12) days (i.e., <48 h) before the discovery date (2013 December 4.84 UT) and -19.10(-0.13)(+0.12) days before the time of B- band maximum (MJD 56648.5 +/- 0.1). The estimate of the time of first light is consistent with the explosion time inferred from the evolution of the Si II lambda 6355 Doppler velocity. Furthermore, discovery photometry and previous nondetection limits enable us to constrain the companion radius down to R-c <= 4 R-circle dot. In addition to our early-time constraints, we used a deep +235 day nebular-phase spectrum from Magellan/IMACS to place a stripped H-mass limit of <0.018 M-circle dot. Combined, these limits effectively rule out H-rich nondegenerate companions.
  •  
4.
  • Gall, C., et al. (author)
  • Two transitional type Ia supernovae located in the Fornax cluster member NGC 1404 : SN 2007on and SN 2011iv
  • 2018
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 611
  • Journal article (peer-reviewed)abstract
    • We present an analysis of ultraviolet (UV) to near-infrared observations of the fast-declining Type Ia supernovae (SNe Ia) 2007on and 2011iv, hosted by the Fornax cluster member NGC 1404. The B-band light curves of SN 2007on and SN 2011iv are characterised by Delta m(15)(B) decline-rate values of 1.96 mag and 1.77 mag, respectively. Although they have similar decline rates, their peak B-and H-band magnitudes di ff er by similar to 0.60 mag and similar to 0.35 mag, respectively. After correcting for the luminosity vs. decline rate and the luminosity vs. colour relations, the peak B-band and H-band light curves provide distances that di ff er by similar to 14% and similar to 9%, respectively. These findings serve as a cautionary tale for the use of transitional SNe Ia located in early-type hosts in the quest to measure cosmological parameters. Interestingly, even though SN 2011iv is brighter and bluer at early times, by three weeks past maximum and extending over several months, its B - V colour is 0.12 mag redder than that of SN 2007on. To reconcile this unusual behaviour, we turn to guidance from a suite of spherical one-dimensional Chandrasekhar-mass delayed-detonation explosion models. In this context, Ni-56 production depends on both the so-called transition density and the central density of the progenitor white dwarf. To first order, the transition density drives the luminosity-width relation, while the central density is an important second-order parameter. Within this context, the di ff erences in the B - V colour evolution along the Lira regime suggest that the progenitor of SN 2011iv had a higher central density than SN 2007on.
  •  
5.
  • Scalzo, R. A., et al. (author)
  • Early ultraviolet emission in the Type Ia supernova LSQ12gdj : No evidence for ongoing shock interaction
  • 2014
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 445:1, s. 30-48
  • Journal article (peer-reviewed)abstract
    • We present photospheric-phase observations of LSQ12gdj, a slowly declining, UV-bright Type Ia supernova. Classified well before maximum light, LSQ12gdj has extinction-corrected absolute magnitude M-B = -19.8, and pre-maximum spectroscopic evolution similar to SN 1991T and the super-Chandrasekhar-mass SN 2007if. We use ultraviolet photometry from Swift, ground-based optical photometry, and corrections from a near-infrared photometric template to construct the bolometric (1600-23 800 angstrom) light curve out to 45 d past B-band maximum light. We estimate that LSQ12gdj produced 0.96 +/- 0.07 M-circle dot of Ni-56, with an ejected mass near or slightly above the Chandrasekhar mass. As much as 27 per cent of the flux at the earliest observed phases, and 17 per cent at maximum light, is emitted bluewards of 3300 angstrom. The absence of excess luminosity at late times, the cutoff of the spectral energy distribution bluewards of 3000 angstrom and the absence of narrow line emission and strong Na I D absorption all argue against a significant contribution from ongoing shock interaction. However, similar to 10 per cent of LSQ12gdj's luminosity near maximum light could be produced by the release of trapped radiation, including kinetic energy thermalized during a brief interaction with a compact, hydrogen-poor envelope (radius < 10(13) cm) shortly after explosion; such an envelope arises generically in double-degenerate merger scenarios.
  •  
6.
  • Stritzinger, M. D., et al. (author)
  • Optical and near-IR observations of the faint and fast 2008ha-like supernova 2010ae
  • 2014
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 561, s. A146-
  • Journal article (peer-reviewed)abstract
    • A comprehensive set of optical and near-infrared (NIR) photometry and spectroscopy is presented for the faint and fast 2008ha-like supernova (SN) 2010ae. Contingent on the adopted value of host extinction, SN 2010ae reached a peak brightness of -13.8 > M-V > -15.3 mag, while modeling of the UVOIR light curve suggests it produced 0.003-0.007 M-circle dot of Ni-56, ejected 0.30-0.60 M-circle dot of material, and had an explosion energy of 0.04-0.30 x 10(51) erg. The values of these explosion parameters are similar to the peculiar SN 2008ha -for which we also present previously unpublished early phase optical and NIR light curves - and places these two transients at the faint end of the 2002cx-like SN population. Detailed inspection of the post-maximum NIR spectroscopic sequence indicates the presence of a multitude of spectral features, which are identified through SYNAPPS modeling to be mainly attributed to Co II. Comparison with a collection of published and unpublished NIR spectra of other 2002cx-like SNe, reveals that a Co II footprint is ubiquitous to this subclass of transients, providing a link to Type Ia SNe. A visual-wavelength spectrum of SN 2010ae obtained at +252 days past maximum shows a striking resemblance to a similar epoch spectrum of SN 2002cx. However, subtle differences in the strength and ratio of calcium emission features, as well as diversity among similar epoch spectra of other 2002cx-like SNe indicates a range of physical conditions of the ejecta, highlighting the heterogeneous nature of this peculiar class of transients.
  •  
7.
  • Takats, K., et al. (author)
  • SN 2009N : linking normal and subluminous Type II-P SNe
  • 2014
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 438:1, s. 368-387
  • Journal article (peer-reviewed)abstract
    • We present ultraviolet, optical, near-infrared photometry and spectroscopy of SN 2009N in NGC 4487. This object is a Type II-P supernova with spectra resembling those of subluminous II-P supernovae, while its bolometric luminosity is similar to that of the intermediate-luminosity SN 2008in. We created SYNOW models of the plateau phase spectra for line identification and to measure the expansion velocity. In the near-infrared spectra we find signs indicating possible weak interaction between the supernova ejecta and the pre-existing circumstellar material. These signs are also present in the previously unpublished near-infrared spectra of SN 2008in. The distance to SN 2009N is determined via the expanding photosphere method and the standard candle method as D = 21.6 +/- 1.1 Mpc. The produced nickel-mass is estimated to be similar to 0.020 +/- 0.004 M-circle dot. We infer the physical properties of the progenitor at the explosion through hydrodynamical modelling of the observables. We find the values ofthe total energy as similar to 0.48 x 10(51) erg, the ejected mass as similar to 11.5 M-circle dot, and the initial radius as similar to 287 R-circle dot.
  •  
8.
  • Stritzinger, M. D., et al. (author)
  • The Carnegie Supernova Project I : Photometry data release of low-redshift stripped-envelope supernovae
  • 2018
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 609
  • Journal article (peer-reviewed)abstract
    • The first phase of the Carnegie Supernova Project (CSP-I) was a dedicated supernova follow-up program based at the Las Campanas Observatory that collected science data of young, low-redshift supernovae between 2004 and 2009. Presented in this paper is the CSP-I photometric data release of low-redshift stripped-envelope core-collapse supernovae. The data consist of optical (uBgVri) photometry of 34 objects, with a subset of 26 having near-infrared (YJH) photometry. Twenty objects have optical pre-maximum coverage with a subset of 12 beginning at least five days prior to the epoch of B-band maximum brightness. In the near-infrared, 17 objects have pre-maximum observations with a subset of 14 beginning at least five days prior to the epoch of J-band maximum brightness. Analysis of this photometric data release is presented in companion papers focusing on techniques to estimate host-galaxy extinction and the light-curve and progenitor star properties of the sample. The analysis of an accompanying visual-wavelength spectroscopy sample of similar to 150 spectra will be the subject of a future paper.
  •  
9.
  • Stritzinger, M. D., et al. (author)
  • The Carnegie Supernova Project II : Observations of the luminous red nova AT 2014ej
  • 2020
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 639
  • Journal article (peer-reviewed)abstract
    • We present optical and near-infrared broadband photometry and optical spectra of AT 2014ej from the Carnegie Supernova Project-II. These observations are complemented with data from the CHilean Automatic Supernova sEarch, the Public ESO Spectroscopic Survey of Transient Objects, and from the Backyard Observatory Supernova Search. Observational signatures of AT 2014ej reveal that it is similar to other members of the gap-transient subclass known as luminous red novae (LRNe), including the ubiquitous double-hump light curve and spectral properties similar to that of LRN SN 2017jfs. A medium-dispersion visual-wavelength spectrum of AT 2014ej taken with the Magellan Clay telescope exhibits a P Cygni H alpha feature characterized by a blue velocity at zero intensity of approximate to 110 km s(-1) and a P Cygni minimum velocity of approximate to 70 km s(-1). We attribute this to emission from a circumstellar wind. Inspection of pre-outbust Hubble Space Telescope images yields no conclusive progenitor detection. In comparison with a sample of LRNe from the literature, AT 2014ej lies at the brighter end of the luminosity distribution. Comparison of the ultra-violet, optical, infrared light curves of well-observed LRNe to common-envelope evolution models from the literature indicates that the models underpredict the luminosity of the comparison sample at all phases and also produce inconsistent timescales of the secondary peak. Future efforts to model LRNe should expand upon the current parameter space we explore here and therefore may consider more massive systems and a wider range of dynamical timescales.
  •  
10.
  • Phillips, M. M., et al. (author)
  • Carnegie Supernova Project-II : Extending the Near-infrared Hubble Diagram for Type Ia Supernovae to z ∼ 0.1
  • 2019
  • In: Publications of the Astronomical Society of the Pacific. - : IOP Publishing. - 0004-6280 .- 1538-3873. ; 131:995
  • Journal article (peer-reviewed)abstract
    • The Carnegie Supernova Project-II (CSP-II) was an NSF-funded, four-year program to obtain optical and near-infrared observations of a Cosmology sample of similar to 100 Type. Ia supernovae located in the smooth Hubble flow (0.03 less than or similar to z less than or similar to 0.10). Light curves were also obtained of a Physics sample composed of 90 nearby Type. Ia supernovae at z <= 0.04 selected for near-infrared spectroscopic timeseries observations. The primary emphasis of the CSP-II is to use the combination of optical and near-infrared photometry to achieve a distance precision of better than 5%. In this paper, details of the supernova sample, the observational strategy, and the characteristics of the photometric data are provided. In a companion paper, the near-infrared spectroscopy component of the project is presented.
  •  
11.
  • Stritzinger, M. D., et al. (author)
  • Comprehensive observations of the bright and energetic Type lax SN 2012Z : Interpretation as a Chandrasekhar mass white dwarf explosion
  • 2015
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 573
  • Journal article (peer-reviewed)abstract
    • We present ultraviolet through near-infrared (NIR) broadband photometry, and visual-wavelength and NIR spectroscopy of the Type lax supernova (SN) 2012Z. The data set consists of both early- and late-time observations, including the first late phase NIR spectrum obtained for a spectroscopically classified SN lax. Simple model calculations of its bolometric light curve suggest SN 2012Z produced similar to 0.3 M-circle dot of Ni-56, ejected about a Chandrasekhar mass of material, and had an explosion energy of similar to 10(51) erg, making it one of the brightest (M-B = -18.3 mag) and most energetic SN Iax yet observed. The late phase (+269d) NIR spectrum of SN 2012Z is found to broadly resemble similar epoch spectra of normal SNe Ia; however, like other SNe Iax, corresponding visual-wavelength spectra differ substantially from all supernova types. Constraints from the distribution of intermediate mass elements, e.g., silicon and magnesium, indicate that the outer ejecta did not experience significant mixing during or after burning, and the late phase NIR line profiles suggests most of the Ni-56 is produced during high density burning. The various observational properties of SN 2012Z are found to be consistent with the theoretical expectations of a Chandrasekhar mass white dwarf progenitor that experiences a pulsational delayed detonation, which produced several tenths of a solar mass of Ni-56 during the deflagration burning phase and little (or no) Ni-56 during the detonation phase. Within this scenario only a moderate amount of Rayleigh-Taylor mixing occurs both during the deflagration and fallback phase of the pulsation, and the layered structure of the intermediate mass elements is a product of the subsequent denotation phase. The fact that the SNe lax population does not follow a tight brightness-decline relation similar to SNe Ia can then be understood in the framework of variable amounts of mixing during pulsational rebound and variable amounts of Ni-56 production during the early subsonic phase of expansion.
  •  
12.
  • Stritzinger, M. D., et al. (author)
  • The Carnegie Supernova Project II Early observations and progenitor constraints of the Type Ib supernova LSQ13abf
  • 2020
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 634
  • Journal article (peer-reviewed)abstract
    • Supernova LSQ13abf was discovered soon after explosion by the La Silla-QUEST Survey and then followed by the Carnegie Supernova Project II at its optical and near-IR wavelengths. Our analysis indicates that LSQ13abf was discovered within two days of explosion and its first approximate to 10 days of evolution reveal a B-band light curve with an abrupt drop in luminosity. Contemporaneously, the V-band light curve exhibits a rise towards a first peak and the r- and i-band light curves show no early peak.The early light-curve evolution of LSQ13abf is reminiscent of the post-explosion cooling phase observed in the Type Ib SN 2008D, and the similarity between the two objects extends over weeks. Spectroscopically, LSQ13abf also resembles SN 2008D, with P Cygni Hei features that strengthen over several weeks. Spectral energy distributions are constructed from the broad-bandphotometry, a UVOIR light curve is constructed by fitting black-body (BB) functions, and the underlying BB-temperature and BB-radius profiles are estimated. Explosion parameters are estimated by simultaneously fitting an Arnett model to the UVOIR light curve and the velocity evolution derived from spectral features, and an in addition to a post-shock breakout cooling model to the first two epochs of the bolometric evolution. This combined model suggests an explosion energy of 1.27 +/- 0.23 x 10(51) ergs, in addition to a relatively high ejecta mass of 5.94 +/- 1.10 M-circle dot, a Ni-56 mass of 0.16 +/- 0.02 M-circle dot, and a progenitor-star radius of 28.0 +/- 7.5 R-circle dot. The ejecta mass suggests the origins of LSQ13abf lie with a >25 M-circle dot zero-age-main-sequence mass progenitor and its estimated radius is three times larger compared to the result obtained from the same analysis applied to observations of SN 2008D, and nine times larger compared to SN 1999ex. Alternatively, a comparison of hydrodynamical simulations of greater than or similar to 20-25 M-circle dot zero-age-main-sequence progenitors that evolve to pre-supernova envelope masses of less than or similar to 10 M-circle dot and extended (similar to 100 R-circle dot) envelopes also broadly match the observations of LSQ13abf.
  •  
13.
  • Stritzinger, Maximilian, et al. (author)
  • Multi-wavelength Observations of the Enduring Type IIn Supernovae 2005ip and 2006jd
  • 2012
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 756:2
  • Journal article (peer-reviewed)abstract
    • We present an observational study of the Type IIn supernovae (SNe IIn) 2005ip and 2006jd. Broadband UV, optical, and near-IR photometry, and visual-wavelength spectroscopy of SN 2005ip complement and extend upon published observations to 6.5 years past discovery. Our observations of SN 2006jd extend from UV to mid-infrared wavelengths, and like SN 2005ip, are compared to reported X-ray measurements to understand the nature of the progenitor. Both objects display a number of similarities with the 1988Z-like subclass of SN IIn including (1) remarkably similar early- and late-phase optical spectra, (2) a variety of high-ionization coronal lines, (3) long-duration optical and near-IR emission, and (4) evidence of cold and warm dust components. However, diversity is apparent, including an unprecedented late-time r-band excess in SN 2006jd. The observed differences are attributed to differences between the mass-loss history of the progenitor stars. We conclude that the progenitor of SN 2006jd likely experienced a significant mass-loss event during its pre-SN evolution akin to the great 19th century eruption of η Carinae. Contrarily, as advocated by Smith et al., the circumstellar environment of SN 2005ip is found to be more consistent with a clumpy wind progenitor.
  •  
14.
  • Taddia, Francesco, et al. (author)
  • Carnegie Supernova Project : Observations of Type IIn supernovae
  • 2013
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 555, s. A10-
  • Journal article (peer-reviewed)abstract
    • Aims. The observational diversity displayed by various Type IIn supernovae (SNe IIn) is explored and quantified. In doing so, a more coherent picture ascribing the variety of observed SNe IIn types to particular progenitor scenarios is sought. Methods. Carnegie Supernova Project (CSP) optical and near-infrared light curves and visual-wavelength spectroscopy of the Type IIn SNe 2005kj, 2006aa, 2006bo, 2006qq, and 2008fq are presented. Combined with previously published observations of the Type IIn SNe 2005ip and 2006jd, the full CSP sample is used to derive physical parameters that describe the nature of the interaction between the expanding SN ejecta and the circumstellar material (CSM). Results. For each SN of our sample, we find counterparts, identifying objects similar to SNe 1994W (SN 2006bo), 1998S (SN 2008fq), and 1988Z (SN 2006qq). We present the unprecedented initial u-band plateau of SN 2006aa, and its peculiar late-time luminosity and temperature evolution. For each SN, mass-loss rates of 10(-4)-10(-2) M-circle dot yr(-1) are derived, assuming the CSM was formed by steady winds. Typically wind velocities of a few hundred km s(-1) are also computed. Conclusions. The CSP SN IIn sample seems to be divided into subcategories rather than to have exhibited a continuum of observational properties. The wind and mass-loss parameters would favor a luminous blue variable progenitor scenario. However, the assumptions made to derive those parameters strongly influence the results, and therefore, other progenitor channels behind SNe IIn cannot be excluded at this time.
  •  
15.
  • Taddia, Francesco, et al. (author)
  • Supernova 2008J : early time observations of a heavily reddened SN 2002ic-like transient
  • 2012
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 545, s. L7-
  • Journal article (peer-reviewed)abstract
    • Aims: We provide additional observational evidence that some Type Ia supernovae (SNe Ia) show signatures of circumstellar interaction (CSI) with hydrogen-rich material. Methods: Early phase optical and near-infrared (NIR) light curves and spectroscopy of SN 2008J obtained by the Carnegie Supernova Project are studied and compared to those of SNe 2002ic and 2005gj. Our NIR spectrum is the first obtained for a 2002ic-like object extending up to 2.2 μm. A published high-resolution spectrum is used to provide insight on the circumstellar material (CSM). Results: SN 2008J is found to be affected by AV ~ 1.9 mag of extinction and to closely resemble SN 2002ic. Spectral and color comparison to SNe 2002ic and 2005gj suggests RV < 3.1. Spectral decomposition reveals the underlying SN emission matches a 1991T-like event and, since SN 2008J is as luminous as SN 2005gj (Vmax = -20.3 mag), we conclude that their CSI emissions are similarly robust. The high-resolution spectrum reveals narrow emission lines produced from un-shocked gas characterized by a wind velocity of ~50 km s-1. We conclude that SN 2008J best matches an explosion of a SN Ia that interacts with its CSM. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile (ESO Programme 080.A-0516).Figure 4 and Tables 1-6 are available in electronic form at http://www.aanda.org
  •  
16.
  • Taddia, Francesco, et al. (author)
  • The Carnegie Supernova Project II : The shock wave revealed through the fog : The strongly interacting Type IIn SN 2013L
  • 2020
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 638
  • Journal article (peer-reviewed)abstract
    • We present ultra-violet (UV) to mid-infrared (MIR) observations of the long-lasting Type IIn supernova (SN) 2013L obtained by the Carnegie Supernova Project II beginning two days after discovery and extending until +887 days (d). The SN reached a peak r-band absolute magnitude of approximate to -19 mag and an even brighter UV peak, and its light curve evolution resembles that of SN 1988Z. The spectra of SN 2013L are dominated by hydrogen emission features, characterized by three components attributed to different emission regions. A unique feature of this Type IIn SN is that, apart from the first epochs, the blue shifted line profile is dominated by the macroscopic velocity of the expanding shock wave of the SN. We are therefore able to trace the evolution of the shock velocity in the dense and partially opaque circumstellar medium (CSM), from similar to 4800 km s(-1) at +48 d, decreasing as t(-0.23) to similar to 2700 km s(-1) after a year. We performed spectral modeling of both the broad- and intermediate-velocity components of the H alpha line profile. The high-velocity component is consistent with emission from a radially thin, spherical shell located behind the expanding shock with emission wings broadened by electron scattering. We propose that the intermediate component originates from preionized gas from the unshocked dense CSM with the same velocity as the narrow component, similar to 100 km s(-1), but also that it is broadened by electron scattering. These features provide direct information about the shock structure, which is consistent with model calculations. The spectra exhibit broad OI and [OI] lines that emerge at greater than or similar to +144 d and broad CaII features. The spectral continua and the spectral energy distributions (SEDs) of SN 2013L after +132 d are well reproduced by a two-component black-body (BB) model; one component represents emitting material with a temperature between 5 x 10(3) and 1.5 x 10(4) K (hot component) and the second component is characterized by a temperature around 1-1.5 x 10(3) K (warm component). The warm component dominates the emission at very late epochs (greater than or similar to +400 d), as is evident from both the last near infrared (NIR) spectrum and MIR observations obtained with the Spitzer Space Telescope. Using the BB fit to the SEDs, we constructed a bolometric light curve that was modeled together with the unshocked CSM velocity and the shock velocity derived from the H alpha line modeling. The circumstellar-interaction model of the bolometric light curve reveals a mass-loss rate history with large values (1.7x10(-2)-0.15 M-circle dot yr(-1)) over the similar to 25-40 years before explosion, depending on the radiative efficiency and anisotropies in the CSM. The drop in the light curve at similar to 350 days and the presence of electron scattering wings at late epochs indicate an anisotropic CSM. The mass-loss rate values and the unshocked-CSM velocity are consistent with the characteristics of a massive star, such as a luminous blue variable (LBV) undergoing strong eruptions, similar to eta Carinae. Our analysis also suggests a scenario where pre-existing dust grains have a distribution that is characterized by a small covering factor.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-16 of 16

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view