SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Carson C.) "

Search: WFRF:(Carson C.)

  • Result 1-50 of 153
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Niemi, MEK, et al. (author)
  • 2021
  • swepub:Mat__t
  •  
2.
  •  
3.
  • Vogel, Jacob W., et al. (author)
  • Four distinct trajectories of tau deposition identified in Alzheimer’s disease
  • 2021
  • In: Nature Medicine. - : Springer Science and Business Media LLC. - 1078-8956 .- 1546-170X. ; 27:5, s. 871-881
  • Journal article (peer-reviewed)abstract
    • Alzheimer’s disease (AD) is characterized by the spread of tau pathology throughout the cerebral cortex. This spreading pattern was thought to be fairly consistent across individuals, although recent work has demonstrated substantial variability in the population with AD. Using tau-positron emission tomography scans from 1,612 individuals, we identified 4 distinct spatiotemporal trajectories of tau pathology, ranging in prevalence from 18 to 33%. We replicated previously described limbic-predominant and medial temporal lobe-sparing patterns, while also discovering posterior and lateral temporal patterns resembling atypical clinical variants of AD. These ‘subtypes’ were stable during longitudinal follow-up and were replicated in a separate sample using a different radiotracer. The subtypes presented with distinct demographic and cognitive profiles and differing longitudinal outcomes. Additionally, network diffusion models implied that pathology originates and spreads through distinct corticolimbic networks in the different subtypes. Together, our results suggest that variation in tau pathology is common and systematic, perhaps warranting a re-examination of the notion of ‘typical AD’ and a revisiting of tau pathological staging. © 2021, The Author(s), under exclusive licence to Springer Nature America, Inc.
  •  
4.
  • Adam, A, et al. (author)
  • Abstracts from Hydrocephalus 2016.
  • 2017
  • In: Fluids and Barriers of the CNS. - : Springer Science and Business Media LLC. - 2045-8118. ; 14:Suppl 1
  • Journal article (peer-reviewed)
  •  
5.
  • Aartsen, M. G., et al. (author)
  • SEARCH FOR TIME-INDEPENDENT NEUTRINO EMISSION FROM ASTROPHYSICAL SOURCES WITH 3 yr OF IceCube DATASearch for time-independent neutrino emission from astrophysical sources with 3 yr of icecube data
  • 2013
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 779:2, s. 132-
  • Journal article (peer-reviewed)abstract
    • We present the results of a search for neutrino point sources using the IceCube data collected between 2008 April and 2011 May with three partially completed configurations of the detector: the 40-, 59-, and 79-string configurations. The live-time of this data set is 1040 days. An unbinned maximum likelihood ratio test was used to search for an excess of neutrinos above the atmospheric background at any given direction in the sky. By adding two more years of data with improved event selection and reconstruction techniques, the sensitivity was improved by a factor of 3.5 or more with respect to the previously published results obtained with the 40-string configuration of IceCube. We performed an all-sky survey and a dedicated search using a catalog of a priori selected objects observed by other telescopes. In both searches, the data are compatible with the background-only hypothesis. In the absence of evidence for a signal, we set upper limits on the flux of muon neutrinos. For an E-2 neutrino spectrum, the observed limits are (0.9-5) x 10(-12) TeV-1 cm(-2) s(-1) for energies between 1 TeV and 1 PeV in the northern sky and (0.9-23.2) x 10(-12) TeV-1 cm(-2) s(-1) for energies between 10(2) TeV and 10(2) PeV in the southern sky. We also report upper limits for neutrino emission from groups of sources that were selected according to theoretical models or observational parameters and analyzed with a stacking approach. Some of the limits presented already reach the level necessary to quantitatively test current models of neutrino emission.
  •  
6.
  • Abbasi, R., et al. (author)
  • Limits on a muon flux from Kaluza-Klein dark matter annihilations in the Sun from the IceCube 22-string detector
  • 2010
  • In: Physical Review D. - 1550-7998 .- 1550-2368. ; 81:5, s. 057101-
  • Journal article (peer-reviewed)abstract
    • A search for muon neutrinos from Kaluza-Klein dark matter annihilations in the Sun has been performed with the 22-string configuration of the IceCube neutrino detector using data collected in 104.3 days of live time in 2007. No excess over the expected atmospheric background has been observed. Upper limits have been obtained on the annihilation rate of captured lightest Kaluza-Klein particle (LKP) WIMPs in the Sun and converted to limits on the LKP-proton cross sections for LKP masses in the range 250-3000 GeV. These results are the most stringent limits to date on LKP annihilation in the Sun.
  •  
7.
  • Aartsen, M. G., et al. (author)
  • Evidence for High-Energy Extraterrestrial Neutrinos at the IceCube Detector
  • 2013
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 342:6161, s. 947-
  • Journal article (peer-reviewed)abstract
    • We report on results of an all-sky search for high-energy neutrino events interacting within the IceCube neutrino detector conducted between May 2010 and May 2012. The search follows up on the previous detection of two PeV neutrino events, with improved sensitivity and extended energy coverage down to about 30 TeV. Twenty-six additional events were observed, substantially more than expected from atmospheric backgrounds. Combined, both searches reject a purely atmospheric origin for the 28 events at the 4 sigma level. These 28 events, which include the highest energy neutrinos ever observed, have flavors, directions, and energies inconsistent with those expected from the atmospheric muon and neutrino backgrounds. These properties are, however, consistent with generic predictions for an additional component of extraterrestrial origin.
  •  
8.
  • Aartsen, M. G., et al. (author)
  • First Observation of PeV-Energy Neutrinos with IceCube
  • 2013
  • In: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 111:2, s. 021103-
  • Journal article (peer-reviewed)abstract
    • We report on the observation of two neutrino-induced events which have an estimated deposited energy in the IceCube detector of 1.04 +/- 0.16 and 1.14 +/- 0.17 PeV, respectively, the highest neutrino energies observed so far. These events are consistent with fully contained particle showers induced by neutral-current nu(e,mu,tau) ((nu) over bar (e,mu,tau)) or charged-current nu(e) ((nu) over bar (e)) interactions within the IceCube detector. The events were discovered in a search for ultrahigh energy neutrinos using data corresponding to 615.9 days effective live time. The expected number of atmospheric background is 0.082 +/- 0.004(stat)(-0.057)(+0.041)(syst). The probability of observing two or more candidate events under the atmospheric background-only hypothesis is 2.9 x 10(-3) (2.8 sigma) taking into account the uncertainty on the expected number of background events. These two events could be a first indication of an astrophysical neutrino flux; the moderate significance, however, does not permit a definitive conclusion at this time.
  •  
9.
  • Aartsen, M. G., et al. (author)
  • Improvement in fast particle track reconstruction with robust statistics
  • 2014
  • In: Nuclear Instruments and Methods in Physics Research Section A. - : Elsevier BV. - 0168-9002 .- 1872-9576. ; 736, s. 143-149
  • Journal article (peer-reviewed)abstract
    • The IceCube project has transformed 1 km(3) of deep natural Antarctic ice into a Cherenkov detector Muon neutrinos are detected and their direction is inferred by mapping the light produced by the secondary muon track inside the volume instrumented with photomultipliers. Reconstructing the muon track from the observed light is challenging due to noise, light scattering in the ice medium, and the possibility of simultaneously having multiple muons inside the detector, resulting from the large flux of cosmic ray muons. This paper describes work on two problems: (1) the truck reconstruction problem, in which, given a set of observations, the goal is to recover the track of a muon; and (2) the coincident event problem, which is to determine how many muons are active in the detector during a time window. Rather than solving these problems by developing more complex physical models that are applied at later stages of the analysis, our approach is to augment the detector's early reconstruction with data filters and robust statistical techniques. These can be implemented at the level of on-line reconstruction and, therefore, improve all subsequent reconstructions. Using the metric of median angular resolution, a standard metric for track reconstruction, we improve the accuracy in the initial reconstruction direction by 13%. We also present improvements in measuring the number of muons in coincident events: we can accurately determine the number of muons 98% of the time.
  •  
10.
  • Aartsen, M. G., et al. (author)
  • Measurement of Atmospheric Neutrino Oscillations with IceCube
  • 2013
  • In: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 111:8, s. 081801-
  • Journal article (peer-reviewed)abstract
    • We present the first statistically significant detection of neutrino oscillations in the high-energy regime (> 20 GeV) from an analysis of IceCube Neutrino Observatory data collected in 2010 and 2011. This measurement is made possible by the low-energy threshold of the DeepCore detector (similar to 20 GeV) and benefits from the use of the IceCube detector as a veto against cosmic-ray-induced muon background. The oscillation signal was detected within a low-energy muon neutrino sample (20-100 GeV) extracted from data collected by DeepCore. A high-energy muon neutrino sample (100 GeV-10 TeV) was extracted from IceCube data to constrain systematic uncertainties. The disappearance of low-energy upward-going muon neutrinos was observed, and the nonoscillation hypothesis is rejected with more than 5 sigma significance. In a two-neutrino flavor formalism, our data are best described by the atmospheric neutrino oscillation parameters vertical bar Delta m(32)(2)vertical bar = (2.3(-0.5)(+0.6)) x 10(-3) eV(2) and sin(2) (2 theta(23)) > 0.93, and maximum mixing is favored.
  •  
11.
  • Aartsen, M. G., et al. (author)
  • Measurement of South Pole ice transparency with the IceCube LED calibration system
  • 2013
  • In: Nuclear Instruments and Methods in Physics Research Section A. - : Elsevier BV. - 0168-9002 .- 1872-9576. ; 711, s. 73-89
  • Journal article (peer-reviewed)abstract
    • The IceCube Neutrino Observatory, approximately 1 km(3) in size, is now complete with 86 strings deployed in the Antarctic ice. IceCube detects the Cherenkov radiation emitted by charged particles passing through or created in the ice. To realize the full potential of the detector, the properties of light propagation in the ice in and around the detector must be well understood. This report presents a new method of fitting the model of light propagation in the ice to a data set of in situ light source events collected with IceCube. The resulting set of derived parameters, namely the measured values of scattering and absorption coefficients vs. depth, is presented and a comparison of IceCube data with simulations based on the new model is shown.
  •  
12.
  • Aartsen, M. G., et al. (author)
  • Measurement of the Atmospheric nu(e) Flux in IceCube
  • 2013
  • In: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 110:15, s. 151105-
  • Journal article (peer-reviewed)abstract
    • We report the first measurement of the atmospheric electron neutrino flux in the energy range between approximately 80 GeV and 6 TeV, using data recorded during the first year of operation of IceCube's DeepCore low-energy extension. Techniques to identify neutrinos interacting within the DeepCore volume and veto muons originating outside the detector are demonstrated. A sample of 1029 events is observed in 281 days of data, of which 496 +/- 66(stat) +/- 88(syst) are estimated to be cascade events, including both electron neutrino and neutral current events. The rest of the sample includes residual backgrounds due to atmospheric muons and charged current interactions of atmospheric muon neutrinos. The flux of the atmospheric electron neutrinos is consistent with models of atmospheric neutrinos in this energy range. This constitutes the first observation of electron neutrinos and neutral current interactions in a very large volume neutrino telescope optimized for the TeV energy range.
  •  
13.
  • Aartsen, M. G., et al. (author)
  • Measurement of the cosmic ray energy spectrum with IceTop-73
  • 2013
  • In: Physical Review D. - 1550-7998 .- 1550-2368. ; 88:4, s. 042004-
  • Journal article (peer-reviewed)abstract
    • We report on the measurement of the all-particle cosmic ray energy spectrum with the IceTop air shower array in the energy range from 1.58 PeV to 1.26 EeV. The IceTop air shower array is the surface component of the IceCube Neutrino Observatory at the geographical South Pole. The analysis was performed using only information from IceTop. The data used in this work were taken from June 1, 2010 to May 13, 2011. During that period the IceTop array consisted of 73 stations, compared to 81 in its final configuration. The measured spectrum exhibits a clear deviation from a single power law above the knee around 4 PeV and below 1 EeV. We observe spectral hardening around 18 PeV and steepening around 130 PeV.
  •  
14.
  • Aartsen, M. G., et al. (author)
  • Observation of the cosmic-ray shadow of the Moon with IceCube
  • 2014
  • In: Physical Review D. - 1550-7998 .- 1550-2368. ; 89:10, s. 102004-
  • Journal article (peer-reviewed)abstract
    • We report on the observation of a significant deficit of cosmic rays from the direction of the Moon with the IceCube detector. The study of this "Moon shadow" is used to characterize the angular resolution and absolute pointing capabilities of the detector. The detection is based on data taken in two periods before the completion of the detector: between April 2008 and May 2009, when IceCube operated in a partial configuration with 40 detector strings deployed in the South Pole ice, and between May 2009 and May 2010 when the detector operated with 59 strings. Using two independent analysis methods, the Moon shadow has been observed to high significance (> 6 sigma) in both detector configurations. The observed location of the shadow center is within 0.2 degrees of its expected position when geomagnetic deflection effects are taken into account. This measurement validates the directional reconstruction capabilities of IceCube.
  •  
15.
  • Aartsen, M. G., et al. (author)
  • Search for Dark Matter Annihilations in the Sun with the 79-String IceCube Detector
  • 2013
  • In: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 110:13, s. 131302-
  • Journal article (peer-reviewed)abstract
    • We have performed a search for muon neutrinos from dark matter annihilation in the center of the Sun with the 79-string configuration of the IceCube neutrino telescope. For the first time, the DeepCore subarray is included in the analysis, lowering the energy threshold and extending the search to the austral summer. The 317 days of data collected between June 2010 and May 2011 are consistent with the expected background from atmospheric muons and neutrinos. Upper limits are set on the dark matter annihilation rate, with conversions to limits on spin-dependent and spin-independent scattering cross sections of weakly interacting massive particles (WIMPs) on protons, for WIMP masses in the range 20-5000 GeV=c(2). These are the most stringent spin-dependent WIMP-proton cross section limits to date above 35 GeV=c(2) for most WIMP models. 
  •  
16.
  • Aartsen, M. G., et al. (author)
  • Search for Galactic PeV gamma rays with the IceCube Neutrino Observatory
  • 2013
  • In: Physical Review D. - 1550-7998 .- 1550-2368. ; 87:6, s. 062002-
  • Journal article (peer-reviewed)abstract
    • Gamma-ray induced air showers are notable for their lack of muons, compared to hadronic showers. Hence, air shower arrays with large underground muon detectors can select a sample greatly enriched in photon showers by rejecting showers containing muons. IceCube is sensitive to muons with energies above similar to 500 GeV at the surface, which provides an efficient veto system for hadronic air showers with energies above 1 PeV. One year of data from the 40-string IceCube configuration was used to perform a search for point sources and a Galactic diffuse signal. No sources were found, resulting in a 90% C.L. upper limit on the ratio of gamma rays to cosmic rays of 1.2 x 10(-3) for the flux coming from the Galactic plane region (-80 degrees less than or similar to l less than or similar to -30 degrees; -10 degrees less than or similar to b less than or similar to 5 degrees) in the energy range 1.2-6.0 PeV. In the same energy range, point source fluxes with E-2 spectra have been excluded at a level of (E/TeV)(2)d Phi/dE similar to 10(-12)-10(-11) cm(-2) s(-1) TeV-1 depending on source declination. The complete IceCube detector will have a better sensitivity (due to the larger detector size), improved reconstruction, and vetoing techniques. Preliminary data from the nearly final IceCube detector configuration have been used to estimate the 5-yr sensitivity of the full detector. It is found to be more than an order of magnitude better, allowing the search for PeV extensions of known TeV gamma-ray emitters.
  •  
17.
  • Aartsen, M. G., et al. (author)
  • South Pole glacial climate reconstruction from multi-borehole laser particulate stratigraphy
  • 2013
  • In: Journal of Glaciology. - 0022-1430 .- 1727-5652. ; 59:218, s. 1117-1128
  • Journal article (peer-reviewed)abstract
    • The IceCube Neutrino Observatory and its prototype, AMANDA, were built in South Pole ice, using powerful hot-water drills to cleanly bore >100 holes to depths up to 2500 m. The construction of these particle physics detectors provided a unique opportunity to examine the deep ice sheet using a variety of novel techniques. We made high-resolution particulate profiles with a laser dust logger in eight of the boreholes during detector commissioning between 2004 and 2010. The South Pole laser logs are among the most clearly resolved measurements of Antarctic dust strata during the last glacial period and can be used to reconstruct paleoclimate records in exceptional detail. Here we use manual and algorithmic matching to synthesize our South Pole measurements with ice-core and logging data from Dome C, East Antarctica. We derive impurity concentration, precision chronology, annual-layer thickness, local spatial variability, and identify several widespread volcanic ash depositions useful for dating. We also examine the interval around similar to 74 ka recently isolated with radiometric dating to bracket the Toba (Sumatra) supereruption.
  •  
18.
  • Abbasi, R., et al. (author)
  • IceTop : The surface component of IceCube
  • 2013
  • In: Nuclear Instruments and Methods in Physics Research Section A. - : Elsevier BV. - 0168-9002 .- 1872-9576. ; 700, s. 188-220
  • Journal article (peer-reviewed)abstract
    • IceTop, the surface component of the IceCube Neutrino Observatory at the South Pole, is an air shower array with an area of 1 km(2). The detector allows a detailed exploration of the mass composition of primary cosmic rays in the energy range from about 100 TeV to 1 EeV by exploiting the correlation between the shower energy measured in IceTop and the energy deposited by muons in the deep ice. In this paper we report on the technical design, construction and installation, the trigger and data acquisition systems as well as the software framework for calibration, reconstruction and simulation. Finally the first experience from commissioning and operating the detector and the performance as an air shower detector will be discussed.
  •  
19.
  • Aartsen, M. G., et al. (author)
  • IceCube search for dark matter annihilation in nearby galaxies and galaxy clusters
  • 2013
  • In: Physical Review D. - 1550-7998 .- 1550-2368. ; 88:12
  • Journal article (peer-reviewed)abstract
    • We present the results of a first search for self-annihilating dark matter in nearby galaxies and galaxy clusters using a sample of high-energy neutrinos acquired in 339.8 days of live time during 2009/10 with the IceCube neutrino observatory in its 59-string configuration. The targets of interest include the Virgo and Coma galaxy clusters, the Andromeda galaxy, and several dwarf galaxies. We obtain upper limits on the cross section as a function of the weakly interacting massive particle mass between 300 GeV and 100 TeV for the annihilation into b (b) over bar, W+(W) over bar (-), tau(+)tau(-), mu(+)mu(-) , and nu(nu) over bar. A limit derived for the Virgo cluster, when assuming a large effect from subhalos, challenges the weakly interacting massive particle interpretation of a recently observed GeV positron excess in cosmic rays.
  •  
20.
  • Aartsen, M. G., et al. (author)
  • Observation of Cosmic-Ray Anisotropy with the Icetop Air Shower Array
  • 2013
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 765:1, s. 55-
  • Journal article (peer-reviewed)abstract
    • We report on the observation of anisotropy in the arrival direction distribution of cosmic rays at PeV energies. The analysis is based on data taken between 2009 and 2012 with the IceTop air shower array at the south pole. IceTop, an integral part of the IceCube detector, is sensitive to cosmic rays between 100 TeV and 1 EeV. With the current size of the IceTop data set, searches for anisotropy at the 10(-3) level can, for the first time, be extended to PeV energies. We divide the data set into two parts with median energies of 400 TeV and 2 PeV, respectively. In the low energy band, we observe a strong deficit with an angular size of about 30 degrees and an amplitude of (-1.58 +/- 0.46(stat) +/- 0.52(sys)) x 10(-3) at a location consistent with previous observations of cosmic rays with the IceCube neutrino detector. The study of the high energy band shows that the anisotropy persists to PeV energies and increases in amplitude to (-3.11 +/- 0.38(stat) +/- 0.96(sys)) x 10(-3).
  •  
21.
  • Abbasi, R., et al. (author)
  • An improved method for measuring muon energy using the truncated mean of dE/dx
  • 2013
  • In: Nuclear Instruments and Methods in Physics Research Section A. - : Elsevier BV. - 0168-9002 .- 1872-9576. ; 703, s. 190-198
  • Journal article (peer-reviewed)abstract
    • The measurement of muon energy is critical for many analyses in large Cherenkov detectors, particularly those that involve separating extraterrestrial neutrinos from the atmospheric neutrino background. Muon energy has traditionally been determined by measuring the specific energy loss (dE/dx) along the muon's path and relating the dE/dx to the muon energy. Because high-energy muons (Eμ>1TeV) lose energy randomly, the spread in dE/dx values is quite large, leading to a typical energy resolution of 0.29 in log10(Eμ) for a muon observed over a 1 km path length in the IceCube detector. In this paper, we present an improved method that uses a truncated mean and other techniques to determine the muon energy. The muon track is divided into separate segments with individual dE/dx values. The elimination of segments with the highest dE/dx results in an overall dE/dx that is more closely correlated to the muon energy. This method results in an energy resolution of 0.22 in log10(Eμ), which gives a 26% improvement. This technique is applicable to any large water or ice detector and potentially to large scintillator or liquid argon detectors.
  •  
22.
  • Abbasi, R., et al. (author)
  • Calibration and characterization of the IceCube photomultiplier tube
  • 2010
  • In: Nuclear Instruments and Methods in Physics Research Section A. - : Elsevier BV. - 0168-9002 .- 1872-9576. ; 618:1-3, s. 139-152
  • Journal article (peer-reviewed)abstract
    • Over 5000 PMTs are being deployed at the South Pole to compose the IceCube neutrino observatory. Many are placed deep in the ice to detect Cherenkov light emitted by the products of high-energy neutrino interactions, and others are frozen into tanks on the surface to detect particles from atmospheric cosmic ray showers. IceCube is using the 10-in. diameter R7081-02 made by Hamamatsu Photonics. This paper describes the laboratory characterization and calibration of these PMTs before deployment. PMTs were illuminated with pulses ranging from single photons to saturation level. Parameterizations are given for the single photoelectron charge spectrum and the saturation behavior. Time resolution, late pulses and afterpulses are characterized. Because the PMTs are relatively large, the cathode sensitivity uniformity was measured. The absolute photon detection efficiency was calibrated using Rayleigh-scattered photons from a nitrogen laser. Measured characteristics are discussed in the context of their relevance to IceCube event reconstruction and simulation efforts. (C) 2010 Elsevier B.V. All rights reserved.
  •  
23.
  • Abbasi, R., et al. (author)
  • Cosmic ray composition and energy spectrum from 1-30 PeV using the 40-string configuration of IceTop and IceCube
  • 2013
  • In: Astroparticle physics. - : Elsevier BV. - 0927-6505 .- 1873-2852. ; 42, s. 15-32
  • Journal article (peer-reviewed)abstract
    • The mass composition of high energy cosmic rays depends on their production, acceleration, and propagation. The study of cosmic ray composition can therefore reveal hints of the origin of these particles. At the South Pole, the IceCube Neutrino Observatory is capable of measuring two components of cosmic ray air showers in coincidence: the electromagnetic component at high altitude (2835 m) using the IceTop surface array, and the muonic component above ∼1 TeV using the IceCube array. This unique detector arrangement provides an opportunity for precision measurements of the cosmic ray energy spectrum and composition in the region of the knee and beyond. We present the results of a neural network analysis technique to study the cosmic ray composition and the energy spectrum from 1 PeV to 30 PeV using data recorded using the 40-string/40-station configuration of the IceCube Neutrino Observatory.
  •  
24.
  • Abbasi, R, et al. (author)
  • Extending the Search for Neutrino Point Sources with IceCube above the Horizon
  • 2009
  • In: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 103:22, s. 221102-
  • Journal article (peer-reviewed)abstract
    • Point source searches with the IceCube neutrino telescope have been restricted to one hemisphere, due to the exclusive selection of upward going events as a way of rejecting the atmospheric muon background. We show that the region above the horizon can be included by suppressing the background through energy-sensitive cuts. This improves the sensitivity above PeV energies, previously not accessible for declinations of more than a few degrees below the horizon due to the absorption of neutrinos in Earth. We present results based on data collected with 22 strings of IceCube, extending its field of view and energy reach for point source searches. No significant excess above the atmospheric background is observed in a sky scan and in tests of source candidates. Upper limits are reported, which for the first time cover point sources in the southern sky up to EeV energies.
  •  
25.
  • Abbasi, R., et al. (author)
  • Observation of anisotropy in the arrival directions of galactic cosmic rays at multiple angular scales with IceCube
  • 2011
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 740:1, s. 16-
  • Journal article (peer-reviewed)abstract
    • Between 2009 May and 2010 May, the IceCube neutrino detector at the South Pole recorded 32 billion muons generated in air showers produced by cosmic rays with a median energy of 20 TeV. With a data set of this size, it is possible to probe the southern sky for per-mil anisotropy on all angular scales in the arrival direction distribution of cosmic rays. Applying a power spectrum analysis to the relative intensity map of the cosmic ray flux in the southern hemisphere, we show that the arrival direction distribution is not isotropic, but shows significant structure on several angular scales. In addition to previously reported large-scale structure in the form of a strong dipole and quadrupole, the data show small-scale structure on scales between 15 degrees and 30 degrees. The skymap exhibits several localized regions of significant excess and deficit in cosmic ray intensity. The relative intensity of the smaller-scale structures is about a factor of five weaker than that of the dipole and quadrupole structure. The most significant structure, an excess localized at (right ascension alpha = 122 degrees.4 and declination d = -47 degrees.4), extends over at least 20 degrees in right ascension and has a post-trials significance of 5.3 sigma. The origin of this anisotropy is still unknown.
  •  
26.
  • Abbasi, R., et al. (author)
  • Observation of anisotropy in the galactic cosmic-ray arrival directions at 400 TeV with IceCube
  • 2012
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 746:1, s. 33-
  • Journal article (peer-reviewed)abstract
    • In this paper we report the first observation in the Southern hemisphere of an energy dependence in the Galactic cosmic-ray anisotropy up to a few hundred TeV. This measurement was performed using cosmic-ray-induced muons recorded by the partially deployed IceCube observatory between 2009 May and 2010 May. The data include a total of 33 x 10(9) muon events with a median angular resolution of similar to 3 degrees. A sky map of the relative intensity in arrival direction over the Southern celestial sky is presented for cosmic-ray median energies of 20 and 400 TeV. The same large-scale anisotropy observed at median energies around 20 TeV is not present at 400 TeV. Instead, the high-energy sky map shows a different anisotropy structure including a deficit with a post-trial significance of -6.3 sigma. This anisotropy reveals a new feature of the Galactic cosmic-ray distribution, which must be incorporated into theories of the origin and propagation of cosmic rays.
  •  
27.
  • Abbasi, R., et al. (author)
  • Searches for high-energy neutrino emission in the galaxy with the combined icecube-amanda detector
  • 2013
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 763:1, s. 33-
  • Journal article (peer-reviewed)abstract
    • We report on searches for neutrino sources at energies above 200 GeV in the Northern sky of the Galactic plane, using the data collected by the South Pole neutrino telescope, IceCube, and AMANDA. The Galactic region considered in this work includes the local arm toward the Cygnus region and our closest approach to the Perseus Arm. The searches are based on the data collected between 2007 and 2009. During this time AMANDA was an integrated part of IceCube, which was still under construction and operated with 22 strings (2007-2008) and 40 strings (2008-2009) of optical modules deployed in the ice. By combining the advantages of the larger IceCube detector with the lower energy threshold of the more compact AMANDA detector, we obtain an improved sensitivity at energies below ∼10 TeV with respect to previous searches. The analyses presented here are a scan for point sources within the Galactic plane, a search optimized for multiple and extended sources in the Cygnus region, which might be below the sensitivity of the point source scan, and studies of seven pre-selected neutrino source candidates. For one of them, Cygnus X-3, a time-dependent search for neutrino emission in coincidence with observed radio and X-ray flares has been performed. No evidence of a signal is found, and upper limits are reported for each of the searches. We investigate neutrino spectra proportional to E -2 and E -3 in order to cover the entire range of possible neutrino spectra. The steeply falling E -3 neutrino spectrum can also be used to approximate neutrino energy spectra with energy cutoffs below 50 TeV since these result in a similar energy distribution of events in the detector. For the region of the Galactic plane visible in the Northern sky, the 90% confidence level muon neutrino flux upper limits are in the range E 3 dN/dE ∼ 5.4-19.5 × 10-11 TeV2 cm-2 s-1 for point-like neutrino sources in the energy region [180.0 GeV-20.5 TeV]. These represent the most stringent upper limits for soft-spectra neutrino sources within the Galaxy reported to date.
  •  
28.
  • Scott, P., et al. (author)
  • Use of event-level neutrino telescope data in global fits for theories of new physics
  • 2012
  • In: Journal of Cosmology and Astroparticle Physics. - : IOP Publishing. - 1475-7516. ; :11, s. 057-
  • Journal article (peer-reviewed)abstract
    • We present a fast likelihood method for including event-level neutrino telescope data in parameter explorations of theories for new physics, and announce its public release as part of DarkSUSY 5.0.6. Our construction includes both angular and spectral information about neutrino events, as well as their total number. We also present a corresponding measure for simple model exclusion, which can be used for single models without reference to the rest of a parameter space. We perform a number of supersymmetric parameter scans with IceCube data to illustrate the utility of the method: example global fits and a signal recovery in the constrained minimal supersymmetric standard model (CMSSM), and a model exclusion exercise in a 7-parameter phenomenological version of the MSSM. The final IceCube detector con figuration will probe almost the entire focus-point region of the CMSSM, as well as a number of MSSM-7 models that will not otherwise be accessible to e. g. direct detection. Our method accurately recovers the mock signal, and provides tight constraints on model parameters and derived quantities. We show that the inclusion of spectral information significantly improves the accuracy of the recovery, providing motivation for its use in future IceCube analyses.
  •  
29.
  • Abbasi, R., et al. (author)
  • An absence of neutrinos associated with cosmic-ray acceleration in gamma-ray bursts
  • 2012
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 484:7394, s. 351-354
  • Journal article (peer-reviewed)abstract
    • Very energetic astrophysical events are required to accelerate cosmic rays to above 10(18) electronvolts. GRBs (c-ray bursts) have been proposed as possible candidate sources(1-3). In the GRB 'fireball' model, cosmic-ray acceleration should be accompanied by neutrinos produced in the decay of charged pions created in interactions between the high-energy cosmic-ray protons and gamma-rays(4). Previous searches for such neutrinos found none, but the constraints were weak because the sensitivity was at best approximately equal to the predicted flux(5-7). Here we report an upper limit on the flux of energetic neutrinos associated with GRBs that is at least a factor of 3.7 below the predictions(4,8-10). This implies either that GRBs are not the only sources of cosmic rays with energies exceeding 10(18) electronvolts or that the efficiency of neutrino production is much lower than has been predicted.
  •  
30.
  • Abbasi, R., et al. (author)
  • Constraints on the extremely-high energy cosmic neutrino flux with the IceCube 2008-2009 data
  • 2011
  • In: Physical Review D - Particles, Fields, Gravitation and Cosmology. - 1550-7998 .- 1550-2368. ; 83:9, s. 092003-
  • Journal article (peer-reviewed)abstract
    • We report on a search for extremely-high energy neutrinos with energies greater than 10(6) GeV using the data taken with the IceCube detector at the South Pole. The data was collected between April 2008 and May 2009 with the half-completed IceCube array. The absence of signal candidate events in the sample of 333.5 days of live time significantly improves model-independent limits from previous searches and allows to place a limit on the diffuse flux of cosmic neutrinos with an E-2 spectrum in the energy range 2.0 x 10(6) - 6.3 x 10(9) GeV to a level of E-2 phi <= 3.6 x 10(-8) GeV cm(-2) sec(-1) sr(-1).
  •  
31.
  • Abbasi, R., et al. (author)
  • First search for extremely high energy cosmogenic neutrinos with the IceCube Neutrino Observatory
  • 2010
  • In: Physical review. D, Particles, fields, gravitation, and cosmology. - 1550-7998. ; 82:7, s. 072003-
  • Journal article (peer-reviewed)abstract
    • We report on the results of the search for extremely-high energy neutrinos with energies above 10(7) GeV obtained with the partially (similar to 30%) constructed IceCube in 2007. From the absence of signal events in the sample of 242.1 days of effective live time, we derive a 90% C.L. model independent differential upper limit based on the number of signal events per energy decade at E-2 phi(ve+v mu+v tau) similar or equal to 1.4 x 10(-6) GeV cm(-2) sec(-1) sr(-1) for neutrinos in the energy range from 3 x 10(7) to 3 x 10(9) GeV.
  •  
32.
  • Abbasi, R., et al. (author)
  • Lateral distribution of muons in IceCube cosmic ray events
  • 2013
  • In: Physical Review D. - 1550-7998 .- 1550-2368. ; 87:1, s. 012005-
  • Journal article (peer-reviewed)abstract
    • In cosmic ray air showers, the muon lateral separation from the center of the shower is a measure of the transverse momentum that the muon parent acquired in the cosmic ray interaction. IceCube has observed cosmic ray interactions that produce muons laterally separated by up to 400 m from the shower core, a factor of 6 larger distance than previous measurements. These muons originate in high p(T) (> 2 GeV/c) interactions from the incident cosmic ray, or high-energy secondary interactions. The separation distribution shows a transition to a power law at large values, indicating the presence of a hard p(T) component that can be described by perturbative quantum chromodynamics. However, the rates and the zenith angle distributions of these events are not well reproduced with the cosmic ray models tested here, even those that include charm interactions. This discrepancy may be explained by a larger fraction of kaons and charmed particles than is currently incorporated in the simulations. DOI: 10.1103/PhysRevD.87.012005
  •  
33.
  • Abbasi, R., et al. (author)
  • Limits on Neutrino Emission from Gamma-Ray Bursts with the 40 String IceCube Detector
  • 2011
  • In: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 106:14, s. 141101-
  • Journal article (peer-reviewed)abstract
    • IceCube has become the first neutrino telescope with a sensitivity below the TeV neutrino flux predicted from gamma-ray bursts if gamma-ray bursts are responsible for the observed cosmic-ray flux above 10(18) eV. Two separate analyses using the half-complete IceCube detector, one a dedicated search for neutrinos from p gamma interactions in the prompt phase of the gamma-ray burst fireball and the other a generic search for any neutrino emission from these sources over a wide range of energies and emission times, produced no evidence for neutrino emission, excluding prevailing models at 90% confidence.
  •  
34.
  • Abbasi, R., et al. (author)
  • Measurement of the anisotropy of cosmic-ray arrival directions with icecube
  • 2010
  • In: The Astrophysical Journal Letters. - 2041-8205. ; 718, s. L194-L198
  • Journal article (peer-reviewed)abstract
    • We report the first observation of an anisotropy in the arrival direction of cosmic rays with energies in the multi-TeV region in the Southern sky using data from the IceCube detector. Between 2007 June and 2008 March, the partially deployed IceCube detector was operated in a configuration with 1320 digital optical sensors distributed over 22 strings at depths between 1450 and 2450 m inside the Antarctic ice. IceCube is a neutrino detector, but the data are dominated by a large background of cosmic-ray muons. Therefore, the background data are suitable for high-statistics studies of cosmic rays in the southern sky. The data include 4.3 billion muons produced by downward-going cosmic-ray interactions in the atmosphere; these events were reconstructed with a median angular resolution of 3 degrees and a median energy of similar to 20 TeV. Their arrival direction distribution exhibits an anisotropy in right ascension with a first-harmonic amplitude of (6.4 +/- 0.2 stat. +/- 0.8 syst.) x 10(-4).
  •  
35.
  • Abbasi, R., et al. (author)
  • Multiyear search for dark matter annihilations in the Sun with the AMANDA-II and IceCube detectors
  • 2012
  • In: Physical Review D. - 1550-7998 .- 1550-2368. ; 85, s. 042002-
  • Journal article (peer-reviewed)abstract
    • A search for an excess of muon neutrinos from dark matter annihilations in the Sun has been performed with the AMANDA-II neutrino telescope using data collected in 812 days of live time between 2001 and 2006 and 149 days of live time collected with the AMANDA-II and the 40-string configuration of IceCube during 2008 and early 2009. No excess over the expected atmospheric neutrino background has been observed. We combine these results with the previously published IceCube limits obtained with data taken during 2007 to obtain a total live time of 1065 days. We provide an upper limit at 90% confidence level on the annihilation rate of captured neutralinos in the Sun, as well as the corresponding muon flux limit at the Earth, both as functions of the neutralino mass in the range 50-5000 GeV. We also derive a limit on the neutralino-proton spin-dependent and spin-independent cross section. The limits presented here improve the previous results obtained by the collaboration between a factor of 2 and 5, as well as extending the neutralino masses probed down to 50 GeV. The spin-dependent cross section limits are the most stringent so far for neutralino masses above 200 GeV, and well below direct search results in the mass range from 50 GeV to 5 TeV.
  •  
36.
  • Abbasi, R., et al. (author)
  • Search for neutrino-induced cascades with five years of AMANDA data
  • 2011
  • In: Astroparticle physics. - : Elsevier BV. - 0927-6505 .- 1873-2852. ; 34:6, s. 420-430
  • Journal article (peer-reviewed)abstract
    • We report on the search for electromagnetic and hadronic showers ("cascades") produced by a diffuse flux of extraterrestrial neutrinos in the AMANDA neutrino telescope. Data for this analysis were recorded during 1001 days of detector livetime in the years 2000-2004. The observed event rates are consistent with the background expectation from atmospheric neutrinos and muons. An upper limit is derived for the diffuse flux of neutrinos of all flavors assuming a flavor ratio of v(e):v(mu):v(tau) = 1:1:1 at the detection site. The all-flavor flux of neutrinos with an energy spectrum Phi proportional to E-2 is less than 5.0 x 10(-7) GeV s(-1) sr(-1) cm(-2) at a 90% C.L. Here, 90% of the simulated signal would fall within the energy range 40 TeV to 9 PeV. We discuss flux limits in the context of several specific models of extraterrestrial and prompt atmospheric neutrino production.
  •  
37.
  • Abbasi, R., et al. (author)
  • Search for relativistic magnetic monopoles with IceCube
  • 2013
  • In: Physical Review D. - 1550-7998 .- 1550-2368. ; 87:2, s. 022001-
  • Journal article (peer-reviewed)abstract
    • We present the first results in the search for relativistic magnetic monopoles with the IceCube detector, a subsurface neutrino telescope located in the South Polar ice cap containing a volume of 1 km(3). This analysis searches data taken on the partially completed detector during 2007 when roughly 0.2 km(3) of ice was instrumented. The lack of candidate events leads to an upper limit on the flux of relativistic magnetic monopoles of Phi(90%C.L.) similar to 3 x 10(-18) cm(-2) sr(-1) s(-1) for beta >= 0.8. This is a factor of 4 improvement over the previous best experimental flux limits up to a Lorentz boost gamma below 10(7). This result is then interpreted for a wide range of mass and kinetic energy values.
  •  
38.
  • Abbasi, R., et al. (author)
  • Search for relativistic magnetic monopoles with the AMANDA-II neutrino telescope
  • 2010
  • In: European Physical Journal C. - : Springer Science and Business Media LLC. - 1434-6044 .- 1434-6052. ; 69:3-4, s. 361-378
  • Journal article (peer-reviewed)abstract
    • We present the search for Cherenkov signatures from relativistic magnetic monopoles in data taken with the AMANDA-II detector, a neutrino telescope deployed in the Antarctic ice cap at the Geographic South Pole. The non-observation of a monopole signal in data collected during the year 2000 improves present experimental limits on the flux of relativistic magnetic monopoles: Our flux limit varies between 3.8x10(-17) cm(-2) s(-1) sr(-1) (for monopoles moving at the vacuum speed of light) and 8.8x10(-16) cm(-2) s(-1) sr(-1) (for monopoles moving at a speed beta=v/c=0.76, just above the Cherenkov threshold in ice). These limits apply to monopoles that are energetic enough to penetrate the Earth and enter the detector from below the horizon. The limit obtained for monopoles reaching the detector from above the horizon is less stringent by roughly an order of magnitude, due to the much larger background from down-going atmospheric muons. This looser limit is however valid for a larger class of magnetic monopoles, since the monopoles are not required to pass through the Earth.
  •  
39.
  • Abbasi, R., et al. (author)
  • Searching for soft relativistic jets in core-collapse supernovae with the IceCube optical follow-up program
  • 2012
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 539, s. A60-
  • Journal article (peer-reviewed)abstract
    • Context. Transient neutrino sources such as gamma-ray bursts (GRBs) and supernovae (SNe) are hypothesized to emit bursts of high-energy neutrinos on a time-scale of less than or similar to 100 s. While GRB neutrinos would be produced in high relativistic jets, core-collapse SNe might host soft-relativistic jets, which become stalled in the outer layers of the progenitor star leading to an efficient production of high-energy neutrinos. Aims. To increase the sensitivity to these neutrinos and identify their sources, a low-threshold optical follow-up program for neutrino multiplets detected with the IceCube observatory has been implemented. Methods. If a neutrino multiplet, i.e. two or more neutrinos from the same direction within 100 s, is found by IceCube a trigger is sent to the Robotic Optical Transient Search Experiment, ROTSE. The 4 ROTSE telescopes immediately start an observation program of the corresponding region of the sky in order to detect an optical counterpart to the neutrino events. Results. No statistically significant excess in the rate of neutrino multiplets has been observed and furthermore no coincidence with an optical counterpart was found. Conclusions. The search allows, for the first time, to set stringent limits on current models predicting a high-energy neutrino flux from soft relativistic hadronic jets in core-collapse SNe. We conclude that a sub-population of SNe with typical Lorentz boost factor and jet energy of 10 and 3 x 1051 erg, respectively, does not exceed 4.2% at 90% confidence.
  •  
40.
  • Abbasi, R., et al. (author)
  • All-particle cosmic ray energy spectrum measured with 26 IceTop stations
  • 2013
  • In: Astroparticle physics. - : Elsevier BV. - 0927-6505 .- 1873-2852. ; 44, s. 40-58
  • Journal article (peer-reviewed)abstract
    • We report on a measurement of the cosmic ray energy spectrum with the IceTop air shower array, the surface component of the IceCube Neutrino Observatory at the South Pole. The data used in this analysis were taken between June and October, 2007, with 26 surface stations operational at that time, corresponding to about one third of the final array. The fiducial area used in this analysis was 0.122 km(2). The analysis investigated the energy spectrum from 1 to 100 PeV measured for three different zenith angle ranges between 0 degrees and 46 degrees. Because of the isotropy of cosmic rays in this energy range the spectra from all zenith angle intervals have to agree. The cosmic-ray energy spectrum was determined under different assumptions on the primary mass composition. Good agreement of spectra in the three zenith angle ranges was found for the assumption of pure proton and a simple two-component model. For zenith angles theta < 30 degrees, where the mass dependence is smallest, the knee in the cosmic ray energy spectrum was observed at about 4 PeV, with a spectral index above the knee of about -3.1. Moreover, an indication of a flattening of the spectrum above 22 PeV was observed. 
  •  
41.
  • Abbasi, R., et al. (author)
  • Background studies for acoustic neutrino detection at the South Pole
  • 2012
  • In: Astroparticle physics. - : Elsevier BV. - 0927-6505 .- 1873-2852. ; 35:6, s. 312-324
  • Journal article (peer-reviewed)abstract
    • The detection of acoustic signals from ultra-high energy neutrino interactions is a promising method to measure the flux of cosmogenic neutrinos expected on Earth. The energy threshold for this process depends strongly on the absolute noise level in the target material. The South Pole Acoustic Test Setup (SPATS), deployed in the upper part of four boreholes of the IceCube Neutrino Observatory, has monitored the noise in Antarctic ice at the geographic South Pole for more than two years down to 500 m depth. The noise is very stable and Gaussian distributed. Lacking an in situ calibration up to now, laboratory measurements have been used to estimate the absolute noise level in the 10-50 kHz frequency range to be smaller than 20 mPa. Using a threshold trigger, sensors of the South Pole Acoustic Test Setup registered acoustic events in the IceCube detector volume and its vicinity. Acoustic signals from refreezing IceCube holes and from anthropogenic sources have been used to test the localization of acoustic events. An upper limit on the neutrino flux at energies E-v>10(11) GeV is derived from acoustic data taken over eight months. (C) 2011 Elsevier B.V. All rights reserved.
  •  
42.
  • Abbasi, R., et al. (author)
  • Constraints on high-energy neutrino emission from SN 2008D
  • 2011
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 527:4, s. A28-
  • Journal article (peer-reviewed)abstract
    • SN 2008D, a core collapse supernova at a distance of 27 Mpc, was serendipitously discovered by the Swift satellite through an associated X-ray flash. Core collapse supernovae have been observed in association with long gamma-ray bursts and X-ray flashes and a physical connection is widely assumed. This connection could imply that some core collapse supernovae possess mildly relativistic jets in which high-energy neutrinos are produced through proton-proton collisions. The predicted neutrino spectra would be detectable by Cherenkov neutrino detectors like IceCube. A search for a neutrino signal in temporal and spatial correlation with the observed X-ray flash of SN 2008D was conducted using data taken in 2007-2008 with 22 strings of the IceCube detector. Events were selected based on a boosted decision tree classifier trained with simulated signal and experimental background data. The classifier was optimized to the position and a "soft jet" neutrino spectrum assumed for SN 2008D. Using three search windows placed around the X-ray peak, emission time scales from 100-10 000 s were probed. No events passing the cuts were observed in agreement with the signal expectation of 0.13 events. Upper limits on the muon neutrino flux from core collapse supernovae were derived for different emission time scales and the principal model parameters were constrained. While no meaningful limits can be given in the case of an isotropic neutrino emission, the parameter space for a jetted emission can be constrained. Future analyses with the full 86 string IceCube detector could detect up to similar to 100 events for a core-collapse supernova at 10 Mpc according to the soft jet model.
  •  
43.
  • Abbasi, R., et al. (author)
  • First search for atmospheric and extraterrestrial neutrino-induced cascades with the IceCube detector
  • 2011
  • In: Physical Review D. - 1550-7998 .- 1550-2368. ; 84:7, s. 072001-
  • Journal article (peer-reviewed)abstract
    • We report on the first search for atmospheric and for diffuse astrophysical neutrino-induced showers (cascades) in the IceCube detector using 257 days of data collected in the year 2007-2008 with 22 strings active. A total of 14 events with energies above 16 TeV remained after event selections in the diffuse analysis, with an expected total background contribution of 8.3 +/- 3.6. At 90% confidence we set an upper limit of E(2)Phi(90%CL) < 3.6 x 10(-7) GeV.cm(-2).s(-1).sr(-1) on the diffuse flux of neutrinos of all flavors in the energy range between 24 TeV and 6.6 PeV assuming that Phi proportional to E(-2) and the flavor composition of the nu(e):nu(mu):nu(tau) flux is 1:1:1 at the Earth. The atmospheric neutrino analysis was optimized for lower energies. A total of 12 events were observed with energies above 5 TeV. The observed number of events is consistent with the expected background, within the uncertainties.
  •  
44.
  • Abbasi, R., et al. (author)
  • IceCube sensitivity for low-energy neutrinos from nearby supernovae
  • 2011
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 535, s. A109-
  • Journal article (peer-reviewed)abstract
    • This paper describes the response of the IceCube neutrino telescope located at the geographic south pole to outbursts of MeV neutrinos from the core collapse of nearby massive stars. IceCube was completed in December 2010 forming a lattice of 5160 photomultiplier tubes that monitor a volume of similar to 1 km(3) in the deep Antarctic ice for particle induced photons. The telescope was designed to detect neutrinos with energies greater than 100 GeV. Owing to subfreezing ice temperatures, the photomultiplier dark noise rates are particularly low. Hence IceCube can also detect large numbers of MeV neutrinos by observing a collective rise in all photomultiplier rates on top of the dark noise. With 2 ms timing resolution, IceCube can detect subtle features in the temporal development of the supernova neutrino burst. For a supernova at the galactic center, its sensitivity matches that of a background-free megaton-scale supernova search experiment. The sensitivity decreases to 20 standard deviations at the galactic edge (30 kpc) and 6 standard deviations at the Large Magellanic Cloud (50 kpc). IceCube is sending triggers from potential supernovae to the Supernova Early Warning System. The sensitivity to neutrino properties such as the neutrino hierarchy is discussed, as well as the possibility to detect the neutronization burst, a short outbreak of nu(e)'s released by electron capture on protons soon after collapse. Tantalizing signatures, such as the formation of a quark star or a black hole as well as the characteristics of shock waves, are investigated to illustrate IceCube's capability for supernova detection.
  •  
45.
  • Abbasi, R., et al. (author)
  • Measurement of acoustic attenuation in South Pole ice
  • 2011
  • In: Astroparticle physics. - : Elsevier BV. - 0927-6505 .- 1873-2852. ; 34:6, s. 382-393
  • Journal article (peer-reviewed)abstract
    • Using the South Pole Acoustic Test Setup (SPATS) and a retrievable transmitter deployed in holes drilled for the IceCube experiment, we have measured the attenuation of acoustic signals by South Pole ice at depths between 190 m and 500 m. Three data sets, using different acoustic sources, have been analyzed and give consistent results. The method with the smallest systematic uncertainties yields an amplitude attenuation coefficient alpha = 3.20 +/- 0.57 km(-1) between 10 and 30 kHz, considerably larger than previous theoretical estimates. Expressed as an attenuation length, the analyses give a consistent result for lambda equivalent to 1/alpha of similar to 300 m with 20% uncertainty. No significant depth or frequency dependence has been found.
  •  
46.
  • Abbasi, R., et al. (author)
  • Measurement of the atmospheric neutrino energy spectrum from 100 GeV to 400 TeV with IceCube
  • 2011
  • In: Physical Review D - Particles, Fields, Gravitation and Cosmology. - 1550-7998 .- 1550-2368. ; 83:1, s. 012001-
  • Journal article (peer-reviewed)abstract
    • A measurement of the atmospheric muon neutrino energy spectrum from 100 GeV to 400 TeV was performed using a data sample of about 18 000 up-going atmospheric muon neutrino events in IceCube. Boosted decision trees were used for event selection to reject misreconstructed atmospheric muons and obtain a sample of up-going muon neutrino events. Background contamination in the final event sample is less than 1%. This is the first measurement of atmospheric neutrinos up to 400 TeV, and is fundamental to understanding the impact of this neutrino background on astrophysical neutrino observations with IceCube. The measured spectrum is consistent with predictions for the atmospheric nu(mu) + (nu) over bar (mu) flux.
  •  
47.
  • Abbasi, R., et al. (author)
  • Neutrino Analysis of the 2010 September Crab Nebula Flare and Time-Integrated Constraints on Neutrino Emission from the Crab Using Icecube
  • 2012
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 745:1, s. 45-
  • Journal article (peer-reviewed)abstract
    • We present the results of a search for high-energy muon neutrinos with the IceCube detector in coincidence with the Crab Nebula flare reported on 2010 September by various experiments. Due to the unusual flaring state of the otherwise steady source we performed a prompt analysis of the 79-string configuration data to search for neutrinos that might be emitted along with the observed. gamma-rays. We performed two different and complementary data selections of neutrino events in the time window of 10 days around the flare. One event selection is optimized for discovery of E-upsilon(2). neutrino spectrum typical of first-order Fermi acceleration. A similar event selection has also been applied to the 40-string data to derive the time-integrated limits to the neutrino emission from the Crab. The other event selection was optimized for discovery of neutrino spectra with softer spectral index and TeV energy cutoffs as observed for various Galactic sources in. gamma-rays. The 90% confidence level (CL) best upper limits on the Crab flux during the 10 day flare are 4.73 x 10(-11) cm(-2) s(-1) TeV-1 for an E-upsilon(2). neutrino spectrum and 2.50 x 10(-10) cm(-2) s(-1) TeV-1 for a softer neutrino spectra of E-upsilon(-2.7), as indicated by Fermi measurements during the flare. In this paper, we also illustrate the impact of the time-integrated limit on the Crab neutrino steady emission. The limit obtained using 375.5 days of the 40-string configuration is compared to existing models of neutrino production from the Crab and its impact on astrophysical parameters is discussed. The most optimistic predictions of some models are already rejected by the IceCube neutrino telescope with more than 90% CL.
  •  
48.
  • Abbasi, R., et al. (author)
  • Search for a diffuse flux of astrophysical muon neutrinos with the IceCube 40-string detector
  • 2011
  • In: Physical Review D. - 1550-7998 .- 1550-2368. ; 84:8, s. 082001-
  • Journal article (peer-reviewed)abstract
    • The IceCube Neutrino Observatory is a 1 km(3) detector currently taking data at the South Pole. One of the main strategies used to look for astrophysical neutrinos with IceCube is the search for a diffuse flux of high-energy neutrinos from unresolved sources. A hard energy spectrum of neutrinos from isotropically distributed astrophysical sources could manifest itself as a detectable signal that may be differentiated from the atmospheric neutrino background by spectral measurement. This analysis uses data from the IceCube detector collected in its half completed configuration which operated between April 2008 and May 2009 to search for a diffuse flux of astrophysical muon neutrinos. A total of 12 877 upward-going candidate neutrino events have been selected for this analysis. No evidence for a diffuse flux of astrophysical muon neutrinos was found in the data set leading to a 90% C. L. upper limit on the normalization of an E(-2) astrophysical nu(mu) flux of 8.9 x 10(-9) GeV cm(-2) s(-1) sr(-1). The analysis is sensitive in the energy range between 35 TeV and 7 PeV. The 12 877 candidate neutrino events are consistent with atmospheric muon neutrinos measured from 332 GeV to 84 TeV and no evidence for a prompt component to the atmospheric neutrino spectrum is found.
  •  
49.
  • Abbasi, R., et al. (author)
  • Search for a Lorentz-violating sidereal signal with atmospheric neutrinos in IceCube
  • 2010
  • In: Physical Review D - Particles, Fields, Gravitation and Cosmology. - 1550-7998. ; 82, s. 112003-
  • Journal article (peer-reviewed)abstract
    • A search for sidereal modulation in the flux of atmospheric muon neutrinos in IceCube was performed. Such a signal could be an indication of Lorentz-violating physics. Neutrino oscillation models, derivable from extensions to the standard model, allow for neutrino oscillations that depend on the neutrino's direction of propagation. No such direction-dependent variation was found. A discrete Fourier transform method was used to constrain the Lorentz and CPT-violating coefficients in one of these models. Because of the unique high energy reach of IceCube, it was possible to improve constraints on certain Lorentz-violating oscillations by 3 orders of magnitude with respect to limits set by other experiments.
  •  
50.
  • Abbasi, R., et al. (author)
  • Search for dark matter from the Galactic halo with the IceCube Neutrino Telescope
  • 2011
  • In: Physical Review D. - 1550-7998 .- 1550-2368. ; 84:2, s. 022004-
  • Journal article (peer-reviewed)abstract
    • Self-annihilating or decaying dark matter in the Galactic halo might produce high energy neutrinos detectable with neutrino telescopes. We have conducted a search for such a signal using 276 days of data from the IceCube 22-string configuration detector acquired during 2007 and 2008. The effect of halo model choice in the extracted limit is reduced by performing a search that considers the outer halo region and not the Galactic Center. We constrain any large-scale neutrino anisotropy and are able to set a limit on the dark matter self-annihilation cross section of h similar or equal to 10(-22) cm(3) s(-1) for weakly interacting massive particle masses above 1 TeV, assuming a monochromatic neutrino line spectrum.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-50 of 153
Type of publication
journal article (139)
conference paper (9)
research review (2)
reports (1)
book chapter (1)
Type of content
peer-reviewed (139)
other academic/artistic (13)
Author/Editor
Bohm, Christian (52)
Bissok, M. (52)
Hanson, K. (52)
Helbing, K. (52)
Karg, T. (52)
Meures, T. (52)
show more...
Nahnhauer, R. (52)
Paul, L. (52)
Kolanoski, H. (51)
Sander, H. G. (51)
Landsman, H. (51)
Kowalski, M. (51)
Bay, R. (51)
Hultqvist, Klas (51)
Berghaus, P. (51)
Berley, D. (51)
Bernardini, E. (51)
Blaufuss, E. (51)
Christy, B. (51)
Desiati, P. (51)
DeYoung, T. (51)
Fadiran, O. (51)
Filimonov, K. (51)
Gallagher, J. (51)
Gerhardt, L. (51)
Gladstone, L. (51)
Grant, D. (51)
Ha, C. (51)
Walck, Christian (51)
Halzen, F. (51)
Hickford, S. (51)
Homeier, A. (51)
Hoshina, K. (51)
Hulth, Per Olof (51)
Hultqvist, K. (51)
Ishihara, A. (51)
Karle, A. (51)
Kiryluk, J. (51)
Kroll, G. (51)
Labare, M. (51)
Madsen, J. (51)
Maruyama, R. (51)
Mase, K. (51)
Meagher, K. (51)
Montaruli, T. (51)
Morse, R. (51)
Olivas, A. (51)
Pieloth, D. (51)
Rawlins, K. (51)
Resconi, E. (51)
show less...
University
Stockholm University (88)
Uppsala University (65)
Karolinska Institutet (35)
University of Gothenburg (17)
Lund University (5)
Umeå University (3)
show more...
Linnaeus University (3)
Royal Institute of Technology (2)
Linköping University (2)
Luleå University of Technology (1)
show less...
Language
English (153)
Research subject (UKÄ/SCB)
Natural sciences (96)
Medical and Health Sciences (22)
Social Sciences (6)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view