SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Cascante M) "

Search: WFRF:(Cascante M)

  • Result 1-25 of 25
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  •  
3.
  • van Rijswijk, Merlijn, et al. (author)
  • The future of metabolomics in ELIXIR.
  • 2017
  • In: F1000 Research. - : F1000 Research Ltd. - 2046-1402. ; 6
  • Journal article (peer-reviewed)abstract
    • Metabolomics, the youngest of the major omics technologies, is supported by an active community of researchers and infrastructure developers across Europe. To coordinate and focus efforts around infrastructure building for metabolomics within Europe, a workshop on the "Future of metabolomics in ELIXIR" was organised at Frankfurt Airport in Germany. This one-day strategic workshop involved representatives of ELIXIR Nodes, members of the PhenoMeNal consortium developing an e-infrastructure that supports workflow-based metabolomics analysis pipelines, and experts from the international metabolomics community. The workshop established metabolite identification as the critical area, where a maximal impact of computational metabolomics and data management on other fields could be achieved. In particular, the existing four ELIXIR Use Cases, where the metabolomics community - both industry and academia - would benefit most, and which could be exhaustively mapped onto the current five ELIXIR Platforms were discussed. This opinion article is a call for support for a new ELIXIR metabolomics Use Case, which aligns with and complements the existing and planned ELIXIR Platforms and Use Cases.
  •  
4.
  • Borén, Jan, 1963, et al. (author)
  • In situ localization of transketolase activity in epithelial cells of different rat tissues and subcellularly in liver parenchymal cells
  • 2006
  • In: J Histochem Cytochem. - 0022-1554. ; 54:2, s. 191-9
  • Journal article (peer-reviewed)abstract
    • Metabolic mapping of enzyme activities (enzyme histochemistry) is an important tool to understand (patho)physiological functions of enzymes. A new enzyme histochemical method has been developed to detect transketolase activity in situ in various rat tissues and its ultrastructural localization in individual cells. In situ detection of transketolase is important because this multifunctional enzyme has been related with diseases such as cancer, diabetes, Alzheimer's disease, and Wernicke-Korsakoff's syndrome. The proposed method is based on the tetrazolium salt method applied to unfixed cryostat sections in the presence of polyvinyl alcohol. The method appeared to be specific for transketolase activity when the proper control reaction is performed and showed a linear increase of the amount of final reaction product with incubation time. Transketolase activity was studied in liver, small intestine, trachea, tongue, kidney, adrenal gland, and eye. Activity was found in liver parenchyma, epithelium of small intestine, trachea, tongue, proximal tubules of kidney and cornea, and ganglion cells in medulla of adrenal gland. To demonstrate transketolase activity ultrastructurally in liver parenchymal cells, the cupper iron method was used. It was shown that transketolase activity was present in peroxisomes and at membranes of granular endoplasmic reticulum. This ultrastructural localization is similar to that of glucose-6-phosphate dehydrogenase activity, suggesting activity of the pentose phosphate pathway at these sites. It is concluded that the method developed for in situ localization of transketolase activity for light and electron microscopy is specific and allows further investigation of the role of transketolase in (proliferation of) cancer cells and other pathophysiological processes.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  • Martin-Bernabe, A, et al. (author)
  • Quantitative Proteomic Approach Reveals Altered Metabolic Pathways in Response to the Inhibition of Lysine Deacetylases in A549 Cells under Normoxia and Hypoxia
  • 2021
  • In: International journal of molecular sciences. - : MDPI AG. - 1422-0067. ; 22:7
  • Journal article (peer-reviewed)abstract
    • Growing evidence is showing that acetylation plays an essential role in cancer, but studies on the impact of KDAC inhibition (KDACi) on the metabolic profile are still in their infancy. Here, we analyzed, by using an iTRAQ-based quantitative proteomics approach, the changes in the proteome of KRAS-mutated non-small cell lung cancer (NSCLC) A549 cells in response to trichostatin-A (TSA) and nicotinamide (NAM) under normoxia and hypoxia. Part of this response was further validated by molecular and biochemical analyses and correlated with the proliferation rates, apoptotic cell death, and activation of ROS scavenging mechanisms in opposition to the ROS production. Despite the differences among the KDAC inhibitors, up-regulation of glycolysis, TCA cycle, oxidative phosphorylation and fatty acid synthesis emerged as a common metabolic response underlying KDACi. We also observed that some of the KDACi effects at metabolic levels are enhanced under hypoxia. Furthermore, we used a drug repositioning machine learning approach to list candidate metabolic therapeutic agents for KRAS mutated NSCLC. Together, these results allow us to better understand the metabolic regulations underlying KDACi in NSCLC, taking into account the microenvironment of tumors related to hypoxia, and bring new insights for the future rational design of new therapies.
  •  
10.
  •  
11.
  •  
12.
  • Asah, Stanley T, et al. (author)
  • Value exclusion in social–scientific approaches for assessing and valuing ecosystem features: Implications for behavioral compliance
  • 2023
  • In: BioScience. - 0006-3568. ; 73:9, s. 663-670
  • Journal article (peer-reviewed)abstract
    • Value inclusion is critical for effective ecosystem science policy and largely emerged from critiques of the value-exclusionary attributes of ecological and economic approaches to value assessments and valuations. But whether and how value is excluded during social–scientific approaches to the assessments and valuations of ecosystem features has not received adequate attention. We identify and discuss instances of when and how value is excluded during social–scientific approaches to the assessments and valuations of ecosystem features to which people ascribe value. We illustrate the implications of value exclusion on social compliance with ecosystem management and policy recommendations, a vital overlooked aspect of policy effectiveness. We also extend the meaning of value exclusion beyond value omission to include misidentification and misattribution of salience to valued ecosystem features. We offer suggestions for enabling value inclusion where ways to minimize exclusion are inapparent.
  •  
13.
  • Ashrafian, Hutan, et al. (author)
  • Metabolomics : The Stethoscope for the Twenty-First Century
  • 2021
  • In: Medical principles and practice. - : S. Karger. - 1011-7571 .- 1423-0151. ; 30:4, s. 301-310
  • Journal article (peer-reviewed)abstract
    • Metabolomics encompasses the systematic identification and quantification of all metabolic products in the human body. This field could provide clinicians with novel sets of diagnostic biomarkers for disease states in addition to quantifying treatment response to medications at an individualized level. This literature review aims to highlight the technology underpinning metabolic profiling, identify potential applications of metabolomics in clinical practice, and discuss the translational challenges that the field faces. We searched PubMed, MEDLINE, and EMBASE for primary and secondary research articles regarding clinical applications of metabolomics. Metabolic profiling can be performed using mass spectrometry and nuclear magnetic resonance-based techniques using a variety of biological samples. This is carried out in vivo or in vitro following careful sample collection, preparation, and analysis. The potential clinical applications constitute disruptive innovations in their respective specialities, particularly oncology and metabolic medicine. Outstanding issues currently preventing widespread clinical use are scalability of data interpretation, standardization of sample handling practice, and e-infrastructure. Routine utilization of metabolomics at a patient and population level will constitute an integral part of future healthcare provision.
  •  
14.
  •  
15.
  •  
16.
  •  
17.
  •  
18.
  •  
19.
  • Emami Khoonsari, Payam, et al. (author)
  • Interoperable and scalable data analysis with microservices : Applications in metabolomics
  • 2019
  • In: Bioinformatics. - : Oxford University Press (OUP). - 1367-4803 .- 1367-4811. ; 35:19, s. 3752-3760
  • Journal article (peer-reviewed)abstract
    • MotivationDeveloping a robust and performant data analysis workflow that integrates all necessary components whilst still being able to scale over multiple compute nodes is a challenging task. We introduce a generic method based on the microservice architecture, where software tools are encapsulated as Docker containers that can be connected into scientific workflows and executed using the Kubernetes container orchestrator.ResultsWe developed a Virtual Research Environment (VRE) which facilitates rapid integration of new tools and developing scalable and interoperable workflows for performing metabolomics data analysis. The environment can be launched on-demand on cloud resources and desktop computers. IT-expertise requirements on the user side are kept to a minimum, and workflows can be re-used effortlessly by any novice user. We validate our method in the field of metabolomics on two mass spectrometry, one nuclear magnetic resonance spectroscopy and one fluxomics study. We showed that the method scales dynamically with increasing availability of computational resources. We demonstrated that the method facilitates interoperability using integration of the major software suites resulting in a turn-key workflow encompassing all steps for mass-spectrometry-based metabolomics including preprocessing, statistics and identification. Microservices is a generic methodology that can serve any scientific discipline and opens up for new types of large-scale integrative science.
  •  
20.
  • Lee, W. N., et al. (author)
  • Metabolic sensitivity of pancreatic tumour cell apoptosis to glycogen phosphorylase inhibitor treatment
  • 2004
  • In: Br J Cancer. - 0007-0920. ; 91:12, s. 2094-100
  • Journal article (peer-reviewed)abstract
    • Inhibitors of glycogen breakdown regulate glucose homeostasis by limiting glucose production in diabetes. Here we demonstrate that restrained glycogen breakdown also inhibits cancer cell proliferation and induces apoptosis through limiting glucose oxidation, as well as nucleic acid and de novo fatty acid synthesis. Increasing doses (50-100 microM) of the glycogen phosphorylase inhibitor CP-320626 inhibited [1,2-(13)C(2)]glucose stable isotope substrate re-distribution among glycolysis, pentose and de novo fatty acid synthesis in MIA pancreatic adenocarcinoma cells. Limited oxidative pentose-phosphate synthesis, glucose contribution to acetyl CoA and de novo fatty acid synthesis closely correlated with decreased cell proliferation. The stable isotope-based dynamic metabolic profile of MIA cells indicated a significant dose-dependent decrease in macromolecule synthesis, which was detected at lower drug doses and before the appearance of apoptosis markers. Normal fibroblasts (CRL-1501) did not show morphological or metabolic signs of apoptosis likely due to their slow rate of growth and metabolic activity. This indicates that limiting carbon re-cycling and rapid substrate mobilisation from glycogen may be an effective and selective target site for new drug development in rapidly dividing cancer cells. In conclusion, pancreatic cancer cell growth arrest and death are closely associated with a characteristic decrease in glycogen breakdown and glucose carbon re-distribution towards RNA/DNA and fatty acids during CP-320626 treatment.
  •  
21.
  •  
22.
  •  
23.
  •  
24.
  • Salek, Reza M, et al. (author)
  • COordination of Standards in MetabOlomicS (COSMOS) : facilitating integrated metabolomics data access
  • 2015
  • In: Metabolomics. - : Springer-Verlag New York. - 1573-3882 .- 1573-3890. ; 11:6, s. 1587-1597
  • Journal article (peer-reviewed)abstract
    • Metabolomics has become a crucial phenotyping technique in a range of research fields including medicine, the life sciences, biotechnology and the environmental sciences. This necessitates the transfer of experimental information between research groups, as well as potentially to publishers and funders. After the initial efforts of the metabolomics standards initiative, minimum reporting standards were proposed which included the concepts for metabolomics databases. Built by the community, standards and infrastructure for metabolomics are still needed to allow storage, exchange, comparison and re-utilization of metabolomics data. The Framework Programme 7 EU Initiative 'coordination of standards in metabolomics' (COSMOS) is developing a robust data infrastructure and exchange standards for metabolomics data and metadata. This is to support workflows for a broad range of metabolomics applications within the European metabolomics community and the wider metabolomics and biomedical communities' participation. Here we announce our concepts and efforts asking for re-engagement of the metabolomics community, academics and industry, journal publishers, software and hardware vendors, as well as those interested in standardisation worldwide (addressing missing metabolomics ontologies, complex-metadata capturing and XML based open source data exchange format), to join and work towards updating and implementing metabolomics standards.
  •  
25.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-25 of 25

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view