SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Chaptal Vincent) "

Search: WFRF:(Chaptal Vincent)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Chaptal, Vincent, et al. (author)
  • Substrate-bound and substrate-free outward-facing structures of a multidrug ABC exporter
  • 2022
  • In: Science Advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 8:4
  • Journal article (peer-reviewed)abstract
    • Multidrug ABC transporters translocate drugs across membranes by a mechanism for which the molecular features of drug release are so far unknown. Here, we resolved three ATP-Mg2+-bound outward-facing conformations of the Bacillus subtilis (homodimeric) BmrA by x-ray crystallography and single-particle cryo-electron microscopy (EM) in detergent solution, one of them with rhodamine 6G (R6G), a substrate exported by BmrA when over-expressed in B. subtilis. Two R6G molecules bind to the drug-binding cavity at the level of the outer leaflet, between transmembrane (TM) helices 1-2 of one monomer and TM5'-6' of the other. They induce a rearrangement of TM1-2, highlighting a local flexibility that we confirmed by hydrogen/deuterium exchange and molecular dynamics simulations. In the absence of R6G, simulations show a fast postrelease occlusion of the cavity driven by hydrophobicity, while when present, R6G can move within the cavity, maintaining it open.
  •  
2.
  • Pata, Jorgaq, et al. (author)
  • Purification and characterization of Cdr1, the drug-efflux pump conferring azole resistance in Candida species
  • 2024
  • In: Biochimie. - 0300-9084 .- 1638-6183. ; 220, s. 167-178
  • Journal article (peer-reviewed)abstract
    • Candida albicans and C. glabrata express exporters of the ATP -binding cassette (ABC) superfamily and address them to their plasma membrane to expel azole antifungals, which cancels out their action and allows the yeast to become multidrug resistant (MDR). In a way to understand this mechanism of defense, we describe the purification and characterization of Cdr1, the membrane ABC exporter mainly responsible for such phenotype in both species. Cdr1 proteins were functionally expressed in the baker yeast, tagged at their C -terminal end with either a His -tag for the glabrata version, cgCdr1-His, or a green fluorescent protein (GFP) preceded by a proteolytic cleavage site for the albicans version, caCdr1-P-GFP. A membrane Cdr1-enriched fraction was then prepared to assay several detergents and stabilizers, probing their level of extraction and the ATPase activity of the proteins as a functional marker. Immobilized metal -affinity and size -exclusion chromatographies (IMAC, SEC) were then carried out to isolate homogenous samples. Overall, our data show that although topologically and phylogenetically close, both proteins display quite distinct behaviors during the extraction and purification steps, and qualify cgCdr1 as a good candidate to characterize this type of proteins for developing future inhibitors of their azole antifungal efflux activity. 
  •  
3.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view