SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Chen CZ) "

Search: WFRF:(Chen CZ)

  • Result 1-21 of 21
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Campbell, PJ, et al. (author)
  • Pan-cancer analysis of whole genomes
  • 2020
  • In: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 578:7793, s. 82-
  • Journal article (peer-reviewed)abstract
    • Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale1–3. Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4–5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter4; identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation5,6; analyses timings and patterns of tumour evolution7; describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity8,9; and evaluates a range of more-specialized features of cancer genomes8,10–18.
  •  
2.
  •  
3.
  • Chen, CZ, et al. (author)
  • Identification of Tumor Mutation Burden, Microsatellite Instability, and Somatic Copy Number Alteration Derived Nine Gene Signatures to Predict Clinical Outcomes in STAD
  • 2022
  • In: Frontiers in molecular biosciences. - : Frontiers Media SA. - 2296-889X. ; 9, s. 793403-
  • Journal article (peer-reviewed)abstract
    • Genomic features, including tumor mutation burden (TMB), microsatellite instability (MSI), and somatic copy number alteration (SCNA), had been demonstrated to be involved with the tumor microenvironment (TME) and outcome of gastric cancer (GC). We obtained profiles of TMB, MSI, and SCNA by processing 405 GC data from The Cancer Genome Atlas (TCGA) and then conducted a comprehensive analysis though “iClusterPlus.” A total of two subgroups were generated, with distinguished prognosis, somatic mutation burden, copy number changes, and immune landscape. We revealed that Cluster1 was marked by a better prognosis, accompanied by higher TMB, MSIsensor score, TMEscore, and lower SCNA burden. Based on these clusters, we screened 196 differentially expressed genes (DEGs), which were subsequently projected into univariate Cox survival analysis. We constructed a 9-gene immune risk score (IRS) model using LASSO-penalized logistic regression. Moreover, the prognostic prediction of IRS was verified by receiver operating characteristic (ROC) curve analysis and nomogram plot. Another independent Gene Expression Omnibus (GEO) contained specimens from 109 GC patients was designed as an external validation. Our works suggested that the 9‐gene‐signature prediction model, which was derived from TMB, MSI, and SCNA, was a promising predictive tool for clinical outcomes in GC patients. This novel methodology may help clinicians uncover the underlying mechanisms and guide future treatment strategies.
  •  
4.
  •  
5.
  •  
6.
  • Jin, X, et al. (author)
  • Integrated Analysis of Copy Number Variation, Microsatellite Instability, and Tumor Mutation Burden Identifies an 11-Gene Signature Predicting Survival in Breast Cancer
  • 2021
  • In: Frontiers in cell and developmental biology. - : Frontiers Media SA. - 2296-634X. ; 9, s. 721505-
  • Journal article (peer-reviewed)abstract
    • Genetic variants such as copy number variation (CNV), microsatellite instability (MSI), and tumor mutation burden (TMB) have been reported to associate with the immune microenvironment and prognosis of patients with breast cancer. In this study, we performed an integrated analysis of CNV, MSI, and TMB data obtained from The Cancer Genome Atlas, thereby generating two genetic variants-related subgroups. We characterized the differences between the two subgroups in terms of prognosis, MSI burden, TMB, CNV, mutation landscape, and immune landscape. We found that cluster 2 was marked by a worse prognosis and lower TMB. According to these groupings, we identified 130 differentially expressed genes, which were subjected to univariate and least absolute shrinkage and selection operator-penalized multivariate modeling. Consequently, we constructed an 11-gene signature risk model called the genomic variation-related prognostic risk model (GVRM). Using ROC analysis and a calibration plot, we estimated the prognostic prediction of this GVRM. We confirmed the predictive efficiency of this GVRM by validating it in another independent International Cancer Genome Consortium cohort. Our results conclude that an 11-gene signature developed by integrated analysis of CNV, MSI, and TMB has a high potential to predict breast cancer prognosis, which provided a strong rationale for further investigating molecular mechanisms and guiding clinical decision-making in breast cancer.
  •  
7.
  • Kilpelainen, TO, et al. (author)
  • Multi-ancestry study of blood lipid levels identifies four loci interacting with physical activity
  • 2019
  • In: Nature communications. - London : Springer Science and Business Media LLC. - 2041-1723. ; 10:1, s. 376-
  • Journal article (peer-reviewed)abstract
    • Many genetic loci affect circulating lipid levels, but it remains unknown whether lifestyle factors, such as physical activity, modify these genetic effects. To identify lipid loci interacting with physical activity, we performed genome-wide analyses of circulating HDL cholesterol, LDL cholesterol, and triglyceride levels in up to 120,979 individuals of European, African, Asian, Hispanic, and Brazilian ancestry, with follow-up of suggestive associations in an additional 131,012 individuals. We find four loci, in/near CLASP1, LHX1, SNTA1, and CNTNAP2, that are associated with circulating lipid levels through interaction with physical activity; higher levels of physical activity enhance the HDL cholesterol-increasing effects of the CLASP1, LHX1, and SNTA1 loci and attenuate the LDL cholesterol-increasing effect of the CNTNAP2 locus. The CLASP1, LHX1, and SNTA1 regions harbor genes linked to muscle function and lipid metabolism. Our results elucidate the role of physical activity interactions in the genetic contribution to blood lipid levels.
  •  
8.
  •  
9.
  •  
10.
  •  
11.
  •  
12.
  • Kanai, M, et al. (author)
  • 2023
  • swepub:Mat__t
  •  
13.
  • Akdemir, KC, et al. (author)
  • Disruption of chromatin folding domains by somatic genomic rearrangements in human cancer
  • 2020
  • In: Nature genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 52:3, s. 294-
  • Journal article (peer-reviewed)abstract
    • Chromatin is folded into successive layers to organize linear DNA. Genes within the same topologically associating domains (TADs) demonstrate similar expression and histone-modification profiles, and boundaries separating different domains have important roles in reinforcing the stability of these features. Indeed, domain disruptions in human cancers can lead to misregulation of gene expression. However, the frequency of domain disruptions in human cancers remains unclear. Here, as part of the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA), which aggregated whole-genome sequencing data from 2,658 cancers across 38 tumor types, we analyzed 288,457 somatic structural variations (SVs) to understand the distributions and effects of SVs across TADs. Notably, SVs can lead to the fusion of discrete TADs, and complex rearrangements markedly change chromatin folding maps in the cancer genomes. Notably, only 14% of the boundary deletions resulted in a change in expression in nearby genes of more than twofold.
  •  
14.
  •  
15.
  • Cortes-Ciriano, I, et al. (author)
  • Comprehensive analysis of chromothripsis in 2,658 human cancers using whole-genome sequencing
  • 2020
  • In: Nature genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 52:3, s. 331-
  • Journal article (peer-reviewed)abstract
    • Chromothripsis is a mutational phenomenon characterized by massive, clustered genomic rearrangements that occurs in cancer and other diseases. Recent studies in selected cancer types have suggested that chromothripsis may be more common than initially inferred from low-resolution copy-number data. Here, as part of the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA), we analyze patterns of chromothripsis across 2,658 tumors from 38 cancer types using whole-genome sequencing data. We find that chromothripsis events are pervasive across cancers, with a frequency of more than 50% in several cancer types. Whereas canonical chromothripsis profiles display oscillations between two copy-number states, a considerable fraction of events involve multiple chromosomes and additional structural alterations. In addition to non-homologous end joining, we detect signatures of replication-associated processes and templated insertions. Chromothripsis contributes to oncogene amplification and to inactivation of genes such as mismatch-repair-related genes. These findings show that chromothripsis is a major process that drives genome evolution in human cancer.
  •  
16.
  • Guo, J, et al. (author)
  • Body Mass Index Trajectories Preceding Incident Mild Cognitive Impairment and Dementia
  • 2022
  • In: JAMA psychiatry. - : American Medical Association (AMA). - 2168-6238 .- 2168-622X. ; 79:12, s. 1180-1187
  • Journal article (peer-reviewed)abstract
    • Body mass index (BMI) trajectories before the onset of mild cognitive impairment (MCI) and during the progression from MCI to dementia remain unclear.ObjectiveTo assess the long-term BMI trajectories preceding incident MCI and dementia and explore whether they are associated with brain pathologies.Design, Setting, and ParticipantsThe Rush Memory and Aging Project (MAP) was an ongoing community-based cohort study. This study included cognitively intact participants aged 60 to 90 years at baseline with annual follow-up from October 1997 to December 2020 (maximum follow-up of 22 years). During the follow-up, participants underwent brain autopsies. Data were analyzed from August 2021 to February 2022 using mixed-effect models.ExposuresBMI was calculated using height and weight measured at baseline and follow-ups.Main Outcomes and MeasuresIncident MCI and dementia were diagnosed following standard criteria. Neuropathological assessments (including global Alzheimer disease and vascular pathology) were performed for autopsies.ResultsA total of 1390 participants (mean [SD] age, 78.4 [6.5] years; 1063 female [76.5%]) were included in the study. In the analysis of BMI trajectories before MCI (n = 939), during the follow-up (median [IQR] duration, 6 [3-9] years), 371 participants (39.5%) developed MCI, of whom 88 (23.7%) progressed to dementia. Those who developed MCI were older (mean [SD] age, 79.6 [5.9] years vs 76.9 [6.6] years), consumed less alcohol (median [IQR] consumption, 0 [0-5.8] g/day vs 1.1 [0-6.9] g/day), had a lower BMI (mean [SD], 27.2 [4.9] vs 28.2 [5.9]), and were more likely to be apolipoprotein E (APOE) ε4 carriers (89 of 371 [24.0%] vs 98 of 568 [17.3%]) compared with those who remained cognitively intact over follow-up. Those who developed dementia were older (mean [SD] age, 81.0 [5.2] years vs 79.1 [6.0] years), had a lower level of physical activity (median [IQR] activity, 1.0 [0-2.5] h/week vs 1.8 [0.2-3.8] h/week), and were more likely to be APOE ε4 carriers than those who were dementia-free (33 of 88 [37.5%] vs 56 of 283 [19.8%]). Compared with participants who remained cognitively intact, in those with incident MCI, BMI tended to decline earlier and faster. From 7 years before diagnosis, people with incident MCI had an associated significantly lower BMI (mean difference, −0.96; 95% CI, −1.85 to −0.07) than those who were cognitively intact. Among people with incident MCI, the slopes of BMI decline did not differ significantly between those who did and did not develop dementia (β, −0.03; 95% CI, −0.21 to 0.15). In the analysis of BMI trajectories before autopsy (n = 358), BMI was associated with a faster declination among participants with a high burden of global Alzheimer disease pathology (β for pathology × time highest vs lowest tertile, −0.14; 95% CI, −0.26 to −0.02) or vascular pathology (β for pathology × time2 highest vs lowest tertile, 0.02; 95% CI, 0-0.05).Conclusions and RelevanceResults of this cohort study suggest that among cognitively intact people, significantly lower BMI occurs beginning approximately 7 years before MCI diagnosis. After MCI diagnosis, BMI declines at the same pace in people who develop dementia and those who do not. High brain pathologies may underly the BMI decline preceding dementing disorders.
  •  
17.
  •  
18.
  • Li, YL, et al. (author)
  • Patterns of somatic structural variation in human cancer genomes
  • 2020
  • In: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 578:7793, s. 112-
  • Journal article (peer-reviewed)abstract
    • A key mutational process in cancer is structural variation, in which rearrangements delete, amplify or reorder genomic segments that range in size from kilobases to whole chromosomes1–7. Here we develop methods to group, classify and describe somatic structural variants, using data from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA), which aggregated whole-genome sequencing data from 2,658 cancers across 38 tumour types8. Sixteen signatures of structural variation emerged. Deletions have a multimodal size distribution, assort unevenly across tumour types and patients, are enriched in late-replicating regions and correlate with inversions. Tandem duplications also have a multimodal size distribution, but are enriched in early-replicating regions—as are unbalanced translocations. Replication-based mechanisms of rearrangement generate varied chromosomal structures with low-level copy-number gains and frequent inverted rearrangements. One prominent structure consists of 2–7 templates copied from distinct regions of the genome strung together within one locus. Such cycles of templated insertions correlate with tandem duplications, and—in liver cancer—frequently activate the telomerase gene TERT. A wide variety of rearrangement processes are active in cancer, which generate complex configurations of the genome upon which selection can act.
  •  
19.
  •  
20.
  • Rheinbay, E, et al. (author)
  • Analyses of non-coding somatic drivers in 2,658 cancer whole genomes
  • 2020
  • In: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 578:7793, s. 102-
  • Journal article (peer-reviewed)abstract
    • The discovery of drivers of cancer has traditionally focused on protein-coding genes1–4. Here we present analyses of driver point mutations and structural variants in non-coding regions across 2,658 genomes from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium5 of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). For point mutations, we developed a statistically rigorous strategy for combining significance levels from multiple methods of driver discovery that overcomes the limitations of individual methods. For structural variants, we present two methods of driver discovery, and identify regions that are significantly affected by recurrent breakpoints and recurrent somatic juxtapositions. Our analyses confirm previously reported drivers6,7, raise doubts about others and identify novel candidates, including point mutations in the 5′ region of TP53, in the 3′ untranslated regions of NFKBIZ and TOB1, focal deletions in BRD4 and rearrangements in the loci of AKR1C genes. We show that although point mutations and structural variants that drive cancer are less frequent in non-coding genes and regulatory sequences than in protein-coding genes, additional examples of these drivers will be found as more cancer genomes become available.
  •  
21.
  • Rodriguez-Martin, B, et al. (author)
  • Pan-cancer analysis of whole genomes identifies driver rearrangements promoted by LINE-1 retrotransposition
  • 2020
  • In: Nature genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 52:3, s. 306-
  • Journal article (peer-reviewed)abstract
    • About half of all cancers have somatic integrations of retrotransposons. Here, to characterize their role in oncogenesis, we analyzed the patterns and mechanisms of somatic retrotransposition in 2,954 cancer genomes from 38 histological cancer subtypes within the framework of the Pan-Cancer Analysis of Whole Genomes (PCAWG) project. We identified 19,166 somatically acquired retrotransposition events, which affected 35% of samples and spanned a range of event types. Long interspersed nuclear element (LINE-1; L1 hereafter) insertions emerged as the first most frequent type of somatic structural variation in esophageal adenocarcinoma, and the second most frequent in head-and-neck and colorectal cancers. Aberrant L1 integrations can delete megabase-scale regions of a chromosome, which sometimes leads to the removal of tumor-suppressor genes, and can induce complex translocations and large-scale duplications. Somatic retrotranspositions can also initiate breakage–fusion–bridge cycles, leading to high-level amplification of oncogenes. These observations illuminate a relevant role of 22 L1 retrotransposition in remodeling the cancer genome, with potential implications for the development of human tumors.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-21 of 21

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view