SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Choi JK) "

Search: WFRF:(Choi JK)

  • Result 1-38 of 38
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  • Menden, MP, et al. (author)
  • Community assessment to advance computational prediction of cancer drug combinations in a pharmacogenomic screen
  • 2019
  • In: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 10:1, s. 2674-
  • Journal article (peer-reviewed)abstract
    • The effectiveness of most cancer targeted therapies is short-lived. Tumors often develop resistance that might be overcome with drug combinations. However, the number of possible combinations is vast, necessitating data-driven approaches to find optimal patient-specific treatments. Here we report AstraZeneca’s large drug combination dataset, consisting of 11,576 experiments from 910 combinations across 85 molecularly characterized cancer cell lines, and results of a DREAM Challenge to evaluate computational strategies for predicting synergistic drug pairs and biomarkers. 160 teams participated to provide a comprehensive methodological development and benchmarking. Winning methods incorporate prior knowledge of drug-target interactions. Synergy is predicted with an accuracy matching biological replicates for >60% of combinations. However, 20% of drug combinations are poorly predicted by all methods. Genomic rationale for synergy predictions are identified, including ADAM17 inhibitor antagonism when combined with PIK3CB/D inhibition contrasting to synergy when combined with other PI3K-pathway inhibitors in PIK3CA mutant cells.
  •  
6.
  • Thomas, HS, et al. (author)
  • 2019
  • swepub:Mat__t
  •  
7.
  •  
8.
  •  
9.
  • Niemi, MEK, et al. (author)
  • 2021
  • swepub:Mat__t
  •  
10.
  •  
11.
  •  
12.
  • Campbell, PJ, et al. (author)
  • Pan-cancer analysis of whole genomes
  • 2020
  • In: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 578:7793, s. 82-
  • Journal article (peer-reviewed)abstract
    • Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale1–3. Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4–5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter4; identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation5,6; analyses timings and patterns of tumour evolution7; describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity8,9; and evaluates a range of more-specialized features of cancer genomes8,10–18.
  •  
13.
  •  
14.
  • Rheinbay, E, et al. (author)
  • Analyses of non-coding somatic drivers in 2,658 cancer whole genomes
  • 2020
  • In: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 578:7793, s. 102-
  • Journal article (peer-reviewed)abstract
    • The discovery of drivers of cancer has traditionally focused on protein-coding genes1–4. Here we present analyses of driver point mutations and structural variants in non-coding regions across 2,658 genomes from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium5 of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). For point mutations, we developed a statistically rigorous strategy for combining significance levels from multiple methods of driver discovery that overcomes the limitations of individual methods. For structural variants, we present two methods of driver discovery, and identify regions that are significantly affected by recurrent breakpoints and recurrent somatic juxtapositions. Our analyses confirm previously reported drivers6,7, raise doubts about others and identify novel candidates, including point mutations in the 5′ region of TP53, in the 3′ untranslated regions of NFKBIZ and TOB1, focal deletions in BRD4 and rearrangements in the loci of AKR1C genes. We show that although point mutations and structural variants that drive cancer are less frequent in non-coding genes and regulatory sequences than in protein-coding genes, additional examples of these drivers will be found as more cancer genomes become available.
  •  
15.
  • 2021
  • swepub:Mat__t
  •  
16.
  • 2021
  • swepub:Mat__t
  •  
17.
  •  
18.
  •  
19.
  •  
20.
  •  
21.
  • Choi, WJ, et al. (author)
  • Expression of the Hutchinson-Gilford Progeria Mutation Leads to Aberrant Dentin Formation
  • 2018
  • In: Scientific reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 8:1, s. 15368-
  • Journal article (peer-reviewed)abstract
    • Hutchinson-Gilford progeria syndrome (HGPS) is a rare accelerated senescence disease, manifesting dental abnormalities and several symptoms suggestive of premature aging. Although irregular secondary dentin formation in HGPS patients has been reported, pathological mechanisms underlying aberrant dentin formation remain undefined. In this study, we analyzed the mandibular molars of a tissue-specific mouse model that overexpresses the most common HGPS mutation (LMNA, c.1824C > T, p.G608G) in odontoblasts. In the molars of HGPS mutant mice at postnatal week 13, targeted expression of the HGPS mutation in odontoblasts results in excessive dentin formation and pulp obliteration. Circumpulpal dentin of HGPS mutants was clearly distinguished from secondary dentin of wild-type (WT) littermates and its mantle dentin by considering the irregular porous structure and loss of dentinal tubules. However, the dentin was significantly thinner in the molars of HGPS mutants at postnatal weeks 3 and 5 than in those of WT mice. In vitro analyses using MDPC-23, a mouse odontoblastic cell line, showed cellular senescence, defects of signaling pathways and consequential downregulation of matrix protein expression in progerin-expressing odontoblasts. These results indicate that expression of the HGPS mutation in odontoblasts disturbs physiological secondary dentin formation. In addition, progerin-expressing odontoblasts secrete paracrine factors that can stimulate odontogenic differentiation of dental pulp cells. Taken together, our results suggest that the aberrant circumpulpal dentin of HGPS mutants results from defects in physiological secondary dentin formation and consequential pathologic response stimulated by paracrine factors from neighboring progerin-expressing odontoblasts.
  •  
22.
  •  
23.
  •  
24.
  •  
25.
  •  
26.
  •  
27.
  •  
28.
  •  
29.
  •  
30.
  •  
31.
  •  
32.
  •  
33.
  •  
34.
  •  
35.
  •  
36.
  •  
37.
  •  
38.
  • Glasbey, JC, et al. (author)
  • 2021
  • swepub:Mat__t
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-38 of 38

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view