SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Colzi L.) "

Search: WFRF:(Colzi L.)

  • Result 1-15 of 15
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Haasler, D., et al. (author)
  • First extragalactic detection of a phosphorus-bearing molecule with ALCHEMI: Phosphorus nitride (PN)
  • 2022
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 659
  • Journal article (peer-reviewed)abstract
    • Context. Phosphorus (P) is a crucial element for life given its central role in several biomolecules. P-bearing molecules have been discovered in different regions of the Milky Way, but not yet towards an extragalactic environment. Aims. We searched for P-bearing molecules outside the Milky Way towards the nearby starburst Galaxy NGC 253. Methods. Using observations from the ALMA Comprehensive High-resolution Extragalactic Molecular Inventory (ALCHEMI) project, we used the MAdrid Data CUBe Analysis package to model the emission of P-bearing molecules assuming local thermodynamic equilibrium (LTE) conditions. We also performed a non-LTE analysis using SpectralRadex. Results. We report the detection of a P-bearing molecule, phosphorus nitride (PN), for the first time in an extragalactic environment, towards two giant molecular clouds (GMCs) of NGC 253. The LTE analysis yields total PN beam-averaged column densities N = (1.20 +/- 0.09) x 10(13) cm(-2) and N = (6.5 +/- 1.6) x 10(12) cm(-2), which translate into abundances with respect to H-2 of chi = (8.0 +/- 1.0) x 10(-12) and chi = (4.4 +/- 1.2) x 10(-12). We derived a low excitation temperature of T-ex = (4.4 +/- 1.3) K towards the GMC with the brightest PN emission, which indicates that PN is sub-thermally excited. The non-LTE analysis results in column densities consistent with the LTE values. We also searched for other P-bearing molecules (PO, PH3, CP, and CCP), and upper limits were derived. The derived PO/PN ratios are < 1.3 and < 1.7. The abundance ratio between PN and the shock-tracer SiO derived towards NGC 253 follows the same trend previously found towards Galactic sources. Conclusions. Comparison of the observations with chemical models indicates that the derived molecular abundances of PN in NGC 253 can be explained by shock-driven chemistry followed by cosmic-ray-driven photochemistry.
  •  
2.
  • Martin, S., et al. (author)
  • ALCHEMI, an ALMA Comprehensive High-resolution Extragalactic Molecular Inventory: Survey presentation and first results from the ACA array
  • 2021
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 656
  • Journal article (peer-reviewed)abstract
    • Context. The interstellar medium is the locus of physical processes affecting the evolution of galaxies which drive or are the result of star formation activity, supermassive black hole growth, and feedback. The resulting physical conditions determine the observable chemical abundances that can be explored through molecular emission observations at millimeter and submillimeter wavelengths. Aims. Our goal is to unveiling the molecular richness of the central region of the prototypical nearby starburst galaxy NGC 253 at an unprecedented combination of sensitivity, spatial resolution, and frequency coverage. Methods. We used the Atacama Large Millimeter/submillimeter Array (ALMA), covering a nearly contiguous 289 GHz frequency range between 84.2 and 373.2 GHz, to image the continuum and spectral line emission at 1.6″(∼28 pc) resolution down to a sensitivity of 30 - 50 mK. This article describes the ALMA Comprehensive High-resolution Extragalactic Molecular Inventory (ALCHEMI) large program. We focus on the analysis of the spectra extracted from the 15″ (∼255 pc) resolution ALMA Compact Array data. Results. We modeled the molecular emission assuming local thermodynamic equilibrium with 78 species being detected. Additionally, multiple hydrogen and helium recombination lines are identified. Spectral lines contribute 5 to 36% of the total emission in frequency bins of 50 GHz. We report the first extragalactic detections of C2H5OH, HOCN, HC3HO, and several rare isotopologues. Isotopic ratios of carbon, oxygen, sulfur, nitrogen, and silicon were measured with multiple species. Concluison. Infrared pumped vibrationaly excited HCN, HNC, and HC3N emission, originating in massive star formation locations, is clearly detected at low resolution, while we do not detect it for HCO+. We suggest high temperature conditions in these regions driving a seemingly "carbon-rich"chemistry which may also explain the observed high abundance of organic species close to those in Galactic hot cores. The Lvib/LIR ratio was used as a proxy to estimate a 3% contribution from the proto super star cluster to the global infrared emission. Measured isotopic ratios with high dipole moment species agree with those within the central kiloparsec of the Galaxy, while those derived from 13C/18O are a factor of five larger, confirming the existence of multiple interstellar medium components within NGC 253 with different degrees of nucleosynthesis enrichment. The ALCHEMI data set provides a unique template for studies of star-forming galaxies in the early Universe.
  •  
3.
  • Bao, Min, et al. (author)
  • Physical properties of the southwest outflow streamer in the starburst galaxy NGC 253 with ALCHEMI
  • 2024
  • In: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 687
  • Journal article (peer-reviewed)abstract
    • Aims . The physical properties of galactic molecular outflows are important as they could constrain outflow formation mechanisms. In this work, we study the properties of the southwest (SW) outflow streamer including gas kinematics, optical depth, dense gas fraction, and shock strength through molecular emission in the central molecular zone of the starburst galaxy NGC 253. Methods . We imaged the molecular emission in NGC 253 at a spatial resolution of 1.600(∼27 pc at D ∼ 3.5 Mpc) based on data from the ALMA Comprehensive High-resolution Extragalactic Molecular Inventory (ALCHEMI) large program. We traced the velocity and velocity dispersion of molecular gas with the CO(1–0) line and studied the molecular spectra in the region of the SW streamer, the brightest CO streamer in NGC 253. We constrained the optical depth of the CO emission with the CO/13CO(1–0) ratio, the dense gas fraction with the HCN/CO(1–0), H13CN/13CO(1–0) and N2H+/13CO(1–0) ratios, as well as the shock strength with the SiO(2–1)/13CO(1–0) and CH3OH(2k–1k)/13CO(1–0) ratios. Results . The CO/13CO(1–0) integrated intensity ratio is ∼21 in the SW streamer region, which approximates the C/13C isotopic abundance ratio. The higher integrated intensity ratio compared to the disk can be attributed to the optically thinner environment of CO(1–0) emission inside the SW streamer. The HCN/CO(1–0) and SiO(2–1)/13CO(1–0) integrated intensity ratios both approach ∼0.2 in three giant molecular clouds (GMCs) at the base of the outflow streamers, which implies a higher dense gas fraction and strength of fast shocks in those GMCs than in the disk, while the HCN/CO(1–0) integrated intensity ratio is moderate in the SW streamer region. The contours of those two integrated intensity ratios are extended in the directions of outflow streamers, which connect the enhanced dense gas fraction and shock strength with molecular outflow. Moreover, the molecular gas with an enhanced dense gas fraction and shock strength located at the base of the SW streamer shares the same velocity as the outflow. Conclusions . The enhanced dense gas fraction and shock strength at the base of the outflow streamers suggest that star formation inside the GMCs can trigger shocks and further drive the molecular outflow. The increased CO/13CO(1–0) integrated intensity ratio coupled with the moderate HCN/CO(1–0) integrated intensity ratio in the SW streamer region are consistent with the picture that the gas velocity gradient inside the streamer may decrease the optical depth of CO(1–0) emission, as well as the dense gas fraction in the extended streamer region.
  •  
4.
  • Behrens, E., et al. (author)
  • Tracing Interstellar Heating: An ALCHEMI Measurement of the HCN Isomers in NGC 253
  • 2022
  • In: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 939:2
  • Journal article (peer-reviewed)abstract
    • We analyze HCN and HNC emission in the nearby starburst galaxy NGC 253 to investigate its effectiveness in tracing heating processes associated with star formation. This study uses multiple HCN and HNC rotational transitions observed using the Atacama Large Millimeter/submillimeter Array via the ALCHEMI Large Program. To understand the conditions and associated heating mechanisms within NGC 253's dense gas, we employ Bayesian nested sampling techniques applied to chemical and radiative transfer models, which are constrained using our HCN and HNC measurements. We find that the volume density n H 2 and cosmic-ray ionization rate (CRIR) ζ are enhanced by about an order of magnitude in the galaxy’s central regions as compared to those further from the nucleus. In NGC 253's central giant molecular clouds (GMCs), where observed HCN/HNC abundance ratios are the lowest, n ∼ 105.5 cm−3 and ζ ∼ 10−12 s−1 (greater than 104 times the average Galactic rate). We find a positive correlation in the association of both density and CRIR with the number of star formation-related heating sources (supernova remnants, H ii regions, and super hot cores) located in each GMC, as well as a correlation between CRIRs and supernova rates. Additionally, we see an anticorrelation between the HCN/HNC ratio and CRIR, indicating that this ratio will be lower in regions where ζ is higher. Though previous studies suggested HCN and HNC may reveal strong mechanical heating processes in NGC 253's CMZ, we find cosmic-ray heating dominates the heating budget, and mechanical heating does not play a significant role in the HCN and HNC chemistry.
  •  
5.
  • Butterworth, Joshua, et al. (author)
  • Molecular isotopologue measurements toward super star clusters and the relation to their ages in NGC 253 with ALCHEMI
  • 2024
  • In: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 686
  • Journal article (peer-reviewed)abstract
    • Context. Determining the evolution of the CNO isotopes in the interstellar medium (ISM) of starburst galaxies can yield important constraints on the ages of super star clusters (SSCs), or on other aspects and factors contributing to their evolution, such as the initial mass function (IMF). Due to the time-dependent nature of the abundances of isotopes within the ISM -as they are supplied from processes such as nucleosynthesis or chemical fractionation -, this provides the opportunity to test whether or not isotope ratios trace the ages of highly star-forming regions, such as SSCs. Aims. The goal of this study is to investigate whether the isotopic variations in SSC regions within NGC 253 are correlated with their different ages as derived from stellar population modelling. Methods. We measured abundance ratios of CO, HCN, and HCO+ isotopologues in six regions containing SSCs within NGC 253 using high-spatial-resolution (1.6″, ~28 pc) data from the ALCHEMI (ALma Comprehensive High-resolution Extragalactic Molecular Inventory) ALMA Large program. We then analysed these ratios using RADEX radiative transfer modelling, with the parameter space sampled using the nested sampling Monte Carlo algorithm MLFriends. These abundance ratios were then compared to ages predicted in each region via the fitting of observed star-formation tracers (such as Brγ) to Starburst99 starburst stellar population evolution models. Results. We determined the isotopic column density ratios across multiple regions of SSC activity in NGC 253 using non-LTE radiative transfer modelling. We do not find any significant trend with age for the CO and HCN isotopologue ratios on timescales of the ages of the SSC∗ regions observed. However, HCO+ may show a correlation with age over these timescales in 12C/13C. Conclusions. The driving factors of these ratios within SSCs could be the IMF or fractionation effects. To further probe these effects in SSCs over time, a larger sample of SSCs must be observed spanning a larger age range.
  •  
6.
  • Harada, N., et al. (author)
  • ALCHEMI Finds a “Shocking” Carbon Footprint in the Starburst Galaxy NGC 253
  • 2022
  • In: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 938:1
  • Journal article (peer-reviewed)abstract
    • The centers of starburst galaxies may be characterized by a specific gas and ice chemistry due to their gas dynamics and the presence of various ice desorption mechanisms. This may result in a peculiar observable composition. We analyse the abundances of CO2, a reliable tracer of ice chemistry, from data collected as part of the Atacama Large Millimeter/submillimeter Array large program ALCHEMI, a wide-frequency spectral scan toward the starburst galaxy NGC 253 with an angular resolution of 1.″6. We constrain the CO2 abundances in the gas phase using its protonated form HOCO+. The distribution of HOCO+ is similar to that of methanol, which suggests that HOCO+ is indeed produced from the protonation of CO2 sublimated from ice. The HOCO+ fractional abundances are found to be (1-2) × 10−9 at the outer part of the central molecular zone (CMZ), while they are lower (∼10−10) near the kinematic center. This peak fractional abundance at the outer CMZ is comparable to that in the Milky Way CMZ, and orders of magnitude higher than that in Galactic disk, star-forming regions. From the range of HOCO+/CO2 ratios suggested from chemical models, the gas-phase CO2 fractional abundance is estimated to be (1-20) × 10−7 at the outer CMZ, and orders of magnitude lower near the center. We estimate the CO2 ice fractional abundances at the outer CMZ to be (2-5) × 10−6 from the literature. A comparison between the ice and gas CO2 abundances suggests an efficient sublimation mechanism. This sublimation is attributed to large-scale shocks at the orbital intersections of the bar and CMZ.
  •  
7.
  • Harada, N., et al. (author)
  • The ALCHEMI Atlas: Principal Component Analysis Reveals Starburst Evolution in NGC 253
  • 2024
  • In: Astrophysical Journal, Supplement Series. - 1538-4365 .- 0067-0049. ; 271:2
  • Journal article (peer-reviewed)abstract
    • Molecular lines are powerful diagnostics of the physical and chemical properties of the interstellar medium (ISM). These ISM properties, which affect future star formation, are expected to differ in starburst galaxies from those of more quiescent galaxies. We investigate the ISM properties in the central molecular zone of the nearby starburst galaxy NGC 253 using the ultrawide millimeter spectral scan survey from the Atacama Large Millimeter/submillimeter Array Large Program ALCHEMI. We present an atlas of velocity-integrated images at a 1.″6 resolution of 148 unblended transitions from 44 species, including the first extragalactic detection of HCNH+ and the first interferometric images of C3H+, NO, and HCS+. We conduct a principal component analysis (PCA) on these images to extract correlated chemical species and to identify key groups of diagnostic transitions. To the best of our knowledge, our data set is currently the largest astronomical set of molecular lines to which PCA has been applied. The PCA can categorize transitions coming from different physical components in NGC 253 such as (i) young starburst tracers characterized by high-excitation transitions of HC3N and complex organic molecules versus tracers of on-going star formation (radio recombination lines) and high-excitation transitions of CCH and CN tracing photodissociation regions, (ii) tracers of cloud-collision-induced shocks (low-excitation transitions of CH3OH, HNCO, HOCO+, and OCS) versus shocks from star formation-induced outflows (high-excitation transitions of SiO), as well as (iii) outflows showing emission from HOC+, CCH, H3O+, CO isotopologues, HCN, HCO+, CS, and CN. Our findings show these intensities vary with galactic dynamics, star formation activities, and stellar feedback.
  •  
8.
  • Holdship, Jonathan, et al. (author)
  • The distribution and origin of C 2 H in NGC 253 from ALCHEMI
  • 2021
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 654
  • Journal article (peer-reviewed)abstract
    • Context. Observations of chemical species can provide insights into the physical conditions of the emitting gas however it is important to understand how their abundances and excitation vary within different heating environments. C2H is a molecule typically found in PDR regions of our own Galaxy but there is evidence to suggest it also traces other regions undergoing energetic processing in extragalactic environments. Aims. As part of the ALCHEMI ALMA large program, we map the emission of C2H in the central molecular zone of the nearby starburst galaxy NGC 253 at 1.6″ (28 pc) resolution and characterize it to understand its chemical origins. Methods. We used spectral modeling of the N = 1-0 through N = 4-3 rotational transitions of C2H to derive the C2H column densities towards the dense clouds in NGC 253. We then use chemical modeling, including photodissociation region (PDR), dense cloud, and shock models to investigate the chemical processes and physical conditions that are producing the molecular emission. Results. We find high C2H column densities of ∼1015 cm-2 detected towards the dense regions of NGC 253. We further find that these column densities cannot be reproduced if it is assumed that the emission arises from the PDR regions at the edge of the clouds. Instead, we find that the C2H abundance remains high even in the high visual extinction interior of these clouds and that this is most likely caused by a high cosmic-ray ionization rate.
  •  
9.
  • Huang, K. Y., et al. (author)
  • Reconstructing the shock history in the CMZ of NGC 253 with ALCHEMI
  • 2023
  • In: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 675
  • Journal article (peer-reviewed)abstract
    • Context. HNCO and SiO are well-known shock tracers and have been observed in nearby galaxies, including the nearby (D = 3.5 Mpc) starburst galaxy NGC 253. The simultaneous detection of these two species in regions where the star-formation rate is high may be used to study the shock history of the gas. Aims. We perform a multi-line molecular study of NGC 253 using the shock tracers SiO and HNCO and aim to characterize its gas properties. We also explore the possibility of reconstructing the shock history in the central molecular zone (CMZ) of the galaxy. Methods. Six SiO transitions and eleven HNCO transitions were imaged at high resolution 1.·6 (28 pc) with the Atacama Large Millimeter/submillimeter Array (ALMA) as part of the ALCHEMI Large Programme. Both non local thermaldynamic equilibrium (non-LTE) radiative transfer analysis and chemical modeling were performed in order to characterize the gas properties and investigate the chemical origin of the emission. Results. The nonLTE radiative transfer analysis coupled with Bayesian inference shows clear evidence that the gas traced by SiO has different densities and temperatures than that traced by HNCO, with an indication that shocks are needed to produce both species. Chemical modeling further confirms such a scenario and suggests that fast and slow shocks are responsible for SiO and HNCO production, respectively, in most GMCs. We are also able to infer the physical characteristics of the shocks traced by SiO and HNCO for each GMC. Conclusions. Radiative transfer and chemical analysis of the SiO and HNCO in the CMZ of NGC 253 reveal a complex picture whereby most of the GMCs are subjected to shocks. We speculate on the possible shock scenarios responsible for the observed emission and provide potential history and timescales for each shock scenario. Observations of higher spatial resolution for these two species are required in order to quantitatively differentiate between the possible scenarios.
  •  
10.
  • Humire, Pedro, et al. (author)
  • Methanol masers in NGC 253 with ALCHEMI
  • 2022
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 663
  • Journal article (peer-reviewed)abstract
    • Context. Methanol masers of Class I (collisionally pumped) and Class II (radiatively pumped) have been studied in great detail in our Galaxy in a variety of astrophysical environments such as shocks and star-forming regions and are they are helpful to analyze the properties of the dense interstellar medium. However, the study of methanol masers in external galaxies is still in its infancy. Aims. Our main goal is to search for methanol masers in the central molecular zone (CMZ; inner 500 pc) of the nearby starburst galaxy NGC253. Methods. Covering a frequency range between 84 and 373 GHz (λ = 3.6-0.8 mm) at high angular (1."6 ∼ 27 pc) and spectral (∼8-9 km s-1) resolution with ALCHEMI (ALMA Comprehensive High-resolution Extragalactic Molecular Inventory), we have probed dierent regions across the CMZ of NGC253. In order to look for methanol maser candidates, we employed the rotation diagram method and a set of radiative transfer models. Results.We detect for the first time masers above 84 GHz in NGC253, covering an ample portion of the J-1 (J-1)0-E line series (at 84, 132, 229, and 278 GHz) and the J0 (J-1)1 A series (at 95, 146, and 198 GHz). This confirms the presence of the Class I maser line at 84 GHz, which was already reported, but now being detected in more than one location. For the J-1 (J-1)0-E line series, we observe a lack of Class I maser candidates in the central star-forming disk. Conclusions. The physical conditions for maser excitation in the J-1 (J-1)0-E line series can be weak shocks and cloud-cloud collisions as suggested by shock tracers (SiO and HNCO) in bi-symmetric shock regions located in the outskirts of the CMZ. On the other hand, the presence of photodissociation regions due to a high star-formation rate would be needed to explain the lack of Class I masers in the very central regions.
  •  
11.
  • Tanaka, Kunihiko, et al. (author)
  • Volume Density Structure of the Central Molecular Zone NGC 253 through ALCHEMI Excitation Analysis
  • 2024
  • In: Astrophysical Journal. - 1538-4357 .- 0004-637X. ; 961:1
  • Journal article (peer-reviewed)abstract
    • We present a spatially resolved excitation analysis for the central molecular zone (CMZ) of the starburst galaxy NGC 253 using the data from the Atacama Large Millimeter/submillimeter Array Comprehensive High-resolution Extragalactic Molecular Inventory, whereby we explore parameters distinguishing NGC 253 from the quiescent Milky Way’s Galactic center (GC). Non-LTE analyses employing a hierarchical Bayesian framework are applied to Band 3-7 transitions from nine molecular species to delineate the position-position-velocity distributions of column density ( N H 2 ), volume density ( n H 2 ), and temperature (T kin) at 27 pc resolution. Two distinct components are detected: a low-density component with ( n H 2 , T kin ) ∼ ( 10 3.3 cm − 3 , 85 K ) and a high-density component with ( n H 2 , T kin ) ∼ ( 10 4.4 cm − 3 , 110 K ) , separated at n H 2 ∼ 10 3.8 cm − 3 . NGC 253 has ∼10 times the high-density gas mass and ∼3 times the dense-gas mass fraction of the GC. These properties are consistent with their HCN/CO ratio but cannot alone explain the factor of ∼30 difference in their star formation efficiencies (SFEs), contradicting the dense-gas mass to star formation rate scaling law. The n H 2 histogram toward NGC 253 exhibits a shallow declining slope up to n H 2 ∼ 10 6 cm − 3 , while that of the GC steeply drops in n H 2 ≳ 10 4.5 cm − 3 and vanishes at 105 cm−3. Their dense-gas mass fraction ratio becomes consistent with their SFEs when the threshold n H 2 for the dense gas is taken at ∼104.2−4.6 cm−3. The rich abundance of gas above this density range in the NGC 253 CMZ, or its scarcity in the GC, is likely to be the critical difference characterizing the contrasting star formation in the centers of the two galaxies.
  •  
12.
  • Holdship, Jonathan, et al. (author)
  • Energizing Star Formation: The Cosmic-Ray Ionization Rate in NGC 253 Derived from ALCHEMI Measurements of H3O+ and SO
  • 2022
  • In: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 931:2
  • Journal article (peer-reviewed)abstract
    • The cosmic-ray ionization rate (CRIR) is a key parameter in understanding the physical and chemical processes in the interstellar medium. Cosmic rays are a significant source of energy in star formation regions, impacting the physical and chemical processes that drive the formation of stars. Previous studies of the circum-molecular zone of the starburst galaxy NGC 253 have found evidence for a high CRIR value: 10(3)-10(6) times the average CRIR within the Milky Way. This is a broad constraint, and one goal of this study is to determine this value with much higher precision. We exploit ALMA observations toward the central molecular zone of NGC 253 to measure the CRIR. We first demonstrate that the abundance ratio of H3O+ and SO is strongly sensitive to the CRIR. We then combine chemical and radiative transfer models with nested sampling to infer the gas properties and CRIR of several star-forming regions in NGC 253 from emission from their transitions. We find that each of the four regions modeled has a CRIR in the range (1-80) x 10(-14) s(-1) and that this result adequately fits the abundances of other species that are believed to be sensitive to cosmic rays, including C2H, HCO+, HOC+, and CO. From shock and photon-dominated/X-ray dominated region models, we further find that neither UV-/X-ray-driven nor shock-dominated chemistry is a viable single alternative as none of these processes can adequately fit the abundances of all of these species.
  •  
13.
  • Petkova, Maya, 1990, et al. (author)
  • Kinematics of Galactic Centre clouds shaped by shear-seeded solenoidal turbulence
  • 2023
  • In: Monthly Notices of the Royal Astronomical Society. - 0035-8711 .- 1365-2966. ; 525:1, s. 962-968
  • Journal article (peer-reviewed)abstract
    • The Central Molecular Zone (CMZ; the central ∼500 pc of the Galaxy) is a kinematically unusual environment relative to the Galactic disc, with high-velocity dispersions and a steep size-linewidth relation of the molecular clouds. In addition, the CMZ region has a significantly lower star formation rate (SFR) than expected by its large amount of dense gas. An important factor in explaining the low SFR is the turbulent state of the star-forming gas, which seems to be dominated by rotational modes. However, the turbulence driving mechanism remains unclear. In this work, we investigate how the Galactic gravitational potential affects the turbulence in CMZ clouds. We focus on the CMZ cloud G0.253+0.016 ('the Brick'), which is very quiescent and unlikely to be kinematically dominated by stellar feedback. We demonstrate that several kinematic properties of the Brick arise naturally in a cloud-scale hydrodynamics simulation, that takes into account the Galactic gravitational potential. These properties include the line-of-sight velocity distribution, the steepened size-linewidth relation, and the predominantly solenoidal nature of the turbulence. Within the simulation, these properties result from the Galactic shear in combination with the cloud's gravitational collapse. This is a strong indication that the Galactic gravitational potential plays a crucial role in shaping the CMZ gas kinematics, and is a major contributor to suppressing the SFR, by inducing predominantly solenoidal turbulent modes.
  •  
14.
  • Rivilla, Víctor M., et al. (author)
  • Ionize Hard: Interstellar PO + Detection
  • 2022
  • In: Frontiers in Astronomy and Space Sciences. - : Frontiers Media SA. - 2296-987X. ; 9
  • Journal article (peer-reviewed)abstract
    • We report the first detection of the phosphorus monoxide ion (PO+) in the interstellar medium. Our unbiased and very sensitive spectral survey toward the G+0.693–0.027 molecular cloud covers four different rotational transitions of this molecule, two of which (J = 1–0 and J = 2–1) appear free of contamination from other species. The fit performed, assuming local thermodynamic equilibrium conditions, yields a column density of N=(6.0 ± 0.7) × 1011 cm−2. The resulting molecular abundance with respect to molecular hydrogen is 4.5 × 10–12. The column density of PO+ normalized by the cosmic abundance of P is larger than those of NO+ and SO+, normalized by N and S, by factors of 3.6 and 2.3, respectively. The N(PO+)/N(PO) ratio is 0.12 ± 0.03, more than one order of magnitude higher than that of N(SO+)/N(SO) and N(NO+)/N(NO). These results indicate that P is more efficiently ionized than N and S in the ISM. We have performed new chemical models that confirm that the PO+ abundance is strongly enhanced in shocked regions with high values of cosmic-ray ionization rates (10–15 − 10–14 s−1), as occurring in the G+0.693–0.027 molecular cloud. The shocks sputter the interstellar icy grain mantles, releasing into the gas phase most of their P content, mainly in the form of PH3, which is converted into atomic P, and then ionized efficiently by cosmic rays, forming P+. Further reactions with O2 and OH produces PO+. The cosmic-ray ionization of PO might also contribute significantly, which would explain the high N(PO+)/N(PO) ratio observed. The relatively high gas-phase abundance of PO+ with respect to other P-bearing species stresses the relevance of this species in the interstellar chemistry of P.
  •  
15.
  • Sipilä, O., et al. (author)
  • Combined model for 15N, 13C, and spin-state chemistry in molecular clouds
  • 2023
  • In: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 678
  • Journal article (peer-reviewed)abstract
    • We present a new gas-grain chemical model for the combined isotopic fractionation of carbon and nitrogen in molecular clouds. To this end, we have developed gas-phase and grain-surface chemical networks where the isotope chemistry of carbon and nitrogen is coupled with a time-dependent description of spin-state chemistry, which is important for nitrogen chemistry at low temperatures. We updated the rate coefficients of some isotopic exchange reactions considered previously in the literature, and here we present a set of new exchange reactions involving molecules substituted in 13C and 15N simultaneously. We applied the model to a series of zero-dimensional simulations representing a set of physical conditions across a prototypical prestellar core, exploring the deviations of the isotopic abundance ratios in the various molecules from the elemental isotopic ratios as a function of physical conditions and time. We find that the 12C/13C ratio can deviate from the elemental ratio to a high factor depending on the molecule, and that there are highly time-dependent variations in the ratios. The HCN/H13CN ratio, for example, can obtain values of less than ten depending on the simulation time. The 14N/15N ratios tend to remain close to the assumed elemental ratio within approximately 10%, with no clearly discernible trends for the various species as a function of the physical conditions. Abundance ratios between 13C-containing molecules and 13C+15N-containing molecules however show somewhat increased levels of fractionation as a result of the newly included exchange reactions, though they still remain within a few tens of percent of the elemental 14N/15N ratio. Our results imply the existence of gradients in isotopic abundance ratios across prestellar cores, suggesting that detailed simulations are required to interpret observations of isotopically substituted molecules correctly, especially given that the various isotopic forms of a given molecule do not necessarily trace the same gas layers.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-15 of 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view