SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Corsi A. M.) "

Search: WFRF:(Corsi A. M.)

  • Result 1-50 of 92
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • 2017
  • In: Physical Review D. - 2470-0010 .- 2470-0029. ; 96:2
  • Journal article (peer-reviewed)
  •  
2.
  • Aamodt, K., et al. (author)
  • The ALICE experiment at the CERN LHC
  • 2008
  • In: Journal of Instrumentation. - 1748-0221. ; 3:S08002
  • Research review (peer-reviewed)abstract
    • ALICE (A Large Ion Collider Experiment) is a general-purpose, heavy-ion detector at the CERN LHC which focuses on QCD, the strong-interaction sector of the Standard Model. It is designed to address the physics of strongly interacting matter and the quark-gluon plasma at extreme values of energy density and temperature in nucleus-nucleus collisions. Besides running with Pb ions, the physics programme includes collisions with lighter ions, lower energy running and dedicated proton-nucleus runs. ALICE will also take data with proton beams at the top LHC energy to collect reference data for the heavy-ion programme and to address several QCD topics for which ALICE is complementary to the other LHC detectors. The ALICE detector has been built by a collaboration including currently over 1000 physicists and engineers from 105 Institutes in 30 countries, Its overall dimensions are 16 x 16 x 26 m(3) with a total weight of approximately 10 000 t. The experiment consists of 18 different detector systems each with its own specific technology choice and design constraints, driven both by the physics requirements and the experimental conditions expected at LHC. The most stringent design constraint is to cope with the extreme particle multiplicity anticipated in central Pb-Pb collisions. The different subsystems were optimized to provide high-momentum resolution as well as excellent Particle Identification (PID) over a broad range in momentum, up to the highest multiplicities predicted for LHC. This will allow for comprehensive studies of hadrons, electrons, muons, and photons produced in the collision of heavy nuclei. Most detector systems are scheduled to be installed and ready for data taking by mid-2008 when the LHC is scheduled to start operation, with the exception of parts of the Photon Spectrometer (PHOS), Transition Radiation Detector (TRD) and Electro Magnetic Calorimeter (EMCal). These detectors will be completed for the high-luminosity ion run expected in 2010. This paper describes in detail the detector components as installed for the first data taking in the summer of 2008.
  •  
3.
  • Adrian-Martinez, S., et al. (author)
  • A first search for coincident gravitational waves and high energy neutrinos using LIGO, Virgo and ANTARES data from 2007
  • 2013
  • In: Journal of Cosmology and Astroparticle Physics. - : IOP Publishing. - 1475-7516. ; :6
  • Journal article (peer-reviewed)abstract
    • We present the results of the first search for gravitational wave bursts associated with high energy neutrinos. Together, these messengers could reveal new, hidden sources that are not observed by conventional photon astronomy, particularly at high energy. Our search uses neutrinos detected by the underwater neutrino telescope ANTARES in its 5 line configuration during the period January - September 2007, which coincided with the fifth and first science runs of LIGO and Virgo, respectively. The LIGO-Virgo data were analysed for candidate gravitational-wave signals coincident in time and direction with the neutrino events. No significant coincident events were observed. We place limits on the density of joint high energy neutrino - gravitational wave emission events in the local universe, and compare them with densities of merger and core-collapse events.
  •  
4.
  • Abadie, J., et al. (author)
  • Implementation and testing of the first prompt search for gravitational wave transients with electromagnetic counterparts
  • 2012
  • In: Astronomy & Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 539
  • Journal article (peer-reviewed)abstract
    • Aims. A transient astrophysical event observed in both gravitational wave (GW) and electromagnetic (EM) channels would yield rich scientific rewards. A first program initiating EM follow-ups to possible transient GW events has been developed and exercised by the LIGO and Virgo community in association with several partners. In this paper, we describe and evaluate the methods used to promptly identify and localize GW event candidates and to request images of targeted sky locations. Methods. During two observing periods (Dec. 17, 2009 to Jan. 8, 2010 and Sep. 2 to Oct. 20, 2010), a low-latency analysis pipeline was used to identify GW event candidates and to reconstruct maps of possible sky locations. A catalog of nearby galaxies and Milky Way globular clusters was used to select the most promising sky positions to be imaged, and this directional information was delivered to EM observatories with time lags of about thirty minutes. A Monte Carlo simulation has been used to evaluate the low-latency GW pipeline's ability to reconstruct source positions correctly. Results. For signals near the detection threshold, our low-latency algorithms often localized simulated GW burst signals to tens of square degrees, while neutron star/neutron star inspirals and neutron star/black hole inspirals were localized to a few hundred square degrees. Localization precision improves for moderately stronger signals. The correct sky location of signals well above threshold and originating from nearby galaxies may be observed with similar to 50% or better probability with a few pointings of wide-field telescopes.
  •  
5.
  • Evans, P. A., et al. (author)
  • Swift Follow-up Observations of Candidate Gravitational-wave Transient Events
  • 2012
  • In: The Astrophysical Journal Supplement Series. - : American Astronomical Society. - 0067-0049 .- 1538-4365. ; 203:2
  • Journal article (peer-reviewed)abstract
    • We present the first multi-wavelength follow-up observations of two candidate gravitational-wave (GW) transient events recorded by LIGO and Virgo in their 2009-2010 science run. The events were selected with low latency by the network of GW detectors (within less than 10 minutes) and their candidate sky locations were observed by the Swift observatory (within 12 hr). Image transient detection was used to analyze the collected electromagnetic data, which were found to be consistent with background. Off-line analysis of the GW data alone has also established that the selected GW events show no evidence of an astrophysical origin; one of them is consistent with background and the other one was a test, part of a "blind injection challenge." With this work we demonstrate the feasibility of rapid follow-ups of GW transients and establish the sensitivity improvement joint electromagnetic and GW observations could bring. This is a first step toward an electromagnetic follow-up program in the regime of routine detections with the advanced GW instruments expected within this decade. In that regime, multi-wavelength observations will play a significant role in completing the astrophysical identification of GW sources. We present the methods and results from this first combined analysis and discuss its implications in terms of sensitivity for the present and future instruments.
  •  
6.
  • Aasi, J., et al. (author)
  • Parameter estimation for compact binary coalescence signals with the first generation gravitational-wave detector network
  • 2013
  • In: Physical Review D (Particles, Fields, Gravitation and Cosmology). - 1550-2368. ; 88:6
  • Journal article (peer-reviewed)abstract
    • Compact binary systems with neutron stars or black holes are one of the most promising sources for ground-based gravitational-wave detectors. Gravitational radiation encodes rich information about source physics; thus parameter estimation and model selection are crucial analysis steps for any detection candidate events. Detailed models of the anticipated waveforms enable inference on several parameters, such as component masses, spins, sky location and distance, that are essential for new astrophysical studies of these sources. However, accurate measurements of these parameters and discrimination of models describing the underlying physics are complicated by artifacts in the data, uncertainties in the waveform models and in the calibration of the detectors. Here we report such measurements on a selection of simulated signals added either in hardware or software to the data collected by the two LIGO instruments and the Virgo detector during their most recent joint science run, including a "blind injection'' where the signal was not initially revealed to the collaboration. We exemplify the ability to extract information about the source physics on signals that cover the neutron-star and black-hole binary parameter space over the component mass range 1M(circle dot)-25M(circle dot) and the full range of spin parameters. The cases reported in this study provide a snapshot of the status of parameter estimation in preparation for the operation of advanced detectors.
  •  
7.
  • Aasi, J., et al. (author)
  • The characterization of Virgo data and its impact on gravitational-wave searches
  • 2012
  • In: Classical and Quantum Gravity. - : IOP Publishing. - 1361-6382 .- 0264-9381. ; 29:15
  • Journal article (peer-reviewed)abstract
    • Between 2007 and 2010 Virgo collected data in coincidence with the LIGO and GEO gravitational-wave (GW) detectors. These data have been searched for GWs emitted by cataclysmic phenomena in the universe, by non-axisymmetric rotating neutron stars or from a stochastic background in the frequency band of the detectors. The sensitivity of GW searches is limited by noise produced by the detector or its environment. It is therefore crucial to characterize the various noise sources in a GW detector. This paper reviews the Virgo detector noise sources, noise propagation, and conversion mechanisms which were identified in the three first Virgo observing runs. In many cases, these investigations allowed us to mitigate noise sources in the detector, or to selectively flag noise events and discard them from the data. We present examples from the joint LIGO-GEO-Virgo GW searches to show how well noise transients and narrow spectral lines have been identified and excluded from the Virgo data. We also discuss how detector characterization can improve the astrophysical reach of GW searches.
  •  
8.
  • Abadie, J., et al. (author)
  • Search for Gravitational Waves Associated with Gamma-Ray Bursts during LIGO Science Run 6 and Virgo Science Runs 2 and 3
  • 2012
  • In: Astrophysical Journal. - 0004-637X. ; 760:1
  • Journal article (peer-reviewed)abstract
    • We present the results of a search for gravitational waves associated with 154 gamma-ray bursts (GRBs) that were detected by satellite-based gamma-ray experiments in 2009-2010, during the sixth LIGO science run and the second and third Virgo science runs. We perform two distinct searches: a modeled search for coalescences of either two neutron stars or a neutron star and black hole, and a search for generic, unmodeled gravitational-wave bursts. We find no evidence for gravitational-wave counterparts, either with any individual GRB in this sample or with the population as a whole. For all GRBs we place lower bounds on the distance to the progenitor, under the optimistic assumption of a gravitational-wave emission energy of 10(-2) M-circle dot c(2) at 150 Hz, with a median limit of 17 Mpc. For short-hard GRBs we place exclusion distances on binary neutron star and neutron-star-black-hole progenitors, using astrophysically motivated priors on the source parameters, with median values of 16 Mpc and 28 Mpc, respectively. These distance limits, while significantly larger than for a search that is not aided by GRB satellite observations, are not large enough to expect a coincidence with a GRB. However, projecting these exclusions to the sensitivities of Advanced LIGO and Virgo, which should begin operation in 2015, we find that the detection of gravitational waves associated with GRBs will become quite possible.
  •  
9.
  • Aasi, J., et al. (author)
  • Search for gravitational waves from binary black hole inspiral, merger, and ringdown in LIGO-Virgo data from 2009-2010
  • 2013
  • In: Physical Review D (Particles, Fields, Gravitation and Cosmology). - 1550-2368. ; 87:2
  • Journal article (peer-reviewed)abstract
    • We report a search for gravitational waves from the inspiral, merger and ringdown of binary black holes (BBH) with total mass between 25 and 100 solar masses, in data taken at the LIGO and Virgo observatories between July 7, 2009 and October 20, 2010. The maximum sensitive distance of the detectors over this period for a (20, 20)M-circle dot coalescence was 300 Mpc. No gravitational wave signals were found. We thus report upper limits on the astrophysical coalescence rates of BBH as a function of the component masses for nonspinning components, and also evaluate the dependence of the search sensitivity on component spins aligned with the orbital angular momentum. We find an upper limit at 90% confidence on the coalescence rate of BBH with nonspinning components of mass between 19 and 28M(circle dot) of 3:3 x 10(-7) mergers Mpc(-3) yr(-1).
  •  
10.
  • Abadie, J., et al. (author)
  • Search for gravitational waves from low mass compact binary coalescence in LIGO's sixth science run and Virgo's science runs 2 and 3
  • 2012
  • In: Physical Review D (Particles, Fields, Gravitation and Cosmology). - 1550-2368. ; 85:8
  • Journal article (peer-reviewed)abstract
    • We report on a search for gravitational waves from coalescing compact binaries using LIGO and Virgo observations between July 7, 2009, and October 20, 2010. We searched for signals from binaries with total mass between 2 and 25M(circle dot); this includes binary neutron stars, binary black holes, and binaries consisting of a black hole and neutron star. The detectors were sensitive to systems up to 40 Mpc distant for binary neutron stars, and further for higher mass systems. No gravitational-wave signals were detected. We report upper limits on the rate of compact binary coalescence as a function of total mass, including the results from previous LIGO and Virgo observations. The cumulative 90% confidence rate upper limits of the binary coalescence of binary neutron star, neutron star-black hole, and binary black hole systems are 1.3 x 10(-4), 3.1 x 10(-5), and 6.4 x 10(-6) Mpc(-3) yr(-1), respectively. These upper limits are up to a factor 1.4 lower than previously derived limits. We also report on results from a blind injection challenge.
  •  
11.
  • Aasi, J., et al. (author)
  • Einstein@Home all-sky search for periodic gravitational waves in LIGO S5 data
  • 2013
  • In: Physical Review D (Particles, Fields, Gravitation and Cosmology). - 1550-2368. ; 87:4
  • Journal article (peer-reviewed)abstract
    • This paper presents results of an all-sky search for periodic gravitational waves in the frequency range [50, 1190] Hz and with frequency derivative range of similar to[-20, 1.1] x 10(-10) Hz s(-1) for the fifth LIGO science run (S5). The search uses a noncoherent Hough-transform method to combine the information from coherent searches on time scales of about one day. Because these searches are very computationally intensive, they have been carried out with the Einstein@Home volunteer distributed computing project. Postprocessing identifies eight candidate signals; deeper follow-up studies rule them out. Hence, since no gravitational wave signals have been found, we report upper limits on the intrinsic gravitational wave strain amplitude h(0). For example, in the 0.5 Hz-wide band at 152.5 Hz, we can exclude the presence of signals with h(0) greater than 7.6 x 10(-25) at a 90% confidence level. This search is about a factor 3 more sensitive than the previous Einstein@Home search of early S5 LIGO data.
  •  
12.
  • Abadie, J., et al. (author)
  • All-sky search for gravitational-wave bursts in the second joint LIGO-Virgo run
  • 2012
  • In: Physical Review D (Particles, Fields, Gravitation and Cosmology). - 1550-2368. ; 85:12
  • Journal article (peer-reviewed)abstract
    • We present results from a search for gravitational-wave bursts in the data collected by the LIGO and Virgo detectors between July 7, 2009 and October 20, 2010: data are analyzed when at least two of the three LIGO-Virgo detectors are in coincident operation, with a total observation time of 207 days. The analysis searches for transients of duration less than or similar to 1 s over the frequency band 64-5000 Hz, without other assumptions on the signal waveform, polarization, direction or occurrence time. All identified events are consistent with the expected accidental background. We set frequentist upper limits on the rate of gravitational-wave bursts by combining this search with the previous LIGO-Virgo search on the data collected between November 2005 and October 2007. The upper limit on the rate of strong gravitational-wave bursts at the Earth is 1.3 events per year at 90% confidence. We also present upper limits on source rate density per year and Mpc(3) for sample populations of standard-candle sources. As in the previous joint run, typical sensitivities of the search in terms of the root-sum-squared strain amplitude for these waveforms lie in the range similar to 5 x 10(-22) Hz(-1/2) to similar to 1 x 10(-20) Hz(-1/2). The combination of the two joint runs entails the most sensitive all-sky search for generic gravitational-wave bursts and synthesizes the results achieved by the initial generation of interferometric detectors.
  •  
13.
  • Abadie, J., et al. (author)
  • All-sky search for periodic gravitational waves in the full S5 LIGO data
  • 2012
  • In: Physical Review D (Particles, Fields, Gravitation and Cosmology). - 1550-2368. ; 85:2
  • Journal article (peer-reviewed)abstract
    • We report on an all-sky search for periodic gravitational waves in the frequency band 50-800 Hz and with the frequency time derivative in the range of 0 through -6 x 10(-9) Hz/s. Such a signal could be produced by a nearby spinning and slightly nonaxisymmetric isolated neutron star in our Galaxy. After recent improvements in the search program that yielded a 10x increase in computational efficiency, we have searched in two years of data collected during LIGO's fifth science run and have obtained the most sensitive all-sky upper limits on gravitational-wave strain to date. Near 150 Hz our upper limit on worst-case linearly polarized strain amplitude h(0) is 1 x 10(-24), while at the high end of our frequency range we achieve a worst-case upper limit of 3.8 x 10(-24) for all polarizations and sky locations. These results constitute a factor of 2 improvement upon previously published data. A new detection pipeline utilizing a loosely coherent algorithm was able to follow up weaker outliers, increasing the volume of space where signals can be detected by a factor of 10, but has not revealed any gravitational-wave signals. The pipeline has been tested for robustness with respect to deviations from the model of an isolated neutron star, such as caused by a low-mass or long-period binary companion.
  •  
14.
  • Abadie, J., et al. (author)
  • First low-latency LIGO plus Virgo search for binary inspirals and their electromagnetic counterparts
  • 2012
  • In: Astronomy & Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 541
  • Journal article (peer-reviewed)abstract
    • Aims. The detection and measurement of gravitational-waves from coalescing neutron-star binary systems is an important science goal for ground-based gravitational-wave detectors. In addition to emitting gravitational-waves at frequencies that span the most sensitive bands of the LIGO and Virgo detectors, these sources are also amongst the most likely to produce an electromagnetic counterpart to the gravitational-wave emission. A joint detection of the gravitational-wave and electromagnetic signals would provide a powerful new probe for astronomy. Methods. During the period between September 19 and October 20, 2010, the first low-latency search for gravitational-waves from binary inspirals in LIGO and Virgo data was conducted. The resulting triggers were sent to electromagnetic observatories for followup. We describe the generation and processing of the low-latency gravitational-wave triggers. The results of the electromagnetic image analysis will be described elsewhere. Results. Over the course of the science run, three gravitational-wave triggers passed all of the low-latency selection cuts. Of these, one was followed up by several of our observational partners. Analysis of the gravitational-wave data leads to an estimated false alarm rate of once every 6.4 days, falling far short of the requirement for a detection based solely on gravitational-wave data.
  •  
15.
  • Abadie, J., et al. (author)
  • Upper limits on a stochastic gravitational-wave background using LIGO and Virgo interferometers at 600-1000 Hz
  • 2012
  • In: Physical Review D (Particles, Fields, Gravitation and Cosmology). - 1550-2368. ; 85:12
  • Journal article (peer-reviewed)abstract
    • A stochastic background of gravitational waves is expected to arise from a superposition of many incoherent sources of gravitational waves, of either cosmological or astrophysical origin. This background is a target for the current generation of ground-based detectors. In this article we present the first joint search for a stochastic background using data from the LIGO and Virgo interferometers. In a frequency band of 600-1000 Hz, we obtained a 95% upper limit on the amplitude of Omega(GW)(f) = Omega(3)(f/900 Hz)(3), of Omega(3) < 0.32, assuming a value of the Hubble parameter of h(100) = 0.71. These new limits are a factor of seven better than the previous best in this frequency band.
  •  
16.
  • Abadie, J., et al. (author)
  • Search for gravitational waves from intermediate mass binary black holes
  • 2012
  • In: Physical Review D (Particles, Fields, Gravitation and Cosmology). - 1550-2368. ; 85:10
  • Journal article (peer-reviewed)abstract
    • We present the results of a weakly modeled burst search for gravitational waves from mergers of nonspinning intermediate mass black holes in the total mass range 100-450 M-circle dot and with the component mass ratios between 1: and 4:1. The search was conducted on data collected by the LIGO and Virgo detectors between November of 2005 and October of 2007. No plausible signals were observed by the search which constrains the astrophysical rates of the intermediate mass black holes mergers as a function of the component masses. In the most efficiently detected bin centered on 88 + 88 M-circle dot, for nonspinning sources, the rate density upper limit is 0.13 per Mpc(3) per Myr at the 90% confidence level.
  •  
17.
  • Akkoyun, S., et al. (author)
  • AGATA - Advanced GAmma Tracking Array
  • 2012
  • In: Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. - : Elsevier BV. - 0168-9002 .- 0167-5087 .- 1872-9576. ; 668, s. 26-58
  • Journal article (peer-reviewed)abstract
    • The Advanced GAmma Tracking Array (AGATA) is a European project to develop and operate the next generation γ-ray spectrometer. AGATA is based on the technique of γ-ray energy tracking in electrically segmented high-purity germanium crystals. This technique requires the accurate determination of the energy, time and position of every interaction as a γ ray deposits its energy within the detector volume. Reconstruction of the full interaction path results in a detector with very high efficiency and excellent spectral response. The realisation of γ-ray tracking and AGATA is a result of many technical advances. These include the development of encapsulated highly segmented germanium detectors assembled in a triple cluster detector cryostat, an electronics system with fast digital sampling and a data acquisition system to process the data at a high rate. The full characterisation of the crystals was measured and compared with detector- response simulations. This enabled pulse-shape analysis algorithms, to extract energy, time and position, to be employed. In addition, tracking algorithms for event reconstruction were developed. The first phase of AGATA is now complete and operational in its first physics campaign. In the future AGATA will be moved between laboratories in Europe and operated in a series of campaigns to take advantage of the different beams and facilities available to maximise its science output. The paper reviews all the achievements made in the AGATA project including all the necessary infrastructure to operate and support the spectrometer. © 2011 Elsevier B.V. All rights reserved.
  •  
18.
  •  
19.
  •  
20.
  •  
21.
  • Hadynska-Klek, K., et al. (author)
  • Superdeformed and Triaxial States in Ca-42
  • 2016
  • In: Physical Review Letters. - : American Physical Society. - 0031-9007 .- 1079-7114. ; 117:6
  • Journal article (peer-reviewed)abstract
    • Shape parameters of a weakly deformed ground-state band and highly deformed slightly triaxial sideband in Ca-42 were determined from E2 matrix elements measured in the first low-energy Coulomb excitation experiment performed with AGATA. The picture of two coexisting structures is well reproduced by new state-of-the-art large-scale shell model and beyond-mean-field calculations. Experimental evidence for superdeformation of the band built on 0(2)(+) has been obtained and the role of triaxiality in the A similar to 40 mass region is discussed. Furthermore, the potential of Coulomb excitation as a tool to study superdeformation has been demonstrated for the first time.
  •  
22.
  • Hadynska-Klek, K., et al. (author)
  • Quadrupole collectivity in Ca-42 from low-energy Coulomb excitation with AGATA
  • 2018
  • In: Physical Review C. - : AMER PHYSICAL SOC. - 2469-9985 .- 2469-9993. ; 97:2
  • Journal article (peer-reviewed)abstract
    • ACoulomb-excitation experiment to study electromagnetic properties of Ca-42 was performed using a 170-MeV calcium beam from the TANDEM XPU facility at INFN Laboratori Nazionali di Legnaro. gamma rays from excited states in Ca-42 were measured with the AGATA spectrometer. The magnitudes and relative signs of ten E2 matrix elements coupling six low-lying states in Ca-42, including the diagonal E2 matrix elements of 2(1)(+) and 2(2)(+) states, were determined using the least-squares code GOSIA. The obtained set of reduced E2 matrix elements was analyzed using the quadrupole sum rule method and yielded overall quadrupole deformation for 0(1),(+)(2) and 2(1,2)(+) states, as well as triaxiality for 0(1,2)(+) states, establishing the coexistence of a weakly deformed ground-state band and highly deformed slightly triaxial sideband in Ca-42. The experimental results were compared with the state-of-the-art large-scale shell-model and beyond-mean-field calculations, which reproduce well the general picture of shape coexistence in Ca-42.
  •  
23.
  • Hadynska-Klek, K., et al. (author)
  • Towards The Determination Of Superdeformation In Ca-42
  • 2013
  • In: Acta Physica Polonica B. - 0587-4254 .- 1509-5770. ; 44:3, s. 617-625
  • Journal article (peer-reviewed)abstract
    • The Coulomb excitation experiment to study electromagnetic structure of low-lying states in Ca-42 with a focus on a possible superdeformation in this nucleus was performed at the Laboratori Nazionali di Legnaro in Italy. Preliminary values of the determined quadrupole deformation parameters for both the ground state band and the presumed superdeformed band are presented.
  •  
24.
  •  
25.
  • Gottardo, A., et al. (author)
  • New Isomers in the Neutron-Rich Region Beyond 208Pb
  • 2014
  • In: EPJ Web of Conferences. - : EDP Sciences. - 2100-014X. - 9782759811755 - 9782759811762 ; 66, s. 02043-02043
  • Conference paper (peer-reviewed)abstract
    • The region of neutron-rich nuclei beyond 208Pb has been very difficult to explore due to its high mass and exoticity. However, recent experimental improvements allowed one to perform a quite extended isomer decay spectroscopy of these nuclei.
  •  
26.
  • Gottardo, A., et al. (author)
  • New Isomers in the Full Seniority Scheme of Neutron-rich Lead Isotopes: The Role of Effective Three-body Forces
  • 2012
  • In: Physical Review Letters. - 1079-7114. ; 109:16
  • Journal article (peer-reviewed)abstract
    • The neutron-rich lead isotopes, up to Pb-216, have been studied for the first time, exploiting the fragmentation of a primary uranium beam at the FRS-RISING setup at GSI. The observed isomeric states exhibit electromagnetic transition strengths which deviate from state-of-the-art shell-model calculations. It is shown that their complete description demands the introduction of effective three-body interactions and two-body transition operators in the conventional neutron valence space beyond Pb-208.
  •  
27.
  • Benzoni, G., et al. (author)
  • First Measurement of Beta Decay Half-lives in Neutron-rich Tl and Bi Isotopes
  • 2012
  • In: Physics Letters. Section B: Nuclear, Elementary Particle and High-Energy Physics. - : Elsevier BV. - 0370-2693. ; 715:4-5, s. 293-297
  • Journal article (peer-reviewed)abstract
    • Neutron-rich isotopes around lead, beyond N = 126, have been studied exploiting the fragmentation of an uranium primary beam at the FRS-RISING setup at GSI. For the first time beta-decay half-lives of Bi-219 and Tl-211,Tl-212,Tl-213 isotopes have been derived. The half-lives have been extracted using a numerical simulation developed for experiments in high-background conditions. Comparison with state of the art models used in r-process calculations is given, showing a systematic underestimation of the experimental values, at variance from close-lying nuclei. (c) 2012 Elsevier B.V. All rights reserved.
  •  
28.
  •  
29.
  • Gottardo, A., et al. (author)
  • Isomeric Decay Spectroscopy of the 217Bi Isotope
  • 2014
  • In: Physical Review C (Nuclear Physics). - 0556-2813. ; 90:3
  • Journal article (peer-reviewed)abstract
    • The structure of the neutron-rich bismuth isotope 217Bi has been studied for the first time. The fragmentation of a primary 238U beam at the FRS-RISING setup at GSI was exploited to perform γ-decay spectroscopy, since μs isomeric states were expected in this nucleus. Gamma rays following the decay of a t1/2=3 μs isomer were observed, allowing one to establish the low-lying structure of 217Bi. The level energies and the reduced electric quadrupole transition probability B(E2) from the isomeric state are compared to large-scale shell-model calculations.
  •  
30.
  • Gottardo, A., et al. (author)
  • New spectroscopic information on 211,213Tl : A changing structure beyond the N=126 shell closure
  • 2019
  • In: Physical Review C. - 2469-9985. ; 99:5
  • Journal article (peer-reviewed)abstract
    • The neutron-rich isotopes 211,213Tl, beyond the N=126 shell closure, have been studied for the first time in isomer γ-ray decay, exploiting the fragmentation of a primary uranium beam at the Fragment Separator-Rare Isotopes Investigation at GSI setup. The observed isomeric states in 211,213Tl show a deviation from the seniority-like scheme of 209Tl. The possible interpretation of the data is discussed on the basis of energy-level systematics and shell-model calculations.
  •  
31.
  • Gottardo, A., et al. (author)
  • New μs Isomers in the Neutron-rich 210Hg Nucleus
  • 2013
  • In: Physics Letters. Section B: Nuclear, Elementary Particle and High-Energy Physics. - : Elsevier BV. - 0370-2693. ; 725:4-5, s. 292-296
  • Journal article (peer-reviewed)abstract
    • Neutron-rich nuclei in the lead region, beyond N = 126, have been studied at the FRS-RISING setup at GSI, exploiting the fragmentation of a primary uranium beam. Two isomeric states have been identified in Hg-210: the 8(+) isomer expected from the seniority scheme in the vg(9/2) shell and a second one at low spin and low excitation energy. The decay strength of the 8(+) isomer confirms the need of effective three-body forces in the case of neutron-rich lead isotopes. The other unexpected low-lying isomer has been tentatively assigned as a 3(-) state, although this is in contrast with theoretical expectations. (C) 2013 Elsevier B.V. All rights reserved.
  •  
32.
  • Ponnath, L., et al. (author)
  • Measurement of nuclear interaction cross sections towards neutron-skin thickness determination
  • 2024
  • In: Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics. - 0370-2693. ; 855
  • Journal article (peer-reviewed)abstract
    • The accuracy of reaction theories used to extract properties of exotic nuclei from scattering experiments is often unknown or not quantified, but of utmost importance when, e.g., constraining the equation of state of asymmetric nuclear matter from observables as the neutron-skin thickness. In order to test the Glauber multiple-scattering model, the total interaction cross section of [Formula presented] on carbon targets was measured at initial beam energies of 400, 550, 650, 800, and 1000 MeV/nucleon. The measurements were performed during the first experiment of the newly constructed R3B (Reaction with Relativistic Radioactive Beams) experiment after the start of FAIR Phase-0 at the GSI/FAIR facility with beam energies of 400, 550, 650, 800, and 1000 MeV/nucleon. The combination of the large-acceptance dipole magnet GLAD and a newly designed and highly efficient Time-of-Flight detector enabled a precise transmission measurement with several target thicknesses for each initial beam energy with an experimental uncertainty of ±0.4%. A comparison with the Glauber model revealed a discrepancy of around 3.1% at higher beam energies, which will serve as a crucial baseline for the model-dependent uncertainty in future fragmentation experiments.
  •  
33.
  • Wang, H., et al. (author)
  • Intruder configurations in 29 Ne at the transition into the island of inversion: Detailed structure study of 28 Ne
  • 2023
  • In: Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics. - 0370-2693. ; 843
  • Journal article (peer-reviewed)abstract
    • Detailed γ-ray spectroscopy of the exotic neon isotope 28Ne has been performed for the first time using the one-neutron removal reaction from 29Ne on a liquid hydrogen target at 240 MeV/nucleon. Based on an analysis of parallel momentum distributions, a level scheme with spin-parity assignments has been constructed for 28Ne and the negative-parity states are identified for the first time. The measured partial cross sections and momentum distributions reveal a significant intruder p-wave strength providing evidence of the breakdown of the N=20 and N=28 shell gaps. Only a weak, possible f-wave strength was observed to bound final states. Large-scale shell-model calculations with different effective interactions do not reproduce the large p-wave and small f-wave strength observed experimentally, indicating an ongoing challenge for a complete theoretical description of the transition into the island of inversion along the Ne isotopic chain.
  •  
34.
  • Kondo, Y., et al. (author)
  • First observation of 28 O
  • 2023
  • In: Nature. - 0028-0836 .- 1476-4687. ; 620:7976, s. 965-970
  • Journal article (peer-reviewed)abstract
    • Subjecting a physical system to extreme conditions is one of the means often used to obtain a better understanding and deeper insight into its organization and structure. In the case of the atomic nucleus, one such approach is to investigate isotopes that have very different neutron-to-proton (N/Z) ratios than in stable nuclei. Light, neutron-rich isotopes exhibit the most asymmetric N/Z ratios and those lying beyond the limits of binding, which undergo spontaneous neutron emission and exist only as very short-lived resonances (about 10−21s), provide the most stringent tests of modern nuclear-structure theories. Here we report on the first observation of 28O and 27O through their decay into 24O and four and three neutrons, respectively. The 28O nucleus is of particular interest as, with the Z = 8 and N = 20 magic numbers1,2, it is expected in the standard shell-model picture of nuclear structure to be one of a relatively small number of so-called ‘doubly magic’ nuclei. Both 27O and 28O were found to exist as narrow, low-lying resonances and their decay energies are compared here to the results of sophisticated theoretical modelling, including a large-scale shell-model calculation and a newly developed statistical approach. In both cases, the underlying nuclear interactions were derived from effective field theories of quantum chromodynamics. Finally, it is shown that the cross-section for the production of 28O from a 29F beam is consistent with it not exhibiting a closed N = 20 shell structure.
  •  
35.
  • Revel, A., et al. (author)
  • Extending the Southern Shore of the Island of Inversion to F-28
  • 2020
  • In: Physical Review Letters. - 1079-7114 .- 0031-9007. ; 124:15
  • Journal article (peer-reviewed)abstract
    • Detailed spectroscopy of the neutron-unbound nucleus F-28 has been performed for the first time following proton/neutron removal from Ne-29/F-29 beams at energies around 230 MeV=nucleon. The invariant-mass spectra were reconstructed for both the F-27((*)) + n and F-26((*)) + 2n coincidences and revealed a series of well-defined resonances. A near-threshold state was observed in both reactions and is identified as the F-28 ground state, with S-n(F-28) = -199(6) keV, while analysis of the 2n decay channel allowed a considerably improved S-n(F-27) = 1620(60) keV to be deduced. Comparison with shell-model predictions and eikonal-model reaction calculations have allowed spin-parity assignments to be proposed for some of the lower-lying levels of F-28. Importantly, in the case of the ground state, the reconstructed F-27 + n momentum distribution following neutron removal from F-29 indicates that it arises mainly from the 1p(3/2) neutron intruder configuration. This demonstrates that the island of inversion around N = 20 includes F-28, and most probably F-29, and suggests that O-28 is not doubly magic.
  •  
36.
  • Holl, Matthias, 1986, et al. (author)
  • Border of the island of inversion: Unbound states in Ne-29
  • 2022
  • In: Physical Review C. - 2469-9985 .- 2469-9993. ; 105:3
  • Journal article (peer-reviewed)abstract
    • The nucleus Ne-29 is situated at the border of the island of inversion. Despite significant efforts, no bound low-lying intruder f(7/2) state, which would place Ne-29 firmly inside the island of inversion, has yet been observed. Here, the first investigation of unbound states of Ne-29 is reported. The states were populated in Ne-30(p, pn) and Na-30(p, 2p) reactions at a beam energy of around 230 MeV/nucleon, and analyzed in terms of their resonance properties, partial cross sections, and momentum distributions. The momentum distributions are compared to calculations using the eikonal, direct reaction model, allowing assignments for the observed states. The lowest lying resonance at an excitation energy of 1.48(4) MeV shows clear signs of a significant l = 3 component, giving first evidence for f(7/2) single particle strength in Ne-29. The excitation energies and strengths of the observed states are compared to shell-model calculations using the SDPF-U-MIX interaction.
  •  
37.
  • Morales, A.I., et al. (author)
  • β-decay Studies of Neutron-rich Tl, Pb, and Bi Isotopes
  • 2014
  • In: Physical Review C (Nuclear Physics). - 0556-2813. ; 89:1
  • Journal article (peer-reviewed)abstract
    • The fragmentation of relativistic uranium projectiles has been exploited at the Gesellschaft für Schwerionenforschung laboratory to investigate the β decay of neutron-rich nuclei just beyond 208Pb. This paper reports on β-delayed γ decays of 211–213Tl, 215Pb, and 215–219Bi de-exciting states in the daughters 211–213Pb, 215Bi, and 215–219Po. The resulting partial level schemes, proposed with the help of systematics and shell-model calculations, are presented. The role of allowed Gamow-Teller and first-forbidden β transitions in this mass region is discussed.
  •  
38.
  • Aktas, Özge, 1987-, et al. (author)
  • First observation of γ-ray transitions in 111Mo
  • In: Physical Review C. Nuclear Physics. - 0556-2813 .- 1089-490X.
  • Journal article (peer-reviewed)abstract
    • Excited states in the extremely neutron-rich nuclei 109Mo and 111Mo have been studied following nucleon knock-out reactions. Seven $\gamma$-ray transitions, some of them in prompt mutual coincidence, have been identified for the first time in 11Mo using the DALI2 and MINOS detector systems at the BigRIPS and ZeroDegree electromagnetic fragments separator at the RIBF, RIKEN, Japan. Total Routhian surface (TRS) and Particle- Plus Rotor calculations have been performed to investigate the predicted shape coexistence and its effect on the structure of nuclei in this region of the nuclear chart. Following the results of the calculations, theoretical level schemes are proposed for positive and negative parity states and compared with the experimental findings.
  •  
39.
  • Aktas, Özge, et al. (author)
  • Single-particle structures in 85,87Ge
  • In: Physical Review C. Nuclear Physics. - 0556-2813 .- 1089-490X.
  • Journal article (peer-reviewed)abstract
    • Gamma-ray transitions have been identified for the first time in the extremely neutron-rich (N =Z + 25) nucleus 87 Ge following nucleon knockout reactions studied at the RIBF, RIKEN, Japan.New γ-ray transitions from excited states in 85 Ge were also observed and placed in a tentative levelscheme. The exclusive parallel momentum distribution was measured for the 1/2 + state for theneutron knockout reaction leading to 85 Ge which is compared with calculated distorted wave impulseapproximation (DWIA) distributions. The 85,87 Ge results are compared with large-scale shell-modelcalculations and potential energy surface calculations based on the total Routhian surface formalism.
  •  
40.
  • Gottardo, A., et al. (author)
  • Isomers in Neutron-rich Lead Isotopes Populated via the Fragmentation of 238U at 1 GeV A
  • 2011
  • In: Journal of Physics: Conference Series. - : IOP Publishing. - 1742-6596 .- 1742-6588. ; 312
  • Journal article (peer-reviewed)abstract
    • Neutron-rich nuclei beyond N = 126 in the lead region were populated by fragmenting a 238U beam at 1 GeV A on a Be target and then separated by the Fragment Separator (FRS) at GSI. Their isomeric decays were observed, enabling study of the shell structure of neutron-rich nuclei around the Z=82 shell closure. Some preliminary results are reported in this paper.
  •  
41.
  • Heil, M., et al. (author)
  • A new Time-of-flight detector for the R 3 B setup
  • 2022
  • In: European Physical Journal A. - : Springer Science and Business Media LLC. - 1434-601X .- 1434-6001. ; 58:12
  • Journal article (peer-reviewed)abstract
    • We present the design, prototype developments and test results of the new time-of-flight detector (ToFD) which is part of the R3B experimental setup at GSI and FAIR, Darmstadt, Germany. The ToFD detector is able to detect heavy-ion residues of all charges at relativistic energies with a relative energy precision σΔE/ ΔE of up to 1% and a time precision of up to 14 ps (sigma). Together with an elaborate particle-tracking system, the full identification of relativistic ions from hydrogen up to uranium in mass and nuclear charge is possible.
  •  
42.
  • Kasliwal, M. M., et al. (author)
  • Illuminating gravitational waves : A concordant picture of photons from a neutron star merger
  • 2017
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 358:6370, s. 1559-
  • Journal article (peer-reviewed)abstract
    • Merging neutron stars offer an excellent laboratory for simultaneously studying strong-field gravity and matter in extreme environments. We establish the physical association of an electromagnetic counterpart (EM170817) with gravitational waves (GW170817) detected from merging neutron stars. By synthesizing a panchromatic data set, we demonstrate that merging neutron stars are a long-sought production site forging heavy elements by r-process nucleosynthesis. The weak gamma rays seen in EM170817 are dissimilar to classical short gamma-ray bursts with ultrarelativistic jets. Instead, we suggest that breakout of a wide-angle, mildly relativistic cocoon engulfing the jet explains the low-luminosity gamma rays, the high-luminosity ultraviolet-optical-infrared, and the delayed radio and x-ray emission. We posit that all neutron star mergers may lead to a wide-angle cocoon breakout, sometimes accompanied by a successful jet and sometimes by a choked jet.
  •  
43.
  • Vandone, V., et al. (author)
  • Global properties of K hindrance probed by the gamma decay of the warm rotating W-174 nucleus
  • 2013
  • In: Physical Review C. Nuclear Physics. - 0556-2813 .- 1089-490X. ; 88:3, s. 034312-
  • Journal article (peer-reviewed)abstract
    • The K hindrance to the gamma decay is studied in the warm rotating W-174 nucleus, focusing on the weakening of the selection rules of the K quantum number with increasing excitation energy. W-174 was populated by the fusion reaction of Ti-50 (at 217 MeV) on a Te-128 target, and its gamma decay was detected by the AGATA Demonstrator array coupled to a BaF2 multiplicity filter at Laboratori Nazionali di Legnaro of INFN. A fluctuation analysis of gamma coincidence matrices gives a similar number of low-K and high-K discrete excited bands. The results are compared to simulations of the gamma-decay flow based on a microscopic cranked shell model at finite temperature in which the K mixing is governed by the interplay of Coriolis force with the residual interaction. Agreement between simulations and experiment is obtained only by hindering the E1 decay between low-K and high-K bands by an amount compatible with that determined by spectroscopic studies of K isomers in the same mass region, with a similar trend with excitation energy. The work indicates that K mixing due to temperature effects may play a leading role for the entire body of discrete excited bands, which probes the onset region of K weakening.
  •  
44.
  • Valiente-Dobón, J.J., et al. (author)
  • Manifestation of the Berry phase in the atomic nucleus 213Pb
  • 2021
  • In: Physics Letters B. - : Elsevier BV. - 0370-2693. ; 816
  • Journal article (peer-reviewed)abstract
    • The neutron-rich 213Pb isotope was produced in the fragmentation of a primary 1 GeV A 238U beam, separated in FRS in mass and atomic number, and then implanted for isomer decay γ-ray spectroscopy with the RISING setup at GSI. A newly observed isomer and its measured decay properties indicate that states in 213Pb are characterized by the seniority quantum number that counts the nucleons not in pairs coupled to angular momentum J=0. The conservation of seniority is a consequence of a geometric phase associated with particle-hole conjugation, which becomes observable in semi-magic nuclei where nucleons half-fill the valence shell. The γ-ray spectroscopic observables in 213Pb are thus found to be driven by two mechanisms, particle-hole conjugation and seniority conservation, which are intertwined through a Berry phase.
  •  
45.
  • Zago, L., et al. (author)
  • High-spin states in 212Po above the α-decaying (18+) isomer
  • 2022
  • In: Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics. - : Elsevier BV. - 0370-2693. ; 834
  • Journal article (peer-reviewed)abstract
    • The nucleus 212Po has been produced through the fragmentation of a 238U primary beam at 1 GeV/nucleon at GSI, separated with the FRagment Separator, FRS, and studied via isomer γ-decay spectroscopy with the RISING setup. Two delayed previously unknown γ rays have been observed. One has been attributed to the E3 decay of a 21− isomeric state feeding the α-emitting 45-s (18+) high-spin isomer. The other γ-ray line has been assigned to the decay of a higher-lying 23+ metastable state. These are the first observations of high-spin states above the 212Po (18+) isomer, by virtue of the selectivity obtained via ion-by-ion identification of 238U fragmentation products. Comparison with shell-model calculations points to shortfalls in the nuclear interactions involving high-j proton and neutron orbitals, to which the region around Z∼100 is sensitive.
  •  
46.
  • Crespi, F. C. L., et al. (author)
  • 1(-) and 2(+) discrete states in Zr-90 populated via the (O-17, O-17 'gamma) reaction
  • 2015
  • In: Physical Review C. Nuclear Physics. - 0556-2813 .- 1089-490X. ; 91:2
  • Journal article (peer-reviewed)abstract
    • 2(+) and 1(-) states in Zr-90 were populated via the (O-17, O-17 'gamma) reaction at 340 MeV. The gamma decay was measured with high resolution using the AGATA (advanced gamma tracking array demonstrator array). Differential cross sections were obtained at few different angles for the scattered particle. The results of the elastic scattering and inelastic excitation of 2(+), 3(,)(-) and 1(-) states are compared with distorted-wave Born approximation (DWBA) calculations, using both the standard collective form factor and a form factor obtained by folding microscopically calculated transition densities. This allowed to extract the isoscalar component of the 1(-) state at 6.424 MeV. The comparison of the present (17O, 17O 'gamma) data with existing (gamma,gamma') and (p, p') data in the corresponding region of the gamma continuum (6-11 MeV), characterized by a large E1 component, shows completely different behaviors of the cross section as a function of the nuclear excitation energy. The comparison of the data with DWBA calculations suggests a decrease of the isoscalar strength in the cross section with increasing excitation energy.
  •  
47.
  • Graña-González, A., et al. (author)
  • Quasi-free (p,2p) reactions in inverse kinematics for studying the fission yield dependence on temperature
  • 2023
  • In: FAIR next generation scientists - 7th Edition Workshop : FAIRness2022 - FAIRness2022. - 1824-8039. ; 419
  • Conference paper (peer-reviewed)abstract
    • Despite the recent experimental and theoretical progress in the investigation of the nuclear fission process, a complete description still represents a challenge in nuclear physics because it is a very complex dynamical process, whose description involves the coupling between intrinsic and collective degrees of freedom, as well as different quantum-mechanical phenomena. To improve on the existing data on nuclear fission, we produce fission reactions of heavy nuclei in inverse kinematics by using quasi-free (p,2p) scattering, which induce fission through particle-hole excitations that can range from few to ten's of MeV. The measurement of the four-momenta of the two outgoing protons allows to reconstruct the excitation energy of the fissioning compound nucleus and therefore to study the evolution of the fission yields with temperature. The realization of this kind of experiment requires a complex experimental setup, providing full isotopic identification of both fission fragments and an accurate measurement of the momenta of the two outgoing protons. This was realized recently at the GSI/FAIR facility and here some preliminary results are presented.
  •  
48.
  • Rodriguez-Sancheza, J. L., et al. (author)
  • Comprehensive investigation of fission yields by using spallation- and (p,2p)induced fission reactions in inverse kinematics
  • 2023
  • In: 15TH INTERNATIONAL CONFERENCE ON NUCLEAR DATA FOR SCIENCE AND TECHNOLOGY, ND2022. - 2100-014X. ; 284
  • Conference paper (peer-reviewed)abstract
    • In the last decades, measurements of spallation, fragmentation and Coulex induced fission reactions in inverse kinematics have provided valuable data to accurately investigate the fission dynamics and nuclear structure at large deformations of a large variety of stable and non -stable heavy nuclei. To go a step further, we propose now to induce fission by the use of quasi -free (p,2p) scattering reactions in inverse kinematics, which allows us to reconstruct the excitation energy of the compound fissioning system by using the four-momenta of the two outgoing protons. Therefore, this new approach might permit to correlate the excitation energy with the charge and mass distributions of the fission fragments and with the fission probabilities, given for the first time direct access to the simultaneous measurement of the fission yield dependence on temperature and fission barrier heights of exotic heavy nuclei, respectively. The first experiment based on this methodology was realized recently at the GM/FAIR facility and a detailed description of the experimental setup is given here.
  •  
49.
  • Duer, M., et al. (author)
  • Observation of a correlated free four-neutron system
  • 2022
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 606:7915
  • Journal article (peer-reviewed)abstract
    • A long-standing question in nuclear physics is whether chargeless nuclear systems can exist. To our knowledge, only neutron stars represent near-pure neutron systems, where neutrons are squeezed together by the gravitational force to very high densities. The experimental search for isolated multi-neutron systems has been an ongoing quest for several decades(1), with a particular focus on the four-neutron system called the tetraneutron, resulting in only a few indications of its existence so far(2-4), leaving the tetraneutron an elusive nuclear system for six decades. Here we report on the observation of a resonance-like structure near threshold in the four-neutron system that is consistent with a quasi-bound tetraneutron state existing for a very short time. The measured energy and width of this state provide a key benchmark for our understanding of the nuclear force. The use of an experimental approach based on a knockout reaction at large momentum transfer with a radioactive high-energy He-8 beam was key.
  •  
50.
  • Lamb, G. P., et al. (author)
  • Short GRB 160821B : A Reverse Shock, a Refreshed Shock, and a Well-sampled Kilonova
  • 2019
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 883:1
  • Journal article (peer-reviewed)abstract
    • We report our identification of the optical afterglow and host galaxy of the short-duration gamma-ray burst sGRB 160821B. The spectroscopic redshift of the host is z = 0.162, making it one of the lowest redshift short-duration gamma-ray bursts (sGRBs) identified by Swift. Our intensive follow-up campaign using a range of ground-based facilities as well as Hubble Space Telescope, XMM-Newton, and Swift, shows evidence for a late-time excess of optical and near-infrared emission in addition to a complex afterglow. The afterglow light curve at X-ray frequencies reveals a narrow jet, theta(j) similar to 1.9(-0.03)(+0.10) deg, that is refreshed at >1 day post-burst by a slower outflow with significantly more energy than the initial outflow that produced the main GRB. Observations of the 5 GHz radio afterglow shows a reverse shock into a mildly magnetized shell. The optical and near-infrared excess is fainter than AT2017gfo associated with GW170817, and is well explained by a kilonova with dynamic ejecta mass M-dyn = (1.0 +/- 0.6) x 10(-3) M-circle dot and a secular (post-merger) ejecta mass with M-pm = (1.0 +/- 0.6) x 10(-2) M-circle dot, consistent with a binary neutron star merger resulting in a short-lived massive neutron star. This optical and near-infrared data set provides the best-sampled kilonova light curve without a gravitational wave trigger to date.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-50 of 92
Type of publication
journal article (81)
conference paper (5)
book chapter (3)
reports (1)
book (1)
research review (1)
show more...
show less...
Type of content
peer-reviewed (87)
other academic/artistic (5)
Author/Editor
Gupta, R. (19)
Zhang, L. (17)
Zhang, F. (16)
Colla, A. (16)
Brau, J. E. (15)
Chen, Y. (15)
show more...
Kim, H. (15)
Oh, S. H. (15)
Yang, H. (15)
Thomas, P. (15)
Ivanov, A. (15)
Klimenko, S. (15)
McCarthy, R. (15)
Smith, J. R. (15)
Mitselmakher, G. (15)
Bose, S. (15)
Brinkmann, M. (15)
Brisson, V. (15)
Miller, J. (15)
Yoshida, S. (15)
Bartos, I. (15)
Marka, S. (15)
Marka, Z. (15)
Abbott, B. P. (15)
Abbott, R. (15)
Abbott, T. D. (15)
Adams, C. (15)
Affeldt, C. (15)
Ajith, P. (15)
Anderson, S. B. (15)
Anderson, W. G. (15)
Arai, K. (15)
Araya, M. C. (15)
Aston, S. M. (15)
Astone, P. (15)
Aufmuth, P. (15)
Aulbert, C. (15)
Babak, S. (15)
Ballardin, G. (15)
Barker, D. (15)
Barr, B. (15)
Barsotti, L. (15)
Bassiri, R. (15)
Bell, A. S. (15)
Bertolini, A. (15)
Betzwieser, J. (15)
Bilenko, I. A. (15)
Billingsley, G. (15)
Birch, J. (15)
Bitossi, M. (15)
show less...
University
Lund University (34)
Stockholm University (17)
Karolinska Institutet (14)
Uppsala University (13)
Chalmers University of Technology (13)
Royal Institute of Technology (12)
show more...
University of Gothenburg (9)
Jönköping University (3)
show less...
Language
English (91)
Undefined language (1)
Research subject (UKÄ/SCB)
Natural sciences (65)
Medical and Health Sciences (12)
Social Sciences (4)
Engineering and Technology (2)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view