SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Dedic A.) "

Search: WFRF:(Dedic A.)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Kirişli, Hortense, et al. (author)
  • Standardized evaluation framework for evaluating coronary artery stenosis detection, stenosis quantification and lumen segmentation algorithms in computed tomography angiography
  • 2013
  • In: Medical Image Analysis. - : Elsevier. - 1361-8415 .- 1361-8423. ; 17:8, s. 859-876
  • Journal article (peer-reviewed)abstract
    • Though conventional coronary angiography (CCA) has been the standard of reference for diagnosing coronary artery disease in the past decades, computed tomography angiography (CIA) has rapidly emerged, and is nowadays widely used in clinical practice. Here, we introduce a standardized evaluation framework to reliably evaluate and compare the performance of the algorithms devised to detect and quantify the coronary artery stenoses, and to segment the coronary artery lumen in CIA data. The objective of this evaluation framework is to demonstrate the feasibility of dedicated algorithms to: (I) (semi-)automatically detect and quantify stenosis on CIA, in comparison with quantitative coronary angiography (QCA) and CIA consensus reading, and (2) (semi-)automatically segment the coronary lumen on CIA, in comparison with expert's manual annotation. A database consisting of 48 multicenter multivendor cardiac CIA datasets with corresponding reference standards are described and made available. The algorithms from 11 research groups were quantitatively evaluated and compared. The results show that (1) some of the current stenosis detection/quantification algorithms may be used for triage or as a second-reader in clinical practice, and that (2) automatic lumen segmentation is possible with a precision similar to that obtained by experts. The framework is open for new submissions through the website, at http://coronary.bigr.nl/stenoses/.
  •  
2.
  •  
3.
  • Dedic, R, et al. (author)
  • Hole burning study of cyanobacterial Photosystem II complexes differing in the content of small putative chlorophyll-binding proteins
  • 2004
  • In: Journal of Luminescence. - : Elsevier BV. - 0022-2313. ; 107:1-4, s. 230-5
  • Journal article (peer-reviewed)abstract
    • This contribution presents low-temperature absorption, both broad-band and site-selective excited fluorescence, and persistent hole burning spectra of Photosystem II complexes from the Photosystem I-lacking strains of the cyanobacterium Synechocystis sp. PCC 6803 differing in the content of small putative chlorophyll-binding proteins (Scps). These proteins are homologous to light-harvesting complex of higher plants and may bind pigments. The excited state lifetimes of the complexes were determined from zero-phonon hole widths extrapolated to zero-burning dose. The area and spectral position of a phonon side-band with respect to the zero-phonon hole provided additional information concerning chlorophyll–protein coupling and the Stokes shift. Decrease of three absorption subbands at (670.0, 672.9, and 675.7 nm) in the Photosystem II isolated from the strain lacking ScpC and ScpD is in agreement with a hypothesis about the role of Scps in the chlorophyll binding. In addition, narrowing of the zero-phonon hole in Photosystem II without both Scps indicates slowering of the excitation energy transfer which may be explained by the absence of a protective excitation energy quenching related to the presence of Scps.
  •  
4.
  • Vinkler, Michal, et al. (author)
  • Understanding the evolution of immune genes in jawed vertebrates
  • 2023
  • In: Journal of Evolutionary Biology. - : John Wiley & Sons. - 1010-061X .- 1420-9101. ; 36:6, s. 847-873
  • Research review (peer-reviewed)abstract
    • Driven by co-evolution with pathogens, host immunity continuously adapts to optimize defence against pathogens within a given environment. Recent advances in genetics, genomics and transcriptomics have enabled a more detailed investigation into how immunogenetic variation shapes the diversity of immune responses seen across domestic and wild animal species. However, a deeper understanding of the diverse molecular mechanisms that shape immunity within and among species is still needed to gain insight into-and generate evolutionary hypotheses on-the ultimate drivers of immunological differences. Here, we discuss current advances in our understanding of molecular evolution underpinning jawed vertebrate immunity. First, we introduce the immunome concept, a framework for characterizing genes involved in immune defence from a comparative perspective, then we outline how immune genes of interest can be identified. Second, we focus on how different selection modes are observed acting across groups of immune genes and propose hypotheses to explain these differences. We then provide an overview of the approaches used so far to study the evolutionary heterogeneity of immune genes on macro and microevolutionary scales. Finally, we discuss some of the current evidence as to how specific pathogens affect the evolution of different groups of immune genes. This review results from the collective discussion on the current key challenges in evolutionary immunology conducted at the ESEB 2021 Online Satellite Symposium: Molecular evolution of the vertebrate immune system, from the lab to natural populations.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view