SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Deevi S. C.) "

Search: WFRF:(Deevi S. C.)

  • Result 1-6 of 6
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Turro, Ernest, et al. (author)
  • Whole-genome sequencing of patients with rare diseases in a national health system.
  • 2020
  • In: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 583:7814, s. 96-102
  • Journal article (peer-reviewed)abstract
    • Most patients with rare diseases do not receive a molecular diagnosis and the aetiological variants and causative genes for more than half such disorders remain to be discovered1. Here we used whole-genome sequencing (WGS) in a national health system to streamline diagnosis and to discover unknown aetiological variants in the coding and non-coding regions of the genome. We generated WGS data for 13,037 participants, of whom 9,802 had a rare disease, and provided a genetic diagnosis to 1,138 of the 7,065extensively phenotypedparticipants. We identified 95 Mendelian associations between genes and rare diseases, of which 11 have been discovered since 2015 and at least 79 are confirmed to be aetiological. By generating WGS data ofUK Biobankparticipants2, we found that rare alleles can explain the presence of some individuals in the tails of a quantitative trait for red blood cells. Finally, we identified four novel non-coding variants that cause disease through the disruption of transcription of ARPC1B, GATA1, LRBA and MPL. Our study demonstrates a synergy by using WGS for diagnosis and aetiological discovery in routine healthcare.
  •  
2.
  • Varea, A., et al. (author)
  • Tuneable magnetic patterning of paramagnetic Fe60Al40 (at. %) by consecutive ion irradiation through pre-lithographed shadow masks
  • 2011
  • In: Journal of Applied Physics. - : AIP Publishing. - 0021-8979 .- 1089-7550. ; 109:9, s. 093918-
  • Journal article (peer-reviewed)abstract
    • Arrays of ferromagnetic circular dots (with diameters ranging from 225 to 420 nm) have been prepared at the surface of atomically ordered paramagnetic Fe60Al40 (at. %) sheets by means of ion irradiation through prelithographed poly(methyl methacrylate) (PMMA) masks. The cumulative effects of consecutive ion irradiation (using Ar+ ions at 1.2 x 10(14) ions/cm(2) with 10, 13, 16, 19 and 22 keV incident energies) on the properties of the patterned dots have been investigated. A progressive increase in the overall magneto-optical Kerr signal is observed for increasingly larger irradiation energies, an effect which is ascribed to accumulation of atomic disorder. Conversely, the coercivity, H-C, shows a maximum after irradiating at 16-19 keV and it decreases for larger irradiation energies. Such a decrease in H-C is ascribed to the formation of vortex states during magnetization reversal, in agreement with results obtained from micromagnetic simulations. At the same time, the PMMA layer, with an initial thickness of 90 nm, becomes progressively thinned during the successive irradiation processes. After irradiation at 22 keV, the remaining PMMA layer is too thin to stop the incoming ions and, consequently, ferromagnetism starts to be generated underneath the nominally masked areas. These experimental results are in agreement with calculations using the Monte-Carlo simulation Stopping Range of Ions in Matter software, which show that for exceedingly thin PMMA layers Ar+ ions can reach the Fe60Al40 layer despite the presence of the mask.
  •  
3.
  • Pithawalla, Y. B., et al. (author)
  • Synthesis of magnetic intermetallic FeAl nanoparticles from a non-magnetic bulk alloy
  • 2001
  • In: Journal of Physical Chemistry B. - : American Chemical Society (ACS). - 1089-5647 .- 1520-6106 .- 1520-5207. ; 105:11, s. 2085-2090
  • Journal article (peer-reviewed)abstract
    • We report the synthesis of intermetallic FeAl nanoparticles using the laser vaporization controlled condensation technique. The nanoparticles have, an average particle diameter between 6 and 9 nm. Measurements of the d spacing from X-ray and electron diffraction studies confirm that the FeAl nanoparticles have the same crystal structure (B2) as the bulk FeAl. High-resolution TEM images reveal that the nanoparticles consist of a crystalline core encased within a thin amorphous layer formed upon the exposure of the particles to air. We also report the synthesis of FeAl oxide and carbide nanoparticles. The oxide nanoparticles have the hercynite FeAl2O4 composition and the carbide nanoparticles have the AlFe3C0.5 composition. While the crystalline bulk FeAl (20-30% weight Al) materials are nonmagnetic, the analogues nanoparticles are found to be ferromagnetic even well above room temperature. Coercivities of the order of 50 Oe almost independent of temperature are observed from room temperature down to 40 K, below which the coercivities values increase up to 700 Oe at 5 K. The nanoparticles show a definitive exchange anisotropy effect probably arising from the intersurface anisotropy at the adsorbed oxygen layers on these particles. The observed displacement of the hysteresis loops along the field and the magnetization axes are reversible with the direction of the applied field. The FeAl nanoparticles may lead to a novel form of advanced materials that combine high electrical resistivity, oxidation resistance, ductility and unique magnetic properties.
  •  
4.
  •  
5.
  • Fassbender, J., et al. (author)
  • Ion mass dependence of irradiation-induced local creation of ferromagnetism in Fe60Al40 alloys
  • 2008
  • In: Physical Review B. Condensed Matter and Materials Physics. - 1098-0121 .- 1550-235X. ; 77:17
  • Journal article (peer-reviewed)abstract
    • Ion irradiation of Fe60Al40 alloys results in the phase transformation from the paramagnetic, chemically ordered B2 phase to the ferromagnetic, chemically disordered A2 phase. The magnetic phase transformation is related to the number of displacements per atom (dpa) during the irradiation. For heavy ions (Ar+, Kr+, and Xe+), a universal curve is observed with a steep increase in the fraction of the ferromagnetic phase that reaches saturation, i.e., a complete phase transformation, at about 0.5 dpa. This proves the purely ballistic nature of the disordering process. If light ions are used (He+ and Ne+), a pronounced deviation from the universal curve is observed. This is attributed to bulk vacancy diffusion from the dilute collision cascades, which leads to a partial recovery of the thermodynamically favored B2 phase. Comparing different noble gas ion irradiation experiments allows us to assess the corresponding counteracting contributions. In addition, the potential to create local ferromagnetic areas embedded in a paramagnetic matrix is demonstrated.
  •  
6.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-6 of 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view