SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Dhama K) "

Search: WFRF:(Dhama K)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  •  
3.
  • Dhama, Kuldeep, et al. (author)
  • SARS-CoV-2 emerging Omicron subvariants with a special focus on BF.7 and XBB.1.5 recently posing fears of rising cases amid ongoing COVID-19 pandemic
  • 2022
  • In: Journal of Experimental Biology and Agricultural Sciences. - : JEBAS. - 2320-8694. ; 10:6, s. 1215-1221
  • Journal article (peer-reviewed)abstract
    • The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron versions have been the sole one circulating for quite some time. Subvariants BA.1, BA.2, BA.3, BA.4, and BA.5 of the Omicron emerged over time and through mutation, with BA.1 responsible for the most severe global pandemic between December 2021 and January 2022. Other Omicron subvariants such as BQ.1, BQ.1.1, BA.4.6, BF.7, BA.2.75.2, XBB.1 appeared recently and could cause a new wave of increased cases amid the ongoing COVID-19 pandemic. There is evidence that certain Omicron subvariants have increased transmissibility, extra spike mutations, and ability to overcome protective effects of COVID-19 neutralizing antibodies through immunological evasion. In recent months, the Omicron BF.7 subvariant has been in the news due to its spread in China and a small number of other countries, raising concerns about a possible rebound in COVID-19 cases. More recently, the Omicron XBB.1.5 subvariant has captured international attention due to an increase in cases in the United States. As a highly transmissible sublineage of Omicron BA.5, as well as having a shorter incubation time and the potential to reinfect or infect immune population, BF.7 has stronger infection ability. It appears that the regional immunological landscape is affected by the amount and timing of previous Omicron waves, as well as the COVID-19 vaccination coverage, which in turn determines whether the increased immune escape of BF.7 and XBB.1.5 subvariants is sufficient to drive new infection waves. Expanding our understanding of the transmission and efficacy of vaccines, immunotherapeutics, and antiviral drugs against newly emerging Omicron subvariants and lineages, as well as bolstering genomic facilities for tracking their spread and maintaining a constant vigilance, and shedding more light on their evolution and mutational events, would help in the development of effective mitigation strategies. Importantly, reducing the occurrence of mutations and recombination in the virus can be aided by bolstering One health approach and emphasizing its significance in combating zoonosis and reversal zoonosis linked with COVID-19. This article provides a brief overview on Omicron variant, its recently emerging lineages and subvairants with a special focus on BF.7 and XBB.1.5 as much more infectious and highly transmissible variations that may once again threaten a sharp increase in COVID-19 cases globally amid the currently ongoing pandemic, along with presenting salient mitigation measures.
  •  
4.
  • Malik, Yashpal S., et al. (author)
  • SARS-CoV-2 Spike Protein Extrapolation for COVID Diagnosis and Vaccine Development
  • 2021
  • In: Frontiers in Molecular Biosciences. - : Frontiers Media S.A.. - 2296-889X. ; 8
  • Research review (peer-reviewed)abstract
    • Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) led to coronavirus disease 2019 (COVID-19) pandemic affecting nearly 71.2 million humans in more than 191 countries, with more than 1.6 million mortalities as of 12 December, 2020. The spike glycoprotein (S-protein), anchored onto the virus envelope, is the trimer of S-protein comprised of S1 and S2 domains which interacts with host cell receptors and facilitates virus-cell membrane fusion. The S1 domain comprises of a receptor binding domain (RBD) possessing an N-terminal domain and two subdomains (SD1 and SD2). Certain regions of S-protein of SARS-CoV-2 such as S2 domain and fragment of the RBD remain conserved despite the high selection pressure. These conserved regions of the S-protein are extrapolated as the potential target for developing molecular diagnostic techniques. Further, the S-protein acts as an antigenic target for different serological assay platforms for the diagnosis of COVID-19. Virus-specific IgM and IgG antibodies can be used to detect viral proteins in ELISA and lateral flow immunoassays. The S-protein of SARS-CoV-2 has very high sequence similarity to SARS-CoV-1, and the monoclonal antibodies (mAbs) against SARS-CoV-1 cross-react with S-protein of SARS-CoV-2 and neutralize its activity. Furthermore, in vitro studies have demonstrated that polyclonal antibodies targeted against the RBD of S-protein of SARS-CoV-1 can neutralize SARS-CoV-2 thus inhibiting its infectivity in permissive cell lines. Research on coronaviral S-proteins paves the way for the development of vaccines that may prevent SARS-CoV-2 infection and alleviate the current global coronavirus pandemic. However, specific neutralizing mAbs against SARS-CoV-2 are in clinical development. Therefore, neutralizing antibodies targeting SARS-CoV-2 S-protein are promising specific antiviral therapeutics for pre-and post-exposure prophylaxis and treatment of SARS-CoV-2 infection. We hereby review the approaches taken by researchers across the world to use spike gene and S-glycoprotein for the development of effective diagnostics, vaccines and therapeutics against SARA-CoV-2 infection the COVID-19 pandemic.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view