SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Dong Shikui) "

Search: WFRF:(Dong Shikui)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Wang, Zhenhua, et al. (author)
  • A numerical study of radiative heat transfer in a cylindrical furnace by using finite volume method
  • 2016
  • In: Heat Transfer in Energy Systems; Thermophysical Properties; Theory and Fundamentals in Heat Transfer; Nanoscale Thermal Transport; Heat Transfer in Equipment; Heat Transfer in Fire and Combustion; Transport Processes in Fuel Cells and Heat Pipes; Boiling and Condensation in Macro, Micro and Nanosystems. - 9780791850329 ; 1
  • Conference paper (peer-reviewed)abstract
    • In designing industrial cylindrical furnaces, it is important to predict the radiative heat flux on the wall with high accuracy. In this study, we consider CO2 and H2O which have strong absorption in the infrared range. The absorption coefficients of the gases are calculated by using the statistical narrow band (SNB) model. The spectrum is divided into 15 bands to cover all the absorption regions of the two non-gray gases. The radiative transfer equation is solved by the finite volume method (FVM) in cylindrical coordinates. To make the FVM more accurate, we discretize the solid angle into 80 directions with the S8 approximation which is found to be both efficient and less time consuming. Based on the existing species and temperature fields, which were modeled by the FLUENT commercial code, the radiative heat transfer in a cylinder combustor is simulated by an in-house code. The results show that the radiative heat flux plays a dominant part of the heat flux to the wall. Meanwhile, when the gas is considered as nongray, the computational time is very huge. Therefore, a parallel algorithm is also applied to speed up the computing process.
  •  
3.
  • Wang, Zhenhua, et al. (author)
  • Numerical analysis of radiative heat transfer in an inhomogeneous and non-isothermal combustion system considering H2O/CO2/CO and soot
  • 2017
  • In: International Journal of Numerical Methods for Heat and Fluid Flow. - 0961-5539. ; 27:9, s. 1967-1985
  • Journal article (peer-reviewed)abstract
    • Purpose - H2O, CO2 and CO are three main species in combustion systems which have high volume fractions. In addition, soot has strong absorption in the infrared band. Thus, H2O, CO2, CO and soot may take important roles in radiative heat transfer. To provide calculations with high accuracy, all of the participating media should be considered non-gray media. Thus, the purpose of this paper is to study the effect of non-gray participating gases and soot on radiative heat transfer in an inhomogeneous and non-isothermal system. Design/methodology/approach - To solve the radiative heat transfer, the fluid flow as well as the pressure, temperature and species distributions were first computed by FLUENT. The radiative properties of the participating media are calculated by the Statistical Narrow Band correlated Kdistribution (SNBCK), which is based on the database of EM2C. The calculation of soot properties is based on the Mie scattering theory and Rayleigh theory. The radiative heat transfer is calculated by the discrete ordinate method (DOM). Findings - Using SNBCK to calculate the radiative properties and DOM to calculate the radiative heat transfer, the influence of H2O, CO2, CO and soot on radiation heat flux to the wall in combustion system was studied. The results show that the global contribution of CO to the radiation heat flux on the wall in the kerosene furnace was about 2 per cent, but that it can reach up to 15 per cent in a solid fuel gasifier. The global contribution of soot to the radiation heat flux on the wall was 32 per cent. However, the scattering of soot has a tiny influence on radiation heat flux to the wall. Originality/value - This is the first time H2O, CO2, CO and the scattering of soot were all considered simultaneously to study the radiation heat flux in combustion systems.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view