SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Drube Wolfgang) "

Search: WFRF:(Drube Wolfgang)

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Amann, Peter, et al. (author)
  • A high-pressure x-ray photoelectron spectroscopy instrument for studies of industrially relevant catalytic reactions at pressures of several bars
  • 2019
  • In: Review of Scientific Instruments. - : American Institute of Physics (AIP). - 0034-6748 .- 1089-7623. ; 90:10
  • Journal article (peer-reviewed)abstract
    • We present a new high-pressure x-ray photoelectron spectroscopy system dedicated to probing catalytic reactions under realistic conditions at pressures of multiple bars. The instrument builds around the novel concept of a "virtual cell" in which a gas flow onto the sample surface creates a localized high-pressure pillow. This allows the instrument to be operated with a low pressure of a few millibar in the main chamber, while simultaneously a local pressure exceeding 1 bar can be supplied at the sample surface. Synchrotron based hard x-ray excitation is used to increase the electron mean free path in the gas region between sample and analyzer while grazing incidence <5 degrees close to total external refection conditions enhances surface sensitivity. The aperture separating the high-pressure region from the differential pumping of the electron spectrometer consists of multiple, evenly spaced, micrometer sized holes matching the footprint of the x-ray beam on the sample. The resulting signal is highly dependent on the sample-to-aperture distance because photoemitted electrons are subject to strong scattering in the gas phase. Therefore, high precision control of the sample-to-aperture distance is crucial. A fully integrated manipulator allows for sample movement with step sizes of 10 nm between 0 and -5 mm with very low vibrational amplitude and also for sample heating up to 500 degrees C under reaction conditions. We demonstrate the performance of this novel instrument with bulk 2p spectra of a copper single crystal at He pressures of up to 2.5 bars and C1s spectra measured in gas mixtures of CO + H-2 at pressures of up to 790 mbar. The capability to detect emitted photoelectrons at several bars opens the prospect for studies of catalytic reactions under industrially relevant operando conditions.
  •  
2.
  • Lischner, Johannes, et al. (author)
  • Accurate determination of the valence band edge in hard x-ray photoemission spectra using GW theory
  • 2016
  • In: Journal of Applied Physics. - : AIP Publishing. - 0021-8979 .- 1089-7550. ; 119:16
  • Journal article (peer-reviewed)abstract
    • We introduce a new method for determining accurate values of the valence-band maximum in x-ray photoemission spectra. Specifically, we align the sharpest peak in the valence-band region of the experimental spectrum with the corresponding feature of a theoretical valence-band density of states curve from ab initio GW theory calculations. This method is particularly useful for soft and hard x-ray photoemission studies of materials with a mixture of valence-band characters, where strong matrix element effects can render standard methods for extracting the valence-band maximum unreliable. We apply our method to hydrogen-terminated boron-doped diamond, which is a promising substrate material for novel solar cell devices. By carrying out photoemission experiments with variable light polarizations, we verify the accuracy of our analysis and the general validity of the method. Published by AIP Publishing.
  •  
3.
  •  
4.
  • Mukherjee, Sumanta, et al. (author)
  • Origin and distribution of charge carriers in LaAlO3-SrTiO3 oxide heterostructures in the high carrier density limit
  • 2016
  • In: PHYSICAL REVIEW B. - 2469-9950. ; 93:24
  • Journal article (peer-reviewed)abstract
    • Using hard x-ray photoelectron spectroscopywith variable photon energy (2-8 keV), we address the distribution of charge carriers in the prototypical LaAlO3 (LAO) and SrTiO3 (STO) oxide heterostructures with high carrier densities (10(17) cm(-2)). Our results demonstrate the presence of two distinct charge distributions in this system: one tied to the interface with a similar to 1-nm width and similar to 2-5 x 10(14)-cm(-2) carrier concentration, while the other appears distributed nearly homogeneously through the bulk of STO corresponding to a much larger carrier contribution. Our results also establish bimodal oxygen vacancies, namely on top of LAO and throughout STO, quantitatively establishing these as the origin of the observed bimodal depth distribution of charge carriers in these highly doped sample.
  •  
5.
  • Panda, Swarup K., et al. (author)
  • High photon energy spectroscopy of NiO : Experiment and theory
  • 2016
  • In: PHYSICAL REVIEW B. - 2469-9950. ; 93:23
  • Journal article (peer-reviewed)abstract
    • We have revisited the valence band electronic structure of NiO by means of hard x-ray photoemission spectroscopy (HAXPES) together with theoretical calculations using both the GW method and the local density approximation + dynamical mean-field theory (LDA+DMFT) approaches. The effective impurity problem in DMFT is solved through the exact diagonalization (ED) method. We show that the LDA+DMFT method in conjunction with the standard fully localized limit (FLL) and around mean field (AMF) double-counting alone cannot explain all the observed structures in the HAXPES spectra. GW corrections are required for the O bands and Ni-s and p derived states to properly position their binding energies. Our results establish that a combination of the GW and DMFT methods is necessary for correctly describing the electronic structure of NiO in a proper ab initio framework. We also demonstrate that the inclusion of photoionization cross section is crucial to interpret the HAXPES spectra of NiO. We argue that our conclusions are general and that the here suggested approach is appropriate for any complex transition metal oxide.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view