SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Ducros G.) "

Search: WFRF:(Ducros G.)

  • Result 1-7 of 7
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Klein-Hessling, W., et al. (author)
  • Conclusions on severe accident research priorities
  • 2014
  • In: Annals of Nuclear Energy. - : Elsevier BV. - 0306-4549 .- 1873-2100. ; 74, s. 4-11
  • Journal article (peer-reviewed)abstract
    • The objectives of the SARNET network of excellence are to define and work on common research programs in the field of severe accidents in Gen. II-III nuclear power plants and to further develop common tools and methodologies for safety assessment in this area. In order to ensure that the research conducted on severe accidents is efficient and well-focused, it is necessary to periodically evaluate and rank the priorities of research. This was done at the end of 2008 by the Severe Accident Research Priority (SARP) group at the end of the SARNET project of the 6th Framework Programme of European Commission (FP6). This group has updated this work in the FP7 SARNET2 project by accounting for the recent experimental results, the remaining safety issues as e.g. highlighted by Level 2 PSA national studies and the results of the recent ASAMPSA2 FP7 project. These evaluation activities were conducted in close relation with the work performed under the auspices of international organizations like OECD or IAEA. The Fukushima-Daiichi severe accidents, which occurred while SARNET2 was running, had some effects on the prioritization and definition of new research topics. Although significant progress has been gained and simulation models (e.g. the ASTEC integral code, jointly developed by IRSN and GRS) were improved, leading to an increased confidence in the predictive capabilities for assessing the success potential of countermeasures and/or mitigation measures, most of the selected research topics in 2008 are still of high priority. But the Fukushima-Daiichi accidents underlined that research efforts had to focus still more to improve severe accident management efficiency.
  •  
2.
  • Dickinson, S., et al. (author)
  • Recent advances on containment iodine chemistry
  • 2010
  • In: Progress in Nuclear Energy. - : Elsevier BV. - 0149-1970. ; 52:1, s. 128-135
  • Conference paper (peer-reviewed)abstract
    • The 5th FWP EURSAFE Project highlighted iodine chemistry in the containment as one of the issues requiring further research in order to reduce source term uncertainties. Consequently, a series of studies was launched in the 6th FWP SARNET Project aimed at improving the predictability of iodine behaviour during severe accidents via a better understanding of the complex chemical phenomena in the containment. In particular, SARNET has striven to foster common interpretation of integral and separate effect test data, production of new or improved models where necessary, and compilation of the existing knowledge of the subject. The work has been based on a substantial amount of experimental information made available from bench-scale projects (PARIS and EPICUR), via intermediate-scale tests (CAIMAN) to large-scale facilities (SISYPHE, THAI and PHEBUS-FP). In the experimental field, particular attention has been paid to two specific issues: the effects of radiation on both aqueous and gaseous iodine chemistry, and the mass transfer of iodine between aqueous and gaseous phases. Comparisons between calculations and results of the EPICUR and CAIMAN experiments suggest that the aqueous phase chemistry is reasonably well understood, although there are still some areas of uncertainty. Interpretation of integral experiments, like PHEBUS-FPT2, indicated that radiation-induced conversion of molecular iodine into particulate species (IxOy) could be responsible for the gaseous iodine depletion observed in the long-term. However, the results of much simpler, small-scale experiments have shown that further improvements in understanding and modelling are still needed. Mass transfer modelling has been extended to cover evaporating sump conditions based on SISYPHE data; however, application of this model to the larger scale THAI experiments seems not to be straightforward. In addition to these two major issues, some specific studies have been carried out concerning the potential effect of passive autocatalytic hydrogen recombiners on iodine volatility. The RECI analytical experiments have shown that metal iodides (namely Csl and Cdl(2)) are not stable and yield gaseous iodine when heated, in a humid atmosphere, at temperatures representative of recombiner operation. Another important undertaking successfully carried out has been the compilation of an Iodine Data Book, which provides a critical review of the experimental data and modelling approaches that have been used in the development of iodine source term methodologies. This should assist in a proper use of such models, and inform their future development.
  •  
3.
  • Journeau, C., et al. (author)
  • Safest roadmap for corium experimental research in Europe
  • 2018
  • In: ASCE-ASME J of Risk & Uncertainty in Engineering Systems Part B. - : ASME Press. - 2332-9017 .- 2332-9025. ; 4:3
  • Journal article (peer-reviewed)abstract
    • Severe accident facilities for European safety targets (SAFEST) is a European project networking the European experimental laboratories focused on the investigation of a nuclear power plant (NPP) severe accident (SA) with reactor core melting and formation of hazardous material system known as corium. The main objective of the project is to establish coordinated activities, enabling the development of a common vision and severe accident research roadmaps for the next years, and of the management structure to achieve these goals. In this frame, a European roadmap on severe accident experimental research has been developed to define research challenges to contribute to further reinforcement of Gen II and III NPP safety. The roadmap takes into account different SA phenomena and issues identified and prioritized in the analyses of severe accidents at commercial NPPs and in the results of the recent European stress tests carried out after the Fukushima accident. Nineteen relevant issues related to reactor core meltdown accidents have been selected during these efforts. These issues have been compared to a survey of the European SA research experimental facilities and corium analysis laboratories. Finally, the coherence between European infrastructures and R&D needs has been assessed and a table linking issues and infrastructures has been derived. The comparison shows certain important lacks in SA research infrastructures in Europe, especially in the domains of core late reflooding impact on source term, reactor pressure vessel failure and molten core release modes, spent fuel pool (SFP) accidents, as well as the need for a large-scale experimental facility operating with up to 500 kg of chemically prototypic corium melt.
  •  
4.
  • Patterson, Nick, et al. (author)
  • Large-scale migration into Britain during the Middle to Late Bronze Age
  • 2022
  • In: Nature. - : Nature Publishing Group. - 0028-0836 .- 1476-4687. ; , s. 588-594
  • Journal article (peer-reviewed)abstract
    • Present-day people from England and Wales harbour more ancestry derived from Early European Farmers (EEF) than people of the Early Bronze Age1. To understand this, we generated genome-wide data from 793 individuals, increasing data from the Middle to Late Bronze and Iron Age in Britain by 12-fold, and Western and Central Europe by 3.5-fold. Between 1000 and 875 BC, EEF ancestry increased in southern Britain (England and Wales) but not northern Britain (Scotland) due to incorporation of migrants who arrived at this time and over previous centuries, and who were genetically most similar to ancient individuals from France. These migrants contributed about half the ancestry of Iron Age people of England and Wales, thereby creating a plausible vector for the spread of early Celtic languages into Britain. These patterns are part of a broader trend of EEF ancestry becoming more similar across central and western Europe in the Middle to Late Bronze Age, coincident with archaeological evidence of intensified cultural exchange2-6. There was comparatively less gene flow from continental Europe during the Iron Age, and Britain's independent genetic trajectory is also reflected in the rise of the allele conferring lactase persistence to ~50% by this time compared to ~7% in central Europe where it rose rapidly in frequency only a millennium later. This suggests that dairy products were used in qualitatively different ways in Britain and in central Europe over this period.
  •  
5.
  •  
6.
  • Bechta, Sevostian, et al. (author)
  • Influence of corium oxidation on fission product release from molten pool
  • 2010
  • In: Nuclear Engineering and Design. - : Elsevier BV. - 0029-5493 .- 1872-759X. ; 240:5, s. 1229-1241
  • Journal article (peer-reviewed)abstract
    • Qualitative and quantitative determination of the release of low-volatile fission products and core materialsfrom molten oxidic corium was investigated in the EVAN project under the auspices of ISTC. Theexperiments carried out in a cold crucible with induction heating and RASPLAV test facility are described.The results are discussed in terms of reactor application; in particular, pool configuration, melt oxidationkinetics, critical influence of melt surface temperature and oxidation index on the fission productrelease rate, aerosol particle composition and size distribution. The relevance of measured high releaseof Sr from the molten pool for the reactor application is highlighted. Comparisons of the experimentaldata with those from the COLIMA CA-U3 test and the VERCORS tests, as well as with predictions fromIVTANTHERMO and GEMINI/NUCLEA codes are made. Recommendations for further investigations areproposed following the major observations and discussions.
  •  
7.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-7 of 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view