SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Duerr J) "

Search: WFRF:(Duerr J)

  • Result 1-33 of 33
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Romagnoni, A, et al. (author)
  • Comparative performances of machine learning methods for classifying Crohn Disease patients using genome-wide genotyping data
  • 2019
  • In: Scientific reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 9:1, s. 10351-
  • Journal article (peer-reviewed)abstract
    • Crohn Disease (CD) is a complex genetic disorder for which more than 140 genes have been identified using genome wide association studies (GWAS). However, the genetic architecture of the trait remains largely unknown. The recent development of machine learning (ML) approaches incited us to apply them to classify healthy and diseased people according to their genomic information. The Immunochip dataset containing 18,227 CD patients and 34,050 healthy controls enrolled and genotyped by the international Inflammatory Bowel Disease genetic consortium (IIBDGC) has been re-analyzed using a set of ML methods: penalized logistic regression (LR), gradient boosted trees (GBT) and artificial neural networks (NN). The main score used to compare the methods was the Area Under the ROC Curve (AUC) statistics. The impact of quality control (QC), imputing and coding methods on LR results showed that QC methods and imputation of missing genotypes may artificially increase the scores. At the opposite, neither the patient/control ratio nor marker preselection or coding strategies significantly affected the results. LR methods, including Lasso, Ridge and ElasticNet provided similar results with a maximum AUC of 0.80. GBT methods like XGBoost, LightGBM and CatBoost, together with dense NN with one or more hidden layers, provided similar AUC values, suggesting limited epistatic effects in the genetic architecture of the trait. ML methods detected near all the genetic variants previously identified by GWAS among the best predictors plus additional predictors with lower effects. The robustness and complementarity of the different methods are also studied. Compared to LR, non-linear models such as GBT or NN may provide robust complementary approaches to identify and classify genetic markers.
  •  
2.
  •  
3.
  • Momozawa, Y, et al. (author)
  • IBD risk loci are enriched in multigenic regulatory modules encompassing putative causative genes
  • 2018
  • In: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 9:1, s. 2427-
  • Journal article (peer-reviewed)abstract
    • GWAS have identified >200 risk loci for Inflammatory Bowel Disease (IBD). The majority of disease associations are known to be driven by regulatory variants. To identify the putative causative genes that are perturbed by these variants, we generate a large transcriptome data set (nine disease-relevant cell types) and identify 23,650 cis-eQTL. We show that these are determined by ∼9720 regulatory modules, of which ∼3000 operate in multiple tissues and ∼970 on multiple genes. We identify regulatory modules that drive the disease association for 63 of the 200 risk loci, and show that these are enriched in multigenic modules. Based on these analyses, we resequence 45 of the corresponding 100 candidate genes in 6600 Crohn disease (CD) cases and 5500 controls, and show with burden tests that they include likely causative genes. Our analyses indicate that ≥10-fold larger sample sizes will be required to demonstrate the causality of individual genes using this approach.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  • Sanchez-Barriga, J., et al. (author)
  • Effects of spin-dependent quasiparticle renormalization in Fe, Co, and Ni photoemission spectra : An experimental and theoretical study
  • 2012
  • In: Physical Review B. Condensed Matter and Materials Physics. - 1098-0121 .- 1550-235X. ; 85:20, s. 205109-
  • Journal article (peer-reviewed)abstract
    • We have investigated the spin-dependent quasiparticle lifetimes and the strength of electron correlation effects in the ferromagnetic 3d transition metals Fe, Co, and Ni by means of spin- and angle-resolved photoemission spectroscopy. The experimental data are accompanied by state-of-the-art many-body calculations within the dynamical mean-field theory and the three-body scattering approximation, including fully relativistic calculations of the photoemission process within the one-step model. Our quantitative analysis reveals that inclusion of local many-body Coulomb interactions are of ultimate importance for a realistic description of correlation effects in ferromagnetic 3d transition metals. However, we found that more sophisticated many-body calculations with larger modifications in the case of Fe and Co are still needed to improve the quantitative agreement between experiment and theory. In general, it turned out that not only the dispersion behavior of energetic structures should be affected by nonlocal correlations but also the line widths of most of the photoemission peaks are underestimated by the current theoretical approaches. The increasing values of the on-site Coulomb interaction parameter U and the band narrowing of majority spin states obtained when moving from Fe to Ni indicate that the effect of nonlocal correlations becomes weaker with increasing atomic number, whereas correlation effects tend to be stronger.
  •  
10.
  • Sanchez-Barriga, J., et al. (author)
  • Quantitative determination of spin-dependent quasiparticle lifetimes and electronic correlations in hcp cobalt
  • 2010
  • In: Physical Review B. Condensed Matter and Materials Physics. - 1098-0121 .- 1550-235X. ; 82:10, s. 104414-
  • Journal article (peer-reviewed)abstract
    • We report on a quantitative investigation of the spin-dependent quasiparticle lifetimes and electron correlation effects in ferromagnetic hcp Co (0001) by means of spin-and angle-resolved photoemission spectroscopies. The experimental spectra are compared in detail to state-of-the-art many-body calculations within the dynamical mean-field theory and the three-body scattering approximation, including a full calculation of the one-step photoemission process. From this comparison we conclude that although strong local many-body Coulomb interactions are of major importance for the qualitative description of correlation effects in Co, more sophisticated many-body calculations are needed in order to improve the quantitative agreement between theory and experiment, in particular, concerning the linewidths. The quality of the overall agreement obtained for Co indicates that the effect of nonlocal correlations becomes weaker with increasing atomic number.
  •  
11.
  • Sanchez-Barriga, J., et al. (author)
  • Strength of Correlation Effects in the Electronic Structure of Iron
  • 2009
  • In: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 103:26, s. 267203-
  • Journal article (peer-reviewed)abstract
    • The strength of electronic correlation effects in the spin-dependent electronic structure of ferromagnetic bcc Fe(110) has been investigated by means of spin and angle-resolved photoemission spectroscopy. The experimental results are compared to theoretical calculations within the three-body scattering approximation and within the dynamical mean-field theory, together with one-step model calculations of the photoemission process. This comparison indicates that the present state of the art many-body calculations, although improving the description of correlation effects in Fe, give too small mass renormalizations and scattering rates thus demanding more refined many-body theories including nonlocal fluctuations.
  •  
12.
  • Erusalimsky, JD, et al. (author)
  • In Search of 'Omics'-Based Biomarkers to Predict Risk of Frailty and Its Consequences in Older Individuals: The FRAILOMIC Initiative
  • 2016
  • In: Gerontology. - : S. Karger AG. - 1423-0003 .- 0304-324X. ; 62:2, s. 182-190
  • Journal article (peer-reviewed)abstract
    • An increase in the number of older people experiencing disability and dependence is a critical aspect of the demographic change that will emerge within Europe due to the rise in life expectancy. In this scenario, prevention of these conditions is crucial for the well-being of older citizens and for the sustainability of our healthcare systems. Thus, the diagnosis and management of conditions like frailty, which identifies the people at the highest risk for developing those adverse outcomes, is of critical relevance. Currently, assessment of frailty relies primarily on measuring functional parameters, which have limited clinical utility. In this viewpoint article, we describe the FRAILOMIC Initiative, an international, large-scale, multi-endpoint, community- and clinic-based research study funded by the European Commission. The aim of the study is to develop validated measures, comprising both classic and ‘omics-based' laboratory biomarkers, which can predict the risk of frailty, improve the accuracy of its diagnosis in clinical practice and provide a prognostic forecast on the evolution from frailty to disability. The initiative includes eight established cohorts of older adults, encompassing >75,000 subjects, most of whom (∼70%) are aged >65 years. Data on function, nutritional status and exercise habits have been collected, and cardiovascular health has been evaluated at baseline. Subjects will be stratified as ‘non-frail' or ‘frail' using Fried's definition, all adverse outcomes of interest will be recorded and differentially expressed biomarkers associated with the risk of frailty will be identified. Genomic, proteomic and transcriptomic investigations will be carried out using array-based systems. As circulating microRNAs in plasma have been identified in the context of senescence, ageing and age-associated diseases, a miRNome-wide analysis will also be undertaken to identify a miRNA-based signature of frailty. Blood concentrations of secreted proteins known to be upregulated significantly in senescent endothelial cells and other hypothesis-driven biomarkers will be measured using ELISAs. The FRAILOMIC Initiative aims to issue a series of interim scientific reports as key results emerge. Ultimately, it is hoped that this study will contribute to the development of new clinical tools, which may help individuals to enjoy an old age that is healthier and free from disability.
  •  
13.
  •  
14.
  • Liu, Jimmy Z, et al. (author)
  • Dense genotyping of immune-related disease regions identifies nine new risk loci for primary sclerosing cholangitis.
  • 2013
  • In: Nature genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 45:6, s. 670-5
  • Journal article (peer-reviewed)abstract
    • Primary sclerosing cholangitis (PSC) is a severe liver disease of unknown etiology leading to fibrotic destruction of the bile ducts and ultimately to the need for liver transplantation. We compared 3,789 PSC cases of European ancestry to 25,079 population controls across 130,422 SNPs genotyped using the Immunochip. We identified 12 genome-wide significant associations outside the human leukocyte antigen (HLA) complex, 9 of which were new, increasing the number of known PSC risk loci to 16. Despite comorbidity with inflammatory bowel disease (IBD) in 72% of the cases, 6 of the 12 loci showed significantly stronger association with PSC than with IBD, suggesting overlapping yet distinct genetic architectures for these two diseases. We incorporated association statistics from 7 diseases clinically occurring with PSC in the analysis and found suggestive evidence for 33 additional pleiotropic PSC risk loci. Together with network analyses, these findings add to the genetic risk map of PSC and expand on the relationship between PSC and other immune-mediated diseases.
  •  
15.
  • McGovern, Dermot P B, et al. (author)
  • Genome-wide association identifies multiple ulcerative colitis susceptibility loci
  • 2010
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 42:4, s. 332-337
  • Journal article (peer-reviewed)abstract
    • Ulcerative colitis is a chronic, relapsing inflammatory condition of the gastrointestinal tract with a complex genetic and environmental etiology. In an effort to identify genetic variation underlying ulcerative colitis risk, we present two distinct genome-wide association studies of ulcerative colitis and their joint analysis with a previously published scan, comprising, in aggregate, 2,693 individuals with ulcerative colitis and 6,791 control subjects. Fifty-nine SNPs from 14 independent loci attained an association significance of P < 10(-5). Seven of these loci exceeded genome-wide significance (P < 5 x 10(-8)). After testing an independent cohort of 2,009 cases of ulcerative colitis and 1,580 controls, we identified 13 loci that were significantly associated with ulcerative colitis (P < 5 x 10(-8)), including the immunoglobulin receptor gene FCGR2A, 5p15, 2p16 and ORMDL3 (orosomucoid1-like 3). We confirmed association with 14 previously identified ulcerative colitis susceptibility loci, and an analysis of acknowledged Crohn's disease loci showed that roughly half of the known Crohn's disease associations are shared with ulcerative colitis. These data implicate approximately 30 loci in ulcerative colitis, thereby providing insight into disease pathogenesis.
  •  
16.
  •  
17.
  • Rivas, Manuel A., et al. (author)
  • A protein-truncating R179X variant in RNF186 confers protection against ulcerative colitis
  • 2016
  • In: Nature Communications. - London, United Kingdom : Nature Publishing Group. - 2041-1723. ; 7
  • Journal article (peer-reviewed)abstract
    • Protein-truncating variants protective against human disease provide in vivo validation of therapeutic targets. Here we used targeted sequencing to conduct a search for protein-truncating variants conferring protection against inflammatory bowel disease exploiting knowledge of common variants associated with the same disease. Through replication genotyping and imputation we found that a predicted protein-truncating variant (rs36095412, p.R179X, genotyped in 11,148 ulcerative colitis patients and 295,446 controls, MAF=up to 0.78%) in RNF186, a single-exon ring finger E3 ligase with strong colonic expression, protects against ulcerative colitis (overall P=6.89 × 10(-7), odds ratio=0.30). We further demonstrate that the truncated protein exhibits reduced expression and altered subcellular localization, suggesting the protective mechanism may reside in the loss of an interaction or function via mislocalization and/or loss of an essential transmembrane domain.
  •  
18.
  •  
19.
  • van Rheenen, Wouter, et al. (author)
  • Genome-wide association analyses identify new risk variants and the genetic architecture of amyotrophic lateral sclerosis
  • 2016
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 48:9, s. 1043-1048
  • Journal article (peer-reviewed)abstract
    • To elucidate the genetic architecture of amyotrophic lateral sclerosis (ALS) and find associated loci, we assembled a custom imputation reference panel from whole-genome-sequenced patients with ALS and matched controls (n = 1,861). Through imputation and mixed-model association analysis in 12,577 cases and 23,475 controls, combined with 2,579 cases and 2,767 controls in an independent replication cohort, we fine-mapped a new risk locus on chromosome 21 and identified C21orf2 as a gene associated with ALS risk. In addition, we identified MOBP and SCFD1 as new associated risk loci. We established evidence of ALS being a complex genetic trait with a polygenic architecture. Furthermore, we estimated the SNP-based heritability at 8.5%, with a distinct and important role for low-frequency variants (frequency 1-10%). This study motivates the interrogation of larger samples with full genome coverage to identify rare causal variants that underpin ALS risk.
  •  
20.
  •  
21.
  • Franke, Andre, et al. (author)
  • Genome-wide meta-analysis increases to 71 the number of confirmed Crohn's disease susceptibility loci
  • 2010
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 42:12, s. 1118-1125
  • Journal article (peer-reviewed)abstract
    • We undertook a meta-analysis of six Crohn's disease genome-wide association studies (GWAS) comprising 6,333 affected individuals (cases) and 15,056 controls and followed up the top association signals in 15,694 cases, 14,026 controls and 414 parent-offspring trios. We identified 30 new susceptibility loci meeting genome-wide significance (P < 5 × 10⁻⁸). A series of in silico analyses highlighted particular genes within these loci and, together with manual curation, implicated functionally interesting candidate genes including SMAD3, ERAP2, IL10, IL2RA, TYK2, FUT2, DNMT3A, DENND1B, BACH2 and TAGAP. Combined with previously confirmed loci, these results identify 71 distinct loci with genome-wide significant evidence for association with Crohn's disease.
  •  
22.
  •  
23.
  •  
24.
  • McCarroll, Steven A, et al. (author)
  • Deletion polymorphism upstream of IRGM associated with altered IRGM expression and Crohn's disease
  • 2008
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 40:9, s. 1107-1112
  • Journal article (peer-reviewed)abstract
    • Following recent success in genome-wide association studies, a critical focus of human genetics is to understand how genetic variation at implicated loci influences cellular and disease processes. Crohn's disease (CD) is associated with SNPs around IRGM, but coding-sequence variation has been excluded as a source of this association. We identified a common, 20-kb deletion polymorphism, immediately upstream of IRGM and in perfect linkage disequilibrium (r2 = 1.0) with the most strongly CD-associated SNP, that causes IRGM to segregate in the population with two distinct upstream sequences. The deletion (CD risk) and reference (CD protective) haplotypes of IRGM showed distinct expression patterns. Manipulation of IRGM expression levels modulated cellular autophagy of internalized bacteria, a process implicated in CD. These results suggest that the CD association at IRGM arises from an alteration in IRGM regulation that affects the efficacy of autophagy and identify a common deletion polymorphism as a likely causal variant.
  •  
25.
  • Ombrello, MJ, et al. (author)
  • Genetic architecture distinguishes systemic juvenile idiopathic arthritis from other forms of juvenile idiopathic arthritis: clinical and therapeutic implications
  • 2017
  • In: Annals of the rheumatic diseases. - : BMJ. - 1468-2060 .- 0003-4967. ; 76:5, s. 906-913
  • Journal article (peer-reviewed)abstract
    • Juvenile idiopathic arthritis (JIA) is a heterogeneous group of conditions unified by the presence of chronic childhood arthritis without an identifiable cause. Systemic JIA (sJIA) is a rare form of JIA characterised by systemic inflammation. sJIA is distinguished from other forms of JIA by unique clinical features and treatment responses that are similar to autoinflammatory diseases. However, approximately half of children with sJIA develop destructive, long-standing arthritis that appears similar to other forms of JIA. Using genomic approaches, we sought to gain novel insights into the pathophysiology of sJIA and its relationship with other forms of JIA.MethodsWe performed a genome-wide association study of 770 children with sJIA collected in nine countries by the International Childhood Arthritis Genetics Consortium. Single nucleotide polymorphisms were tested for association with sJIA. Weighted genetic risk scores were used to compare the genetic architecture of sJIA with other JIA subtypes.ResultsThe major histocompatibility complex locus and a locus on chromosome 1 each showed association with sJIA exceeding the threshold for genome-wide significance, while 23 other novel loci were suggestive of association with sJIA. Using a combination of genetic and statistical approaches, we found no evidence of shared genetic architecture between sJIA and other common JIA subtypes.ConclusionsThe lack of shared genetic risk factors between sJIA and other JIA subtypes supports the hypothesis that sJIA is a unique disease process and argues for a different classification framework. Research to improve sJIA therapy should target its unique genetics and specific pathophysiological pathways.
  •  
26.
  • Rivas, Manuel A., et al. (author)
  • Deep resequencing of GWAS loci identifies independent rare variants associated with inflammatory bowel disease
  • 2011
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 43:11, s. 1066-U50
  • Journal article (peer-reviewed)abstract
    • More than 1,000 susceptibility loci have been identified through genome-wide association studies (GWAS) of common variants; however, the specific genes and full allelic spectrum of causal variants underlying these findings have not yet been defined. Here we used pooled next-generation sequencing to study 56 genes from regions associated with Crohn's disease in 350 cases and 350 controls. Through follow-up genotyping of 70 rare and low-frequency protein-altering variants in nine independent case-control series (16,054 Crohn's disease cases, 12,153 ulcerative colitis cases and 17,575 healthy controls), we identified four additional independent risk factors in NOD2, two additional protective variants in IL23R, a highly significant association with a protective splice variant in CARD9 (P < 1 x 10(-16), odds ratio approximate to 0.29) and additional associations with coding variants in IL18RAP, CUL2, C1orf106, PTPN22 and MUC19. We extend the results of successful GWAS by identifying new, rare and probably functional variants that could aid functional experiments and predictive models.
  •  
27.
  • Wenning, Gregor K., et al. (author)
  • The natural history of multiple system atrophy: a prospective European cohort study
  • 2013
  • In: Lancet Neurology. - 1474-4465. ; 12:3, s. 264-274
  • Journal article (peer-reviewed)abstract
    • Background Multiple system atrophy (MSA) is a fatal and still poorly understood degenerative movement disorder that is characterised by autonomic failure, cerebellar ataxia, and parkinsonism in various combinations. Here we present the final analysis of a prospective multicentre study by the European MSA Study Group to investigate the natural history of MSA. Methods Patients with a clinical diagnosis of MSA were recruited and followed up clinically for 2 years. Vital status was ascertained 2 years after study completion. Disease progression was assessed using the unified MSA rating scale (UMSARS), a disease-specific questionnaire that enables the semiquantitative rating of autonomic and motor impairment in patients with MSA. Additional rating methods were applied to grade global disease severity, autonomic symptoms, and quality of life. Survival was calculated using a Kaplan-Meier analysis and predictors were identified in a Cox regression model. Group differences were analysed by parametric tests and non-parametric tests as appropriate. Sample size estimates were calculated using a paired two-group t test. Findings 141 patients with moderately severe disease fulfilled the consensus criteria for MSA. Mean age at symptom onset was 56.2 (SD 8.4) years. Median survival from symptom onset as determined by Kaplan-Meier analysis was 9.8 years (95% CI 8.1-11.4). The parkinsonian variant of MSA (hazard ratio [HR] 2.08,95% CI 1.09-3.97; p=0.026) and incomplete bladder emptying (HR 2.10,1.02-4.30; p=0.044) predicted shorter survival. 24-month progression rates of UMSARS activities of daily living, motor examination, and total scores were 49% (9.4 [SD 5.9]), 74% (12.9 [8.5]), and 57% (21.9 [11.9]), respectively, relative to baseline scores. Autonomic symptom scores progressed throughout the follow-up. Shorter symptom duration at baseline (OR 0.68, 0.5-0.9; p=0.006) and absent levodopa response (OR 3.4, 1.1-10.2; p=0.03) predicted rapid UMSARS progression. Sample size estimation showed that an interventional trial with 258 patients (129 per group) would be able to detect a 30% effect size in 1-year UMSARS motor examination decline rates at 80% power. Interpretation Our prospective dataset provides new insights into the evolution of MSA based on a follow-up period that exceeds that of previous studies. It also represents a useful resource for patient counselling and planning of multicentre trials.
  •  
28.
  • Cleynen, Isabelle, et al. (author)
  • Inherited determinants of Crohn's disease and ulcerative colitis phenotypes : a genetic association study
  • 2016
  • In: The Lancet. - New York, USA : Elsevier. - 0140-6736 .- 1474-547X. ; 387:10014, s. 156-167
  • Journal article (peer-reviewed)abstract
    • Background: Crohn's disease and ulcerative colitis are the two major forms of inflammatory bowel disease; treatment strategies have historically been determined by this binary categorisation. Genetic studies have identified 163 susceptibility loci for inflammatory bowel disease, mostly shared between Crohn's disease and ulcerative colitis. We undertook the largest genotype association study, to date, in widely used clinical subphenotypes of inflammatory bowel disease with the goal of further understanding the biological relations between diseases.Methods This study included patients from 49 centres in 16 countries in Europe, North America, and Australasia. We applied the Montreal classification system of inflammatory bowel disease subphenotypes to 34,819 patients (19,713 with Crohn's disease, 14,683 with ulcerative colitis) genotyped on the Immunochip array. We tested for genotype-phenotype associations across 156,154 genetic variants. We generated genetic risk scores by combining information from all known inflammatory bowel disease associations to summarise the total load of genetic risk for a particular phenotype. We used these risk scores to test the hypothesis that colonic Crohn's disease, ileal Crohn's disease, and ulcerative colitis are all genetically distinct from each other, and to attempt to identify patients with a mismatch between clinical diagnosis and genetic risk profile.Findings: After quality control, the primary analysis included 29,838 patients (16,902 with Crohn's disease, 12,597 with ulcerative colitis). Three loci (NOD2, MHC, and MST1 3p21) were associated with subphenotypes of inflammatory bowel disease, mainly disease location (essentially fixed over time; median follow-up of 10·5 years). Little or no genetic association with disease behaviour (which changed dramatically over time) remained after conditioning on disease location and age at onset. The genetic risk score representing all known risk alleles for inflammatory bowel disease showed strong association with disease subphenotype (p=1·65 × 10(-78)), even after exclusion of NOD2, MHC, and 3p21 (p=9·23 × 10(-18)). Predictive models based on the genetic risk score strongly distinguished colonic from ileal Crohn's disease. Our genetic risk score could also identify a small number of patients with discrepant genetic risk profiles who were significantly more likely to have a revised diagnosis after follow-up (p=6·8 × 10(-4)).Interpretation: Our data support a continuum of disorders within inflammatory bowel disease, much better explained by three groups (ileal Crohn's disease, colonic Crohn's disease, and ulcerative colitis) than by Crohn's disease and ulcerative colitis as currently defined. Disease location is an intrinsic aspect of a patient's disease, in part genetically determined, and the major driver to changes in disease behaviour over time.Funding: International Inflammatory Bowel Disease Genetics Consortium members funding sources (see Acknowledgments for full list).
  •  
29.
  • Ellinghaus, David, et al. (author)
  • Association between variants of PRDM1 and NDP52 and Crohn's disease, based on exome sequencing and functional studies
  • 2013
  • In: Gastroenterology. - : Elsevier BV. - 0016-5085 .- 1528-0012. ; 145:2, s. 339-347
  • Journal article (peer-reviewed)abstract
    • BACKGROUND & AIMS: Genome-wide association studies (GWAS) have identified 140 Crohn's disease (CD) susceptibility loci. For most loci, the variants that cause disease are not known and the genes affected by these variants have not been identified. We aimed to identify variants that cause CD through detailed sequencing, genetic association, expression, and functional studies.METHODS: We sequenced whole exomes of 42 unrelated subjects with CD and 5 healthy subjects (controls) and then filtered single nucleotide variants by incorporating association results from meta-analyses of CD GWAS and in silico mutation effect prediction algorithms. We then genotyped 9348 subjects with CD, 2868 subjects with ulcerative colitis, and 14,567 control subjects and associated variants analyzed in functional studies using materials from subjects and controls and in vitro model systems.RESULTS: We identified rare missense mutations in PR domain-containing 1 (PRDM1) and associated these with CD. These mutations increased proliferation of T cells and secretion of cytokines on activation and increased expression of the adhesion molecule L-selectin. A common CD risk allele, identified in GWAS, correlated with reduced expression of PRDM1 in ileal biopsy specimens and peripheral blood mononuclear cells (combined P = 1.6 x 10(-8)). We identified an association between CD and a common missense variant, Val248Ala, in nuclear domain 10 protein 52 (NDP52) (P = 4.83 x 10(-9)). We found that this variant impairs the regulatory functions of NDP52 to inhibit nuclear factor kappa B activation of genes that regulate inflammation and affect the stability of proteins in Toll-like receptor pathways.CONCLUSIONS: We have extended the results of GWAS and provide evidence that variants in PRDM1 and NDP52 determine susceptibility to CD. PRDM1 maps adjacent to a CD interval identified in GWAS and encodes a transcription factor expressed by T and B cells. NDP52 is an adaptor protein that functions in selective autophagy of intracellular bacteria and signaling molecules, supporting the role of autophagy in the pathogenesis of CD.
  •  
30.
  • Fenn, Sebastian, et al. (author)
  • Crystal Structure of an Anti-Ang2 CrossFab Demonstrates Complete Structural and Functional Integrity of the Variable Domain
  • 2013
  • In: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 8:4
  • Journal article (peer-reviewed)abstract
    • Bispecific antibodies are considered as a promising class of future biotherapeutic molecules. They comprise binding specificities for two different antigens, which may provide additive or synergistic modes of action. There is a wide variety of design alternatives for such bispecific antibodies, including the "CrossMab" format. CrossMabs contain a domain crossover in one of the antigen-binding (Fab) parts, together with the "knobs-and-holes" approach, to enforce the correct assembly of four different polypeptide chains into an IgG-like bispecific antibody. We determined the crystal structure of a hAng-2-binding Fab in its crossed and uncrossed form and show that CH1-CL-domain crossover does not induce significant perturbations of the structure and has no detectable influence on target binding.
  •  
31.
  • Goyette, Philippe, et al. (author)
  • High-density mapping of the MHC identifies a shared role for HLA-DRB1*01 : 03 in inflammatory bowel diseases and heterozygous advantage in ulcerative colitis
  • 2015
  • In: Nature Genetics. - New York, USA : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 47:2, s. 172-179
  • Journal article (peer-reviewed)abstract
    • Genome-wide association studies of the related chronic inflammatory bowel diseases (IBD) known as Crohn's disease and ulcerative colitis have shown strong evidence of association to the major histocompatibility complex (MHC). This region encodes a large number of immunological candidates, including the antigen-presenting classical human leukocyte antigen (HLA) molecules. Studies in IBD have indicated that multiple independent associations exist at HLA and non-HLA genes, but they have lacked the statistical power to define the architecture of association and causal alleles. To address this, we performed high-density SNP typing of the MHC in >32,000 individuals with IBD, implicating multiple HLA alleles, with a primary role for HLA-DRB1*01:03 in both Crohn's disease and ulcerative colitis. Noteworthy differences were observed between these diseases, including a predominant role for class II HLA variants and heterozygous advantage observed in ulcerative colitis, suggesting an important role of the adaptive immune response in the colonic environment in the pathogenesis of IBD.
  •  
32.
  • Li, Dalin, et al. (author)
  • A Pleiotropic Missense Variant in SLC39A8 Is Associated With Crohn's Disease and Human Gut Microbiome Composition
  • 2016
  • In: Gastroenterology. - : Saunders Elsevier. - 0016-5085 .- 1528-0012. ; 151:4, s. 724-732
  • Journal article (peer-reviewed)abstract
    • Background & Aims: Genome-wide association studies have identified 200 inflammatory bowel disease (IBD) loci, but the genetic architecture of Crohn's disease (CD) and ulcerative colitis remain incompletely defined. Here, we aimed to identify novel associations between IBD and functional genetic variants using the Illumina ExomeChip (San Diego, CA).Methods: Genotyping was performed in 10,523 IBD cases and 5726 non-IBD controls. There were 91,713 functional single-nucleotide polymorphism loci in coding regions analyzed. A novel identified association was replicated further in 2 independent cohorts. We further examined the association of the identified single-nucleotide polymorphism with microbiota from 338 mucosal lavage samples in the Mucosal Luminal Interface cohort measured using 16S sequencing.Results: We identified an association between CD and a missense variant encoding alanine or threonine at position 391 in the zinc transporter solute carrier family 39, member 8 protein (SLC39A8 alanine 391 threonine, rs13107325) and replicated the association with CD in 2 replication cohorts (combined meta-analysis P = 5.55 × 10(-13)). This variant has been associated previously with distinct phenotypes including obesity, lipid levels, blood pressure, and schizophrenia. We subsequently determined that the CD risk allele was associated with altered colonic mucosal microbiome composition in both healthy controls (P = .009) and CD cases (P = .0009). Moreover, microbes depleted in healthy carriers strongly overlap with those reduced in CD patients (P = 9.24 × 10(-16)) and overweight individuals (P = 6.73 × 10(-16)).Conclusions: Our results suggest that an SLC39A8-dependent shift in the gut microbiome could explain its pleiotropic effects on multiple complex diseases including CD.
  •  
33.
  • Stockinger, S., et al. (author)
  • TRIF Signaling Drives Homeostatic Intestinal Epithelial Antimicrobial Peptide Expression
  • 2014
  • In: Journal of Immunology. - : The American Association of Immunologists. - 0022-1767 .- 1550-6606. ; 193:8, s. 4223-4234
  • Journal article (peer-reviewed)abstract
    • Recent results indicate a significant contribution of innate immune signaling to maintain mucosal homeostasis, but the precise underlying signal transduction pathways are ill-defined. By comparative analysis of intestinal epithelial cells isolated from conventionally raised and germ-free mice, as well as animals deficient in the adaptor molecules MyD88 and TRIF, the TLR3 and TLR4, as well as the type I and III IFN receptors, we demonstrate significant TLR-mediated signaling under homeostatic conditions. Surprisingly, homeostatic expression of Reg3 gamma and Paneth cell enteric antimicrobial peptides critically relied on TRIF and, in part, TLR3 but was independent of IFN receptor signaling. Reduced antimicrobial peptide expression was associated with significantly lower numbers of Paneth cells and a reduced Paneth cell maturation and differentiation factor expression in TRIF mutant compared with wild-type epithelium. This phenotype was not transferred to TRIF-sufficient germ-free animals during cohousing. Low antimicrobial peptide expression in TRIF-deficient mice caused reduced immediate killing of orally administered bacteria but was not associated with significant alterations in the overall composition of the enteric microbiota. The phenotype was rapidly restored in a TRIF-independent fashion after transient epithelial damage. Our results identify TRIF signaling as a truly homeostatic pathway to maintain intestinal epithelial barrier function revealing fundamental differences in the innate immune signaling between mucosal homeostasis and tissue repair.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-33 of 33

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view