SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Englund Paul T) "

Search: WFRF:(Englund Paul T)

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • El-Sayed, Najib M., et al. (author)
  • The genome sequence of Trypanosoma cruzi, etiologic agent of Chagas disease.
  • 2005
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 1095-9203 .- 0036-8075. ; 309:5733, s. 409-15
  • Journal article (peer-reviewed)abstract
    • Whole-genome sequencing of the protozoan pathogen Trypanosoma cruzi revealed that the diploid genome contains a predicted 22,570 proteins encoded by genes, of which 12,570 represent allelic pairs. Over 50% of the genome consists of repeated sequences, such as retrotransposons and genes for large families of surface molecules, which include trans-sialidases, mucins, gp63s, and a large novel family (>1300 copies) of mucin-associated surface protein (MASP) genes. Analyses of the T. cruzi, T. brucei, and Leishmania major (Tritryp) genomes imply differences from other eukaryotes in DNA repair and initiation of replication and reflect their unusual mitochondrial DNA. Although the Tritryp lack several classes of signaling molecules, their kinomes contain a large and diverse set of protein kinases and phosphatases; their size and diversity imply previously unknown interactions and regulatory processes, which may be targets for intervention.
  •  
2.
  • Englund, Elias, et al. (author)
  • Expanding Extender Substrate Selection for Unnatural Polyketide Biosynthesis by Acyltransferase Domain Exchange within a Modular Polyketide Synthase
  • 2023
  • In: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 0002-7863 .- 1520-5126. ; 145:16, s. 8822-8832
  • Journal article (peer-reviewed)abstract
    • Modular polyketide synthases (PKSs) are poly-merases that employ alpha-carboxyacyl-CoAs as extender substrates. This enzyme family contains several catalytic modules, where each module is responsible for a single round of polyketide chain extension. Although PKS modules typically use malonyl-CoA or methylmalonyl-CoA for chain elongation, many other malonyl-CoA analogues are used to diversify polyketide structures in nature. Previously, we developed a method to alter an extension substrate of a given module by exchanging an acyltransferase (AT) domain while maintaining protein folding. Here, we report in vitro polyketide biosynthesis by 13 PKSs (the wild-type PKS and 12 AT-exchanged PKSs with unusual ATs) and 14 extender substrates. Our similar to 200 in vitro reactions resulted in 13 structurally different polyketides, including several polyketides that have not been reported. In some cases, AT-exchanged PKSs produced target polyketides by >100-fold compared to the wild-type PKS. These data also indicate that most unusual AT domains do not incorporate malonyl-CoA and methylmalonyl-CoA but incorporate various rare extender substrates that are equal to in size or slightly larger than natural substrates. We developed a computational workflow to predict the approximate AT substrate range based on active site volumes to support the selection of ATs. These results greatly enhance our understanding of rare AT domains and demonstrate the benefit of using the proposed PKS engineering strategy to produce novel chemicals in vitro.
  •  
3.
  • Grigoryan, Ani, et al. (author)
  • Engineering human mini-bones for the standardized modeling of healthy hematopoiesis, leukemia, and solid tumor metastasis
  • 2022
  • In: Science Translational Medicine. - : American Association for the Advancement of Science (AAAS). - 1946-6242 .- 1946-6234. ; 14:666, s. 1-15
  • Journal article (peer-reviewed)abstract
    • The bone marrow microenvironment provides indispensable factors to sustain blood production throughout life. It is also a hotspot for the progression of hematologic disorders and the most frequent site of solid tumor metastasis. Preclinical research relies on xenograft mouse models, but these models preclude the human-specific functional interactions of stem cells with their bone marrow microenvironment. Instead, human mesenchymal cells can be exploited for the in vivo engineering of humanized niches, which confer robust engraftment of human healthy and malignant blood samples. However, mesenchymal cells are associated with major reproducibility issues in tissue formation. Here, we report the fast and standardized generation of human mini-bones by a custom-designed human mesenchymal cell line. These resulting humanized ossicles (hOss) consist of fully mature bone and bone marrow structures hosting a human mesenchymal niche with retained stem cell properties. As compared to mouse bones, we demonstrate superior engraftment of human cord blood hematopoietic cells and primary acute myeloid leukemia samples and also validate hOss as a metastatic site for breast cancer cells. We further report the engraftment of neuroblastoma patient-derived xenograft cells in a humanized model, recapitulating clinically described osteolytic lesions. Collectively, our human mini-bones constitute a powerful preclinical platform to model bone-developing tumors using patient-derived materials.
  •  
4.
  • Ihara, Masafumi, et al. (author)
  • Quantification of myelin loss in frontal lobe white matter in vascular dementia, Alzheimer's disease, and dementia with Lewy bodies
  • 2010
  • In: Acta Neuropathologica. - : Springer Science and Business Media LLC. - 1432-0533 .- 0001-6322. ; 119:5, s. 579-589
  • Journal article (peer-reviewed)abstract
    • The aim of this study was to characterize myelin loss as one of the features of white matter abnormalities across three common dementing disorders. We evaluated post-mortem brain tissue from frontal and temporal lobes from 20 vascular dementia (VaD), 19 Alzheimer's disease (AD) and 31 dementia with Lewy bodies (DLB) cases and 12 comparable age controls. Images of sections stained with conventional luxol fast blue were analysed to estimate myelin attenuation by optical density. Serial adjacent sections were then immunostained for degraded myelin basic protein (dMBP) and the mean percentage area containing dMBP (%dMBP) was determined as an indicator of myelin degeneration. We further assessed the relationship between dMBP and glutathione S-transferase (a marker of mature oligodendrocytes) immunoreactivities. Pathological diagnosis significantly affected the frontal but not temporal lobe myelin attenuation: myelin density was most reduced in VaD compared to AD and DLB, which still significantly exhibited lower myelin density compared to ageing controls. Consistent with this, the degree of myelin loss was correlated with greater %dMBP, with the highest %dMBP in VaD compared to the other groups. The %dMBP was inversely correlated with the mean size of oligodendrocytes in VaD, whereas it was positively correlated with their density in AD. A two-tier regression model analysis confirmed that the type of disorder (VaD or AD) determines the relationship between %dMBP and the size or density of oligodendrocytes across the cases. Our findings, attested by the use of three markers, suggest that myelin loss may evolve in parallel with shrunken oligodendrocytes in VaD but their increased density in AD, highlighting partially different mechanisms are associated with myelin degeneration, which could originate from hypoxic-ischaemic damage to oligodendrocytes in VaD whereas secondary to axonal degeneration in AD.
  •  
5.
  • Makvandi, Kianoush, et al. (author)
  • Multiparametric magnetic resonance imaging allows non-invasive functional and structural evaluation of diabetic kidney disease
  • 2022
  • In: Clinical Kidney Journal. - : Oxford University Press (OUP). - 2048-8505 .- 2048-8513. ; 15:7, s. 1387-1402
  • Journal article (peer-reviewed)abstract
    • Background We sought to develop a novel non-contrast multiparametric MRI (mpMRI) protocol employing several complementary techniques in a single scan session for a comprehensive functional and structural evaluation of diabetic kidney disease (DKD). Methods In the cross-sectional part of this prospective observational study, 38 subjects ages 18-79 years with type 2 diabetes and DKD [estimated glomerular filtration rate (eGFR) 15-60 mL/min/1.73 m(2)] and 20 age- and gender-matched healthy volunteers (HVs) underwent mpMRI. Repeat mpMRI was performed on 23 DKD subjects and 10 HVs. By measured GFR (mGFR), 2 DKD subjects had GFR stage G2, 16 stage G3 and 20 stage G4/G5. A wide range of MRI biomarkers associated with kidney haemodynamics, oxygenation and macro/microstructure were evaluated. Their optimal sensitivity, specificity and repeatability to differentiate diabetic versus healthy kidneys and categorize various stages of disease as well as their correlation with mGFR/albuminuria was assessed. Results Several MRI biomarkers differentiated diabetic from healthy kidneys and distinct GFR stages (G3 versus G4/G5); mean arterial flow (MAF) was the strongest predictor (sensitivity 0.94 and 1.0, specificity 1.00 and 0.69; P = .04 and .004, respectively). Parameters significantly correlating with mGFR were specific measures of kidney haemodynamics, oxygenation, microstructure and macrostructure, with MAF being the strongest univariate predictor (r = 0.92; P < .0001). Conclusions A comprehensive and repeatable non-contrast mpMRI protocol was developed that, as a single, non-invasive tool, allows functional and structural assessment of DKD, which has the potential to provide valuable insights into underlying pathophysiology, disease progression and analysis of efficacy/mode of action of therapeutic interventions in DKD.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view