SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Erjefält Jonas) "

Search: WFRF:(Erjefält Jonas)

  • Result 1-50 of 164
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Erjefält, Jonas, et al. (author)
  • Acute allergic responses induce a prompt luminal entry of airway tissue eosinophils.
  • 2003
  • In: American Journal of Respiratory Cell and Molecular Biology. - 1535-4989. ; 29:4, s. 439-448
  • Journal article (peer-reviewed)abstract
    • Traditionally, traffic and activation of eosinophils in asthmatic airways are thought to take place during the late-phase allergic reaction. The present study tests the hypothesis that when eosinophils are present in the tissue before allergen exposure, as in chronically inflamed asthmatic airways, acute anaphylactic reactions initiate an eosinophil response. Using a guinea-pig allergic model, where eosinophilia is present at baseline conditions, the traffic of resident eosinophils was examined in vivo immediately after allergen challenge. By 2 min after challenge, eosinophils had moved up to apical epithelial positions. Within 10 min, a marked migration of eosinophils into the airway lumen was demonstrated. Along with the allergen-induced egression of eosinophils, acute luminal entry of plasma proteins and eotaxin occurred. Eosinophil egression was effectively inhibited by the antiexudative drug formoterol, whereas the proexudative drug bradykinin could in naive animals evoke a prompt luminal entry of eosinophils. In conclusion, the present study demonstrates that acute allergic reactions initiate a prompt transepithelial migration of resident eosinophils. Our data further suggest that this response in part is initiated by the plasma exudation response, which may alter the transepithelial gradient of eosinophil chemoattractants including eotaxin. We propose that prompt eosinophil response is a significant component of the acute phase of allergic reactions when occurring in airways where these cells are already present in the mucosa.
  •  
2.
  • Erjefält, Jonas, et al. (author)
  • Rapid and efficient clearance of airway tissue granulocytes through transepithelial migration.
  • 2004
  • In: Thorax. - : BMJ. - 1468-3296 .- 0040-6376. ; 59:2, s. 136-143
  • Journal article (peer-reviewed)abstract
    • Background: Clearance of tissue granulocytes is central to the resolution of airway inflammation. To date the focus has been on apoptotic mechanisms of cell removal and little attention has been given to alternative processes. The present study explores transepithelial migration as a mechanism of cell clearance. Method: Guinea pig tracheobronchial airways where eosinophils are constitutively present in the mucosal tissue were studied. A complex topical stimulus (allergen challenge) was applied and the fate of the eosinophils was determined by selective tracheobronchial lavage and histological examination of the tissue. Results: Within 10 minutes of the allergen challenge, massive migration of eosinophils into the airway lumen occurred together with a reduction in tissue eosinophil numbers. Cell clearance into the lumen continued at high speed and by 30 and 60 minutes the tissue eosinophilia had been reduced by 63% and 73%, respectively. The marked transepithelial migration (estimated maximal speed 35 000 cells/min x cm2 mucosal surface) took place ubiquitously between epithelial cells without affecting epithelial integrity as assessed by transmission and scanning electron microscopy. Eosinophil apoptosis was not detected but occasional cytolytic eosinophils occurred. Conclusion: This study shows that luminal entry has a remarkably high capacity as a granulocyte elimination process. The data also suggest that an appropriate stimulus of transepithelial migration may be used therapeutically to increase the resolution of inflammatory conditions of airway tissues.
  •  
3.
  •  
4.
  • Hasela, H, et al. (author)
  • Ketotifen induces primary necrosis of human eosinophils
  • 2005
  • In: Journal of Ocular Pharmacology and Therapeutics. - : Mary Ann Liebert Inc. - 1080-7683 .- 1557-7732. ; 21:4, s. 318-327
  • Journal article (peer-reviewed)abstract
    • Eosinophils are considered essential in the pathogenesis of allergy. Reduced eosinophil apoptosis is considered to be a key element in the formation of eosinophilia in allergic conditions. Antihistamines are widely used in the treatment of allergic disorders, but their effects on eosinophil apoptosis are poorly understood. The histamine HI-receptor antagonist, ketotifen, is available orally and as eye drops for the treatment of allergic symptoms. The aim of our study was to investigate the possible effect of ketotifen on constitutive eosinophil apoptosis and on interleukin (IL)-5-mediated eosinophil survival. Isolated peripheral blood eosinophils were cultured with or without the survival-prolonging cytokine IL-5 and ketotifen. Apoptosis was assessed by measuring the relative DNA content and by morphological analysis. Ketotifen was found to reverse eosinophil survival induced by interleukin-5. However, the flow cytometry histogram of DNA in propidium iodide-stained cells was not typical to apoptosis. Morphological analysis of the eosinophils by bright-field microscopy suggested that the effect of ketotifen was due to the induction of primary necrosis rather than apoptosis. Histological assessment of eosinophil ultrastructure by transmission electron microscopy confirmed signs of advanced necrosis. In summary, our results suggest that at clinically relevant drug concentrations, ketotifen induces primary necrosis in IL-5-treated human eosinophils.
  •  
5.
  •  
6.
  • Malm-Erjefält, Monika, et al. (author)
  • Degranulation status of airway tissue eosinophils in mouse models of allergic airway inflammation
  • 2001
  • In: American Journal of Respiratory Cell and Molecular Biology. - 1535-4989. ; 24:3, s. 352-359
  • Journal article (peer-reviewed)abstract
    • Eosinophil degranulation is a characteristic feature of asthma and allergic rhinitis. However, degranulated eosinophils have not been convincingly demonstrated in the common mouse models of these airway diseases. This study uses eosinophil peroxidase (EPO) histochemistry and transmission electron microscopy (TEM) analysis to assess eosinophil degranulation in the airways of ovalbumin (OVA)-sensitized and challenged BALB/c and C57BL/6 mice. Using TEM we also examined mouse and human blood eosinophils after in vitro incubation with formyl-Met-Leu-Phe (fMLP) or phorbol myristate acetate (PMA). Although OVA exposure induced significant nasal and lung eosinophilia, we did not observe any of the known cellular processes by which eosinophils release their granule products, i.e., eosinophil cytolysis, piecemeal degranulation, and exocytosis. The occurrence of other allergen-induced degranulation events was ruled out because no difference in granule morphology was observed between lung-tissue eosinophils and blood or bone-marrow eosinophils from control animals. Accordingly, there was no detectable extracellular EPO in lung tissues of allergic mice. Similarly, mouse blood eosinophils remained nondegranulated in vitro in the presence of fMLP and PMA, whereas the same treatment of human eosinophils resulted in extensive degranulation. This investigation indicates that OVA-induced airway inflammation in the present mouse strains does not involve significant eosinophil degranulation. It is speculated that this dissimilarity from the human disease may be due to a fundamental difference in the regulation of mouse and human eosinophils.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  • Abdillahi, Suado M, et al. (author)
  • The Pulmonary Extracellular Matrix Is a Bactericidal Barrier Against Haemophilus influenzae in Chronic Obstructive Pulmonary Disease (COPD) : Implications for an in vivo Innate Host Defense Function of Collagen VI
  • 2018
  • In: Frontiers in Immunology. - : Frontiers Media SA. - 1664-3224. ; 9
  • Journal article (peer-reviewed)abstract
    • Non-typeable Haemophilus influenzae (NTHi) is a Gram-negative human commensal commonly residing in the nasopharynx of preschool children. It occasionally causes upper respiratory tract infection such as acute otitis media, but can also spread to the lower respiratory tract causing bronchitis and pneumonia. There is increasing recognition that NTHi has an important role in chronic lower respiratory tract inflammation, particularly in persistent infection in patients suffering from chronic obstructive pulmonary disease (COPD). Here, we set out to assess the innate protective effects of collagen VI, a ubiquitous extracellular matrix component, against NTHi infection in vivo. In vitro, collagen VI rapidly kills bacteria through pore formation and membrane rupture, followed by exudation of intracellular content. This effect is mediated by specific binding of the von Willebrand A (VWA) domains of collagen VI to the NTHi surface adhesins protein E (PE) and Haemophilus autotransporter protein (Hap). Similar observations were made in vivo specimens from murine airways and COPD patient biopsies. NTHi bacteria adhered to collagen fibrils in the airway mucosa and were rapidly killed by membrane destabilization. The significance in host-pathogen interplay of one of these molecules, PE, was highlighted by the observation that it confers partial protection from bacterial killing. Bacteria lacking PE were more prone to antimicrobial activity than NTHi expressing PE. Altogether the data shed new light on the carefully orchestrated molecular events of the host-pathogen interplay in COPD and emphasize the importance of the extracellular matrix as a novel branch of innate host defense.
  •  
11.
  •  
12.
  • Al-Garawi, A., et al. (author)
  • Influenza A facilitates sensitization to house dust mite in infant mice leading to an asthma phenotype in adulthood
  • 2011
  • In: Mucosal Immunology. - : Elsevier BV. - 1933-0219. ; 4:6, s. 682-694
  • Journal article (peer-reviewed)abstract
    • The origins of allergic asthma, particularly in infancy, remain obscure. Respiratory viral infections and allergen sensitization in early life have been associated with asthma in young children. However, a causal link has not been established. We investigated whether an influenza A infection in early life alters immune responses to house dust mite (HDM) and promotes an asthmatic phenotype later in life. Neonatal (8-day-old) mice were infected with influenza virus and 7 days later, exposed to HDM for 3 weeks. Unlike adults, neonatal mice exposed to HDM exhibited negligible immune responsiveness to HDM, but not to influenza A. HDM responsiveness in adults was associated with distinct Ly6c(+) CD11b(+) inflammatory dendritic cell and CD8 alpha(+) plasmacytoid (pDC) populations that were absent in HDM-exposed infant mice, suggesting an important role in HDM-mediated inflammation. Remarkably, HDM hyporesponsiveness was overcome when exposure occurred concurrently with an acute influenza infection; young mice now displayed robust allergen-specific immunity, allergic inflammation, and lung remodeling. Remodeling persisted into early adulthood, even after prolonged discontinuation of allergen exposure and was associated with marked impairment of lung function. Our data demonstrate that allergen exposure coincident with acute viral infection in early life subverts constitutive allergen hyporesponsiveness and imprints an asthmatic phenotype in adulthood.
  •  
13.
  • Ali, Mohamad N., et al. (author)
  • Osteopontin Expression in Small Airway Epithelium in Copd is Dependent on Differentiation and Confined to Subsets of Cells
  • 2019
  • In: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 9
  • Journal article (peer-reviewed)abstract
    • Osteopontin (OPN) plays a role in inflammation via recruitment of neutrophils and tissue remodeling. In this study, we investigated the distribution of OPN-expressing cells in the airway epithelium of normal lung tissue and that from patients with chronic obstructive pulmonary disease (COPD). OPN was detected on the epithelial cell surface of small airways and in scattered cells within the epithelial cell layer. Staining revealed higher OPN concentrations in tissue showing moderate to severe COPD compared to that in controls. In addition, OPN expression was confined to goblet and club cells, and was absent from ciliated and basal cells as detected via immunohistochemistry. However, OPN expression was up-regulated in submerged basal cells cultures exposed to cigarette smoke (CS) extract. Cell fractioning of air-liquid interface cultures revealed increased OPN production from basal compartment cells compared to that in luminal fraction cells. Furthermore, both constitutive and CS-induced expression of OPN decreased during differentiation. In contrast, cultures stimulated with interleukin (IL)-13 to promote goblet cell hyperplasia showed increased OPN production in response to CS exposure. These results indicate that the cellular composition of the airway epithelium plays an important role in OPN expression and that these levels may reflect disease endotypes in COPD.
  •  
14.
  • Allinne, Jeanne, et al. (author)
  • IL-33 blockade affects mediators of persistence and exacerbation in a model of chronic airway inflammation
  • 2019
  • In: Journal of Allergy and Clinical Immunology. - : Elsevier BV. - 0091-6749. ; 144:6, s. 1624-1637
  • Journal article (peer-reviewed)abstract
    • Background: Severe inflammatory airway diseases are associated with inflammation that does not resolve, leading to structural changes and an overall environment primed for exacerbations. Objective: We sought to identify and inhibit pathways that perpetuate this heightened inflammatory state because this could lead to therapies that allow for a more quiescent lung that is less predisposed to symptoms and exacerbations. Methods: Using prolonged exposure to house dust mite in mice, we developed a mouse model of persistent and exacerbating airway disease characterized by a mixed inflammatory phenotype. Results: We show that lung IL-33 drives inflammation and remodeling beyond the type 2 response classically associated with IL-33 signaling. IL-33 blockade with an IL-33 neutralizing antibody normalized established inflammation and improved remodeling of both the lung epithelium and lung parenchyma. Specifically, IL-33 blockade normalized persisting and exacerbating inflammatory end points, including eosinophilic, neutrophilic, and ST2+CD4+ T-cell infiltration. Importantly, we identified a key role for IL-33 in driving lung remodeling because anti–IL-33 also re-established the presence of ciliated cells over mucus-producing cells and decreased myofibroblast numbers, even in the context of continuous allergen exposure, resulting in improved lung function. Conclusion: Overall, this study shows that increased IL-33 levels drive a self-perpetuating amplification loop that maintains the lung in a state of lasting inflammation and remodeled tissue primed for exacerbations. Thus IL-33 blockade might ameliorate symptoms and prevent exacerbations by quelling persistent inflammation and airway remodeling.
  •  
15.
  • Alyamani, Manar, et al. (author)
  • Alkaline sphingomyelinase (NPP7) impacts the homeostasis of intestinal T lymphocyte populations
  • 2023
  • In: Frontiers in Immunology. - : Frontiers Media SA. - 1664-3224. ; 13
  • Journal article (peer-reviewed)abstract
    • Background and aim: Alkaline sphingomyelinase (NPP7) is expressed by intestinal epithelial cells and is crucial for the digestion of dietary sphingomyelin. NPP7 also inactivates proinflammatory mediators including platelet-activating factor and lysophosphatidylcholine. The aim of this study was to examine a potential role for NPP7 in the homeostasis of the intestinal immune system. Methods: We quantified the numbers of B-lymphocytes, plasma cells, T-lymphocytes including regulatory T-lymphocytes (Tregs), natural killer cells, dendritic cells, macrophages, and neutrophils, in the small and large intestines, the mesenteric lymph nodes and the spleens of heterozygous and homozygous NPP7 knockout (KO) and wildtype (WT) mice. Tissues were examined by immunohistochemistry and stainings quantified using computerized image analysis. Results: The numbers of both small and large intestinal CD3ε+, CD4+, and CD8α+ T-lymphocytes were significantly higher in NPP7 KO compared to WT mice (with a dose-response relationship in the large intestine), whereas Treg numbers were unchanged, and dendritic cell numbers reduced. In contrast, the numbers of CD3ε+ and CD4+ T-lymphocytes in mesenteric lymph nodes were significantly reduced in NPP7 KO mice, while no differences were observed in spleens. The numbers of B-lymphocytes, plasma cells, natural killer cells, macrophages, and neutrophils were similar between genotypes. Conclusion: NPP7 contributes to the regulation of dendritic cell and T-lymphocyte numbers in mesenteric lymph nodes and both the small and large intestines, thus playing a role in the homeostasis of gut immunity. Although it is likely that the downstream effects of NPP7 activity involve the sphingomyelin metabolites ceramide and spingosine-1-phosphate, the exact mechanisms behind this regulatory function of NPP7 need to be addressed in future studies.
  •  
16.
  • Andersson, Cecilia, et al. (author)
  • Alveolar mast cells shift to an FcεRI-expressing phenotype in mild atopic asthma: a novel feature in allergic asthma pathology.
  • 2011
  • In: Allergy. - : Wiley. - 1398-9995 .- 0105-4538. ; 66:12, s. 1590-1597
  • Journal article (peer-reviewed)abstract
    • Background: A unique feature of alveolar mast cells is their low high-affinity IgE receptor (FcεRI) expression. Recent discoveries in uncontrolled asthma suggest that the appearance of FcεRI-expressing alveolar mast cells may be a novel disease-specific feature of allergic asthma. This study investigates whether increased FcεRI-expressing alveolar mast cells are present in patients with mild allergic asthma or even in non-asthmatic allergic rhinitis patients (AR) who have developed bronchial hyperactivity (BHR). Methods: Bronchial and alveolar tissues were obtained from healthy controls, AR patients with or without BHR, and AR patients with concurrent asthma. Samples were processed for immunohistochemical identification of MC(T) and MC(TC) and expression of FcεRI and surface-bound IgE. Results: Bronchial mast cell expression of FcεRI was high in all groups. In contrast, in the alveolar tissue, the expression of FcεRI on mast cells was low in healthy controls and in the AR patient groups, whereas a high expression was present in AR patients with concurrent asthma (P = 0.006 compared to controls). The asthmatics had a 29-fold increase in numbers (P = 0.006) and a 19-fold increase in proportion (P = 0.007) of alveolar mast cells that expressed surface-bound IgE. Conclusions: The present data show that alveolar mast cells in patients with mild atopic asthma, but not atopic patients with AR, have turned into a highly FcεRI- and IgE-expressing phenotype. These data support the hypothesis that increased FcεRI expression on alveolar mast cells is a novel disease-specific feature of allergic asthma that is important for understanding asthma phenotypes and designing new therapeutic strategies.
  •  
17.
  • Andersson, Cecilia K, et al. (author)
  • Activated MCTC mast cells infiltrate diseased lung areas in cystic fibrosis and idiopathic pulmonary fibrosis
  • 2011
  • In: Respiratory Research. - : Springer Science and Business Media LLC. - 1465-9921 .- 1465-993X. ; 12:139
  • Journal article (peer-reviewed)abstract
    • Background: Although mast cells are regarded as important regulators of inflammation and tissue remodelling, their role in cystic fibrosis (CF) and idiopathic pulmonary fibrosis (IPF) has remained less studied. This study investigates the densities and phenotypes of mast cell populations in multiple lung compartments from patients with CF, IPF and never smoking controls. Methods: Small airways, pulmonary vessels, and lung parenchyma were subjected to detailed immunohistochemical analyses using lungs from patients with CF (20 lung regions; 5 patients), IPF (21 regions; 7 patients) and controls (16 regions; 8 subjects). In each compartment the densities and distribution of MCT and MCTC mast cell populations were studied as well as the mast cell expression of IL-6 and TGF-beta. Results: In the alveolar parenchyma in lungs from patients with CF, MCTC numbers increased in areas showing cellular inflammation or fibrosis compared to controls. Apart from an altered balance between MCTC and MCT cells, mast cell in CF lungs showed elevated expression of IL-6. In CF, a decrease in total mast cell numbers was observed in small airways and pulmonary vessels. In patients with IPF, a significantly elevated MCTC density was present in fibrotic areas of the alveolar parenchyma with increased mast cell expression of TGF-beta. The total mast cell density was unchanged in small airways and decreased in pulmonary vessels in IPF. Both the density, as well as the percentage, of MCTC correlated positively with the degree of fibrosis. The increased density of MCTC, as well as MCTC expression of TGF-beta, correlated negatively with patient lung function. Conclusions: The present study reveals that altered mast cell populations, with increased numbers of MCTC in diseased alveolar parenchyma, represents a significant component of the histopathology in CF and IPF. The mast cell alterations correlated to the degree of tissue remodelling and to lung function parameters. Further investigations of mast cells in these diseases may open for new therapeutic strategies.
  •  
18.
  • Andersson, Cecilia K, et al. (author)
  • Alterations in Lung Mast Cell Populations in Patients with COPD.
  • 2010
  • In: American Journal of Respiratory and Critical Care Medicine. - 1535-4970. ; 181:3, s. 206-217
  • Journal article (peer-reviewed)abstract
    • RATIONALE: Mast cells have important roles in innate immunity and tissue remodeling but have remained poorly studied in inflammatory airway diseases like COPD. OBJECTIVES: To perform a detailed histological characterization of human lung mast cell popu-lations at different severities of COPD, comparing with smoking and never-smoking controls. METHODS: Mast cells were analyzed in lung tissues from patients with mild to very severe COPD, GOLD IâIV (n = 25, 10 of whom were treated with corticosteroids). Never-smokers and smokers served as controls. The density, morphology and molecular characteristics of mucosal and connective tissue mast cells (MCT and MCTC, respectively) were analyzed in several lung regions. MEASUREMENTS AND MAIN RESULTS: In all compartments of COPD lungs, especially at severe stages, the MCTC population increased in density while the MCT population decreased. The net result was a reduction in total mast cell density. This phenomenon was paralleled by in-creased numbers of luminal mast cells whereas the numbers of TUNEL(+) apoptotic mast cells remained unchanged. In COPD lungs, the MCT and MCTC populations showed alterations in morphology and expression of CD88 (C5a-R), TGF-beta, and renin. Statistically significant cor-relations were found between several COPD-related mast cell alterations and lung function parameters. CONCLUSIONS: As COPD progresses to its severe stages, the mast cell population in the lung undergoes changes in density, distribution, and molecular expression. In COPD lungs, these novel histopathological features were found to be correlated to lung function and they may thus have clinical consequences.
  •  
19.
  • Andersson, Cecilia K, et al. (author)
  • Distal respiratory tract viral infections in young children trigger a marked increase in alveolar mast cells
  • 2018
  • In: ERJ Open Research. - : European Respiratory Society (ERS). - 2312-0541. ; 4:4
  • Journal article (peer-reviewed)abstract
    • Viral infections predispose to the development of childhood asthma, a disease associated with increased lung mast cells (MCs). This study investigated whether viral lower respiratory tract infections (LRTIs) can already evoke a MC response during childhood. Lung tissue from young children who died following LRTIs were processed for immunohistochemical identification of MCs. Children who died from nonrespiratory causes served as controls. MCs were examined in relation to sensitisation in infant mice exposed to allergen during influenza A infection. Increased numbers of MCs were observed in the alveolar parenchyma of children infected with LRTIs (median (range) 12.5 (0-78) MCs per mm2) compared to controls (0.63 (0-4) MCs per mm2, p=0.0005). The alveolar MC expansion was associated with a higher proportion of CD34+ tryptase+ progenitors (controls: 0% (0-1%); LRTIs: 0.9% (0-3%) CD34+ MCs (p=0.01)) and an increased expression of the vascular cell adhesion molecule (VCAM)-1 (controls: 0.2 (0.07-0.3); LRTIs: 0.3 (0.02-2) VCAM-1 per mm2 (p=0.04)). Similarly, infant mice infected with H1N1 alone or together with house dust mite (HDM) developed an increase in alveolar MCs (saline: 0.4 (0.3-0.5); HDM: 0.6 (0.4-0.9); H1N1: 1.4 (0.4-2.0); HDM+H1N1: 2.2 (1.2-4.4) MCs per mm2 (p<0.0001)). Alveolar MCs continued to increase and remained significantly higher into adulthood when exposed to H1N1+HDM (day 36: 2.2 (1.2-4.4); day 57: 4.6 (1.6-15) MCs per mm2 (p=0.01)) but not when infected with H1N1 alone. Our data demonstrate that distal viral infections in young children evoke a rapid accumulation of alveolar MCs. Apart from revealing a novel immune response to distal infections, our data may have important implications for the link between viral infections during early childhood and subsequent asthma development.
  •  
20.
  • Andersson, Cecilia K, et al. (author)
  • Novel Site-Specific Mast Cell Subpopulations in the Human Lung.
  • 2009
  • In: Thorax. - : BMJ. - 1468-3296 .- 0040-6376. ; 64, s. 297-305
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: Lung mast cells are stereotypically divided into connective tissue (MCTC) and mucosal (MCT) mast cells. This study tests the hypothesis that each of these subtypes can be divided further into site-specific populations created by the microenvironment within each anatomic lung compartment. METHODS: To study mast cells under non-inflamed conditions surgical resections and bronchial and transbronchial biopsies from non-smoking individuals were obtained to investigate morphometric and molecular characteristics of mast cell populations in multiple lung structures by immunohistochemistry and electron microscopy. RESULTS: MCT and MCTC coexisted at all compartments with MCT being the prevailing type in bronchi, bronchioles and the alveolar parenchyma. MCTC were more abundant in pulmonary vessels and the pleura. Each of the MCTC and MCT phenotypes could be further differentiated into site-specific populations. MCTC was of significantly larger size in pulmonary vessels than in small airway walls (p<0.001) while a reversed pattern was observed for MCT (p<0.001). Within each MCTC and MCT population there was also distinct site-specific expression pattern of the IgE-receptor, IL-9 receptor, renin, histidine decarboxylase, VEGF, FGF, 5-Lipoxygense, and LTC4-synthase; e.g. bronchial MCT consistently expressed more histidine decarboxylase than alveolar MCT (p<0.004). Renin content was high among vascular MCTC but markedly reduced among MCTC in other compartments (p<0.0002). Notably, for both MCTC and MCT IgE-receptor was highly expressed in conducting airways but virtually absent in alveolar parenchyma. CONCLUSION: Our findings demonstrate novel site-specific sub-populations of lung MCTC and MCT. This observation is suggested to have important implications in unravelling the recently proposed role of mast cells in a variety of pulmonary diseases.
  •  
21.
  • Andersson, Cecilia, et al. (author)
  • Mast cell-associated alveolar inflammation in patients with atopic uncontrolled asthma
  • 2011
  • In: Journal of Allergy and Clinical Immunology. - : Elsevier BV. - 1097-6825 .- 0091-6749. ; 127:4, s. 123-905
  • Journal article (peer-reviewed)abstract
    • Background: A significant proportion of patients with asthma have persistent symptoms despite treatment with inhaled glucocorticosteroids. Objective: We hypothesized that in these patients, the alveolar parenchyma is subjected to mast cell-associated alterations. Methods: Bronchial and transbronchial biopsies from healthy controls (n = 8), patients with allergic rhinitis (n = 8), and patients with atopic uncontrolled asthma (symptoms despite treatment with inhaled glucocorticosteroids; mean dose, 743 mu g/d; n = 14) were processed for immunohistochemical identification of mast cell subtypes and mast cell expression of Fc epsilon RI and surface-bound IgE. Results: Whereas no difference in density of total bronchial mast cells was observed between patients with asthma and healthy controls, the total alveolar mast cell density was increased in the patients with asthma (P < .01). Division into mast cell subtypes revealed that in bronchi of patients with asthma, tryptase positive mast cells (MCT) numbers decreased compared with controls (P <= .05), whereas tryptase and chymase positive mast cells (MCTC) increased (P <= .05). In the alveolar parenchyma from patients with asthma, an increased density was found for both MCT (P <= .05) and MCTC (P <= .05). The increased alveolar mast cell densities were paralleled by an increased mast cell expression of FceRI (P < .001) compared with the controls. The patients with asthma also had increased numbers (P < .001) and proportions (P < .001) of alveolar mast cells with surface-bound IgE. Similar increases in densities, FceRI expression, and surface-bound IgE were not seen in separate explorations of alveolar mast cells in patients with allergic rhinitis. Conclusion: Our data suggest that patients with atopic uncontrolled asthma have an increased parenchymal infiltration of MCT and MCTC populations with increased expression of FceRI and surface-bound IgE compared with atopic and nonatopic controls. (J Allergy Clin Immunol 2011;127:905-12.)
  •  
22.
  • Andersson, Cecilia, et al. (author)
  • Mice Lacking 12/15-Lipoxygenase have Attenuated Airway Allergic Inflammation and Remodeling.
  • 2008
  • In: American Journal of Respiratory Cell and Molecular Biology. - 1535-4989. ; 39:6, s. 648-656
  • Journal article (peer-reviewed)abstract
    • Arachidonate 15-lipoxygenase (LO)-1 has been implicated in allergic inflammation and asthma. The overall effect of 15-LO in allergic inflammation in vivo is, however, unclear. This study investigates systemic allergen sensitization and local allergic airway inflammation and remodeling in mice lacking the murine 12/15-LO, the ortholog to human 15-LO-1. Upon systemic sensitization with intraperitoneal ovalbumin, 12/15 LO(-/-) mice produced elevated levels of allergen-specific IgE compared to wild type (Wt) controls. However, when challenged with repeated aerosolized allergen sensitized 12/15 LO(-/-) mice had an impaired development of airway allergic inflammation compared to Wt controls, as indicated by reduced BAL fluid leukocytes (eosinophils, lymphocytes macrophages) and Th2 cytokines (IL-4, IL-5, IL-13) as well as tissue eosinophils. Allergen-induced airway epithelial proliferation was also significantly attenuated in 12/15 LO(-/-) mice whereas goblet cell hyperplasia was unaffected. However, 12/15 LO(-/-) mice had significantly reduced luminal mucus secretions compared to Wt controls. The repeated allergen challenges resulted in a dramatic increase of alpha-smooth muscle-actin positive alveolar cells in the peripheral airways, a phenomenon that was significantly less developed in 12/15 LO(-/-) mice. In conclusion, our data suggest that 12/15 LO(-/-) mice, although having a fully developed systemic sensitization, did not establish a fully developed allergic airway inflammation and associated manifestations of central and peripheral airway remodeling. These data suggest that 12/15-LO derived metabolites play an important pathophysiological role in allergen-induced inflammation and remodeling. Hence, pharmacologic targeting of the human 15-LO-1 may represent an attractive therapeutic strategy to control inflammation and remodeling in asthma.
  •  
23.
  • Andersson Sjöland, Annika, et al. (author)
  • Fibrocytes are associated with vascular and parenchymal remodelling in patients with obliterative bronchiolitis.
  • 2009
  • In: Respiratory Research. - : Springer Science and Business Media LLC. - 1465-9921 .- 1465-993X. ; 10:Oct 30
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: The aim of the present study was to explore the occurrence of fibrocytes in tissue and to investigate whether the appearance of fibrocytes may be linked to structural changes of the parenchyme and vasculature in the lungs of patients with obliterative bronchiolitis (OB) following lung or bone marrow transplantation. METHODS: Identification of parenchyme, vasculature, and fibrocytes was done by histological methods in lung tissue from bone marrow or lung-transplanted patients with obliterative bronchiolitis, and from controls. RESULTS: The transplanted patients had significantly higher amounts of tissue in the alveolar parenchyme (46.5 +/- 17.6%) than the controls (21.7 +/- 7.6%) (p < 0.05). The patients also had significantly increased numbers of fibrocytes identified by CXCR4/prolyl4-hydroxylase, CD45R0/prolyl4-hydroxylase, and CD34/prolyl4-hydroxylase compared to the controls (p < 0.01). There was a correlation between the number of fibrocytes and the area of alveolar parenchyma; CXCR4/prolyl 4-hydroxylase (p < 0.01), CD45R0/prolyl 4-hydroxylase (p < 0.05) and CD34/prolyl 4-hydroxylase (p < 0.05). In the pulmonary vessels, there was an increase in the endothelial layer in patients (0.31 +/- 0.13%) relative to the controls (0.037 +/- 0.02%) (p < 0.01). There was a significant correlation between the number of fibrocytes and the total area of the endothelial layer CXCR4/prolyl 4-hydroxylase (p < 0.001), CD45R0/prolyl 4-hydroxylase (p < 0.001) and CD34/prolyl 4-hydroxylase (p < 0.01). The percent areas of the lumen of the vessels were significant (p < 0.001) enlarged in the patient with OB compared to the controls. There was also a correlation between total area of the lumen and number of fibrocytes, CXCR4/prolyl 4-hydroxylase (p < 0.01), CD45R0/prolyl 4-hydroxylase (p < 0.001) and CD34/prolyl 4-hydroxylase (p < 0.01). CONCLUSION: Our results indicate that fibrocytes are associated with pathological remodelling processes in patients with OB and that tissue fibrocytes might be a useful biomarker in these processes.
  •  
24.
  • Andreasson, Louise Munkholm, et al. (author)
  • Airway hyperresponsiveness correlates with airway TSLP in asthma independent of eosinophilic inflammation
  • In: Journal of Allergy and Clinical Immunology. - 0091-6749.
  • Journal article (peer-reviewed)abstract
    • Background: Thymic stromal lymphopoietin (TSLP) is released from the airway epithelium in response to various environmental triggers, inducing a type-2 inflammatory response, and is associated with airway inflammation, airway hyperresponsiveness (AHR), and exacerbations. TSLP may also induce AHR via a direct effect on airway smooth muscle and mast cells, independently of type-2 inflammation, although association between airway TSLP and AHR across asthma phenotypes has been described sparsely. Objectives: This study sought to investigate the association between AHR and levels of TSLP in serum, sputum, and bronchoalveolar lavage in patients with asthma with and without type-2 inflammation. Methods: A novel ultrasensitive assay was used to measure levels of TSLP in patients with asthma (serum, n = 182; sputum, n = 81; bronchoalveolar lavage, n = 85) and healthy controls (serum, n = 47). The distribution and association among airway and systemic TSLP, measures of AHR, type-2 inflammation, and severity of disease were assessed. Results: TSLP in sputum was associated with AHR independently of levels of eosinophils and fractional exhaled nitric oxide (ρ = 0.49, P = .005). Serum TSLP was higher in both eosinophil-high and eosinophil-low asthma compared to healthy controls: geometric mean: 1600 fg/mL (95% CI: 1468-1744 fg/mL) and 1294 fg/mL (95% CI: 1167-1435 fg/mL) versus 846 fg/mL (95% CI: 661-1082 fg/mL), but did not correlate with the level of AHR. Increasing age, male sex, and eosinophils in blood were associated with higher levels of TSLP in serum, whereas lung function, inhaled corticosteroid dose, and symptom score were not. Conclusions: The association between TSLP in sputum and AHR to mannitol irrespective of markers of type-2 inflammation further supports a role of TSLP in AHR that is partially independent of eosinophilic inflammation.
  •  
25.
  • Backer, Vibeke, et al. (author)
  • Clinical characteristics of the BREATHE cohort–a real-life study on patients with asthma and COPD
  • 2020
  • In: European clinical respiratory journal. - : Informa UK Limited. - 2001-8525. ; 7:1
  • Journal article (peer-reviewed)abstract
    • Background: The BREATHE study is a cross-sectional study of real-life patients with asthma and/or COPD in Denmark and Sweden aiming to increase the knowledge across severities and combinations of obstructive airway disease. Design: Patients with suspicion of asthma and/or COPD and healthy controls were invited to participate in the study and had a standard evaluation performed consisting of questionnaires, physical examination, FeNO and lung function, mannitol provocation test, allergy test, and collection of sputum and blood samples. A subgroup of patients and healthy controls had a bronchoscopy performed with a collection of airway samples. Results: The study population consisted of 1403 patients with obstructive airway disease (859 with asthma, 271 with COPD, 126 with concurrent asthma and COPD, 147 with other), and 89 healthy controls (smokers and non-smokers). Of patients with asthma, 54% had moderate-to-severe disease and 46% had mild disease. In patients with COPD, 82% had groups A and B, whereas 18% had groups C and D classified disease. Patients with asthma more frequently had childhood asthma, atopic dermatitis, and allergic rhinitis, compared to patients with COPD, asthma + COPD and Other, whereas FeNO levels were higher in patients with asthma and asthma + COPD compared to COPD and Other (18 ppb and 16 ppb vs 12.5 ppb and 14 ppb, p < 0.001). Patients with asthma, asthma + COPD and Other had higher sputum eosinophilia (1.5%, 1.5%, 1.2% vs 0.75%, respectively, p < 0.001) but lower sputum neutrophilia (39.3, 43.5%, 40.8% vs 66.8%, p < 0.001) compared to patients with COPD. Conclusions: The BREATHE study provides a unique database and biobank with clinical information and samples from 1403 real-life patients with asthma, COPD, and overlap representing different severities of the diseases. This research platform is highly relevant for disease phenotype- and biomarker studies aiming to describe a broad spectrum of obstructive airway diseases.
  •  
26.
  •  
27.
  • Bergqvist, Anders, et al. (author)
  • Alveolar T-helper type-2 immunity in atopic asthma is associated with poor clinical control
  • 2015
  • In: Clinical Science. - 1470-8736. ; 128:1, s. 47-56
  • Journal article (peer-reviewed)abstract
    • Real-world evaluation studies have shown that many patients with asthma remain symptomatic despite treatment with inhaled corticosteroids (ICSs). As conventional ICSs have poor access to the peripheral airways, the aim of the present paper was to study the relationship between peripheral airway inflammation and clinical control in allergic asthma. Consequently, bronchial and transbronchial biopsies were obtained from patients with poorly controlled asthma [n=12, asthma control test (ACT) score < 20], patients with well-controlled asthma (n= 12, ACT score >= 20) and healthy controls (n= 8). Tissue sections were immunostained to assess multiple leucocyte populations. To determine the degree of T-helper type-2 (Th2) immunity, the logarithmic value of the ratio between Th2 cells/mm(2) and Th1 cells/mm(2) was used as a surrogate score for Th2-skewed immunity. In the bronchi, the leucocyte infiltration pattern and the Th2-score were similar between patients with well-controlled asthma and those with poorly controlled asthma. In contrast, in the alveolar parenchyma, the expression of T-helper cells was significantly higher in patients with poorly controlled asthma than in patients with well-controlled asthma (P < 0.01). Furthermore, the alveolar Th2-score was significantly higher in patients with poorly controlled asthma (median 0.4) than in the controlled patients (median -0.10, P < 0.05). In addition, in contrast with bronchial Th2-score, the alveolar Th2-score correlated significantly with ACT score (r(s)=-0.62, P < 0.01) in the pooled asthma group. Collectively, our data reveal an alveolar Th2-skewed inflammation, specifically in asthmatic patients who are poorly controlled with ICSs, and suggest that pharmacological targeting of the peripheral airways may be beneficial in this large patient category.
  •  
28.
  •  
29.
  • Braekeveldt, Noémie, et al. (author)
  • Neuroblastoma patient-derived orthotopic xenografts reflect the microenvironmental hallmarks of aggressive patient tumours
  • 2016
  • In: Cancer Letters. - : Elsevier BV. - 1872-7980 .- 0304-3835. ; 375:2, s. 384-389
  • Journal article (peer-reviewed)abstract
    • Treatment of high-risk childhood neuroblastoma is a clinical challenge hampered by a lack of reliable neuroblastoma mouse models for preclinical drug testing. We have previously established invasive and metastasising patient-derived orthotopic xenografts (PDXs) from high-risk neuroblastomas that retained the genotypes and phenotypes of patient tumours. Given the important role of the tumour microenvironment in tumour progression, metastasis, and treatment responses, here we analysed the tumour microenvironment of five neuroblastoma PDXs in detail. The PDXs resembled their parent tumours and retained important stromal hallmarks of aggressive lesions including rich blood and lymphatic vascularisation, pericyte coverage, high numbers of cancer-associated fibroblasts, tumour-associated macrophages, and extracellular matrix components. Patient-derived tumour endothelial cells occasionally formed blood vessels in PDXs; however, tumour stroma was, overall, of murine origin. Lymphoid cells and lymphatic endothelial cells were found in athymic nude mice but not in NSG mice; thus, the choice of mouse strain dictates tumour microenvironmental components. The murine tumour microenvironment of orthotopic neuroblastoma PDXs reflects important hallmarks of aggressive and metastatic clinical neuroblastomas. Neuroblastoma PDXs are clinically relevant models for preclinical drug testing.
  •  
30.
  • Briend, Emmanuel, et al. (author)
  • IL-18 associated with lung lymphoid aggregates drives IFNγ production in severe COPD
  • 2017
  • In: Respiratory Research. - : Springer Science and Business Media LLC. - 1465-9921 .- 1465-993X. ; 18:1
  • Journal article (peer-reviewed)abstract
    • Background: Increased interferon gamma (IFNγ) release occurs in Chronic Obstructive Pulmonary Disease (COPD) lungs. IFNγ supports optimal viral clearance, but if dysregulated could increase lung tissue destruction. Methods: The present study investigates which mediators most closely correlate with IFNγ in sputum in stable and exacerbating disease, and seeks to shed light on the spatial requirements for innate production of IFNγ, as reported in mouse lymph nodes, to observe whether such microenvironmental cellular organisation is relevant to IFNγ production in COPD lung. Results: We show tertiary follicle formation in severe disease alters the dominant mechanistic drivers of IFNγ production, because cells producing interleukin-18, a key regulator of IFNγ, are highly associated with such structures. Interleukin-1 family cytokines correlated with IFNγ in COPD sputum. We observed that the primary source of IL-18 in COPD lungs was myeloid cells within lymphoid aggregates and IL-18 was increased in severe disease. IL-18 released from infected epithelium or from activated myeloid cells, was more dominant in driving IFNγ when IL-18-producing and responder cells were in close proximity. Conclusions: Unlike tight regulation to control infection spread in lymphoid organs, this local interface between IL-18-expressing and responder cell is increasingly supported in lung as disease progresses, increasing its potential to increase tissue damage via IFNγ.
  •  
31.
  • Chu, Derek K, et al. (author)
  • Indigenous enteric eosinophils control DCs to initiate a primary Th2 immune response in vivo.
  • 2014
  • In: Journal of Experimental Medicine. - : Rockefeller University Press. - 1540-9538 .- 0022-1007. ; 211:8, s. 1657-1672
  • Journal article (peer-reviewed)abstract
    • Eosinophils natively inhabit the small intestine, but a functional role for them there has remained elusive. Here, we show that eosinophil-deficient mice were protected from induction of Th2-mediated peanut food allergy and anaphylaxis, and Th2 priming was restored by reconstitution with il4(+/+) or il4(-/-) eosinophils. Eosinophils controlled CD103(+) dendritic cell (DC) activation and migration from the intestine to draining lymph nodes, events necessary for Th2 priming. Eosinophil activation in vitro and in vivo led to degranulation of eosinophil peroxidase, a granule protein whose enzymatic activity promoted DC activation in mice and humans in vitro, and intestinal and extraintestinal mouse DC activation and mobilization to lymph nodes in vivo. Further, eosinophil peroxidase enhanced responses to ovalbumin seen after immunization. Thus, eosinophils can be critical contributors to the intestinal immune system, and granule-mediated shaping of DC responses can promote both intestinal and extraintestinal adaptive immunity.
  •  
32.
  • Egesten, Arne, et al. (author)
  • The proinflammatory CXC-chemokines GRO-α/CXCL1 and MIG/CXCL9 are concomitantly expressed in ulcerative colitis and decrease during treatment with topical corticosteroids
  • 2007
  • In: International Journal of Colorectal Disease. - : Springer Science and Business Media LLC. - 0179-1958 .- 1432-1262. ; 22:12, s. 1421-1427
  • Journal article (peer-reviewed)abstract
    • Background  Ulcerative colitis is characterized by relapsing mucosal inflammation where the lesions include tissue-damaging granulocytes. In addition, T cells and natural killer (NK) cells play important pathophysiologic roles. Chemokines are a large family of peptides that play key roles in the regulation of inflammation. The CXC-chemokines, growth-related oncogene (GRO)-α/CXCL1 and interleukin (IL)-8/CXCL8, both recruit neutrophils and possess mitogenic properties, whereas the interferon-dependent CXC-chemokines monokine induced by gamma-interferon (MIG)/CXCL9, interferon-γ inducible protein of 10 kD/CXCL10, and IFN-inducible T cell alpha chemoattractant/CXCL11 recruit and activate T cells and NK cells. Materials and methods  The expression of CXC-chemokines was studied in eight controls and in 11 patients suffering from ulcerative colitis in the distal part of the colon, before and during topical treatment with corticosteroids. Perfusates (obtained before, after 7 days, and after 28 days of treatment) and pinch biopsies (obtained before and after 28 days of treatment) were collected by colonoscopy. The rectal release of GRO-α and MIG was determined by enzyme-linked immunosorbent assay (ELISA), and tissue expression of the chemokines was detected in colonic tissue by immunohistochemistry. Results  In perfusates, high levels of GRO-α, IL-8, and MIG were detected compared with controls (p = 0.02, 0.005, and p =  0.03, respectively). During treatment with corticosteroids, both GRO-α and MIG decreased. In clinical nonresponders, characterized by sustained inflammation, the levels of GRO-α and MIG remained elevated. Both epithelial cells and granulocytes, present in the submucosa, expressed GRO-α and MIG as detected by immunohistochemistry. Conclusions  CXC-chemokines are likely to be important in the pathophysiology of ulcerative colitis and may become targets for novel treatment strategies. In addition, GRO-α may serve as a marker of disease activity.
  •  
33.
  • Ekman, Anna-Karin, et al. (author)
  • Allergen-Induced Accumulation of CD68(-), CD123(+) Dendritic Cells in the Nasal Mucosa
  • 2011
  • In: International Archives of Allergy and Immunology. - : S. Karger AG. - 1423-0097 .- 1018-2438. ; 155:3, s. 234-242
  • Journal article (peer-reviewed)abstract
    • Background: Dendritic cells are antigen-presenting cells central to the immune system. They activate and orchestrate the innate and the adaptive immune systems. This phenotypically diverse group can be further divided into 2 subsets, the CD11c(+) myeloid dendritic cells (mDCs) and the CD123(+) plasmacytoid dendritic cells (pDCs). The aim of the study was to investigate the effect of allergen exposure on dendritic cells in subjects with allergic rhinitis. Methods: Atopic and non-atopic subjects were challenged intranasally with birch or timothy allergen. Nasal biopsies were taken before and 24 h after challenge, and were, after CD68 exclusion, stained for expression of CD11c and CD123 to identify dendritic cell subsets. The effect of allergic mediators on CD68(-), CD123(+) cells was studied with flow cytometry analysis in peripheral blood. Results: The amount of CD68(-), CD123(+) cells increased in the nasal sub-epithelium upon allergen challenge, whereas the number of CD68(-), CD11c(+) cells was unaffected. In vitro study of the effect of inflammatory mediators on pDC phenotype showed an increased activation in response TNF-alpha, IL-4 and CpG. Furthermore, TNF-alpha caused a higher activation among atopic than non-atopic subjects. Conclusions: An increased number of CD68(-), CD123(+) dendritic cells along with the positive pDC response following stimulation with inflammatory mediators suggest that the increased pDCs may be of an activated phenotype. It also suggests that the inflammatory response by pDCs to mediators such as TNF-alpha may be markedly higher in atopic subjects. These data support the notion of pDCs as important participants in allergic rhinitis. Copyright (C) 2011 S. Karger AG, Basel
  •  
34.
  • Erjefält, Jonas, et al. (author)
  • Airway epithelial repair: breathtakingly quick and multipotentially pathogenic
  • 1997
  • In: Thorax. - 1468-3296. ; 52:11, s. 1010-1012
  • Journal article (peer-reviewed)abstract
    • Epithelial shedding, even to the point of airway denudation, had already been described as a common and unifying feature of asthma by the latter half of the 19th century. However, the repair processes that specifically follow the shedding-like loss of epithelial cells have only recently been examined in vivo. This paper discusses the exceedingly fast epithelial restitution and the potential pathogenic sequelae to epithelial shedding alone that have been unravelled. Epithelial cytoprotection emerges as an important property of future therapeutic drugs for the treatment of airways inflammatory conditions.
  •  
35.
  • Erjefält, Jonas (author)
  • Airway epithelial shedding: Morphological and functional aspects in vivo.
  • 1996
  • Doctoral thesis (other academic/artistic)abstract
    • Epithelial damage may contribute to the pathology in airway diseases such as asthma and rhinitis. However, the distribution of epithelial shedding in inflammatory airway diseases and, particularly, the ensuing repair processes are largely unknown. In the present studies we have developed novel in vivo techniques to explore epithelial repair mechanisms and associated tissue responses occuring in guinea-pig trachea after mechanical-induced epithelial shedding or an allergic inflammation. The results emerging from the studies of mechanichal shedding and repair include: morphological characterisation of prompt dedifferentiation of both ciliated and secretory epithelial cells into repair cells that with a high speed migrate to cover the denuded basement membrane. Another major finding was that epithelial shedding, by itself, evoked several disease-like tissue responses such as plasma exudation, hypersecretion, and infiltration and activation of neutrophils and eosinophils. Repeated treatment with a potent topical glucocorticoid (budesonide) did not affect the speedy epithelial restitution and its associated tissue responses. A novel technique was developed to selectively remove columnar epithelial cells to demonstrate that also airway basal cells have a capacity to promptly assume a barrier structure. In vivo allergen challenge, selectively of the large airways, produced crater-like damage sites in the epithelium. Dedifferentiated repair cells were present at the floor and the borders of these damage sites. Activated granulocytes and extravasated plasma proteins abounded in the airways, particularly in association with the damage sites. In conclusion this thesis demonstrates that epithelial repair after mechanical or allergen-induced epithelial shedding is a speedy an efficient process with the participation of basal, secretory, and ciliated cells in a milieu of plasma exudates and leukocytes. This thesis further shows that in allergic inflammation patchy epithelial damage areas are dynamic sites where damage and repair processes occur simultaneously and where plasma exudates and activated leukocytes accumulate. If transferable to human airways the present observations on sequelae to epithelial shedding suggest that epithelial restitution processes quickly restore a barrier structure but causes also effects that significantly contribute to the pathology and pathophysiology observed in inflammatory airway diseases.
  •  
36.
  • Erjefält, Jonas, et al. (author)
  • Allergen challenge-induced extravasation of plasma in mouse airways
  • 1998
  • In: Clinical and Experimental Allergy. - : Wiley. - 1365-2222 .- 0954-7894. ; 28:8, s. 1013-1020
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: Mouse models are extensively used to study genetic and immunological mechanisms of potential importance to inflammatory airway diseases, e.g. asthma. However, the airway pathophysiology in allergic mice has received less attention. For example, plasma extravasation and the ensuing tissue-deposition of plasma proteins, which is a hallmark of inflammation, has not been examined in allergic mice. OBJECTIVE: This study aims to examine the vascular permeability and the distribution of plasma proteins in mouse airways following exposure to allergen and serotonin. METHODS: Extravasated plasma was quantified by a dual isotop technique using intravascular (131I-albumin) and extrasvascular (125I-albumin) plasma tracers. Histological visualization of fibrinogen and colloidal gold revealed the tissue distribution of extravasated plasma. RESULTS: Allergen aerosol exposure (3% OVA, 15min) of sensitized animals resulted in a marked plasma extravasation response in the trachea (P < 0.01) and the bronchi but not in the lung parenchyma. A similar extravasation response was induced by serotonin (P<0.001). Extravasating vessels (assessed by Monastral blue dye) were identified as intercartilaginous venules. Extravasated plasma abounded in the subepithelial tissue but was absent in the epithelium and airway lumen. The allergen-induced response was dose-dependently inhibited by iv administration of formoterol (P < 0.001), a vascular antipermeability agent. CONCLUSION: The present study demonstrates that serotonin and allergen challenge of sensitized mice increase airway venular permeability to cause transient extravasation and lamina propria distribution of plasma in the large airways. We suggest that the extravasation response is a useful measure of the intensity and the distribution of active inflammation
  •  
37.
  • Erjefält, Jonas, et al. (author)
  • Allergen-induced eosinophil cytolysis is a primary mechanism for granule protein release in human upper airways
  • 1999
  • In: American Journal of Respiratory and Critical Care Medicine. - 1535-4970. ; 160:1, s. 304-312
  • Journal article (peer-reviewed)abstract
    • Cytotoxic eosinophil granule proteins are considered important in the pathogenesis of allergic airway diseases such as rhinitis and asthma. To explore the cellular mechanisms behind eosinophil granule release in human allergic airways, 16 symptom-free patients with seasonal allergic rhinitis were challenged daily with allergen during 1 wk. Nasal lavage samples and biopsies, obtained before and 24 h after the last allergen exposure, were processed for immunohistochemical and electron microscopic analysis. The allergen challenges produced nasal symptoms, marked tissue eosinophilia, and an increase in lavage fluid levels of eosinophil cationic protein (ECP). The nasal mucosa areas with intense extracellular immunoreactivity for ECP were associated with abundant free eosinophil granules. Electron microscopy confirmed the free granules and revealed that all mucosal eosinophils were involved in granule release, either by cytolysis (33%) or piecemeal degranulation (PMD) (67%). Resting or apoptotic eosinophils were not observed. Cytolytic eosinophils had less signs of intracellular granule release (p < 0. 001) and a higher content of intact granules (p < 0.001) compared with viable eosinophils in the same tissue. This study demonstrates eosinophil cytolysis (ECL) as a distinct mechanism for granule mediator release in human allergic airway mucosa. The nature and extent of the ECL and its product (i.e., protein-laden extracellular granules) indicate that allergen-induced cytolysis is a primary and major mechanism for the release of eosinophil proteins in human allergic airway inflammation in vivo.
  •  
38.
  • Erjefält, Jonas, et al. (author)
  • Association between inflammation and epithelial damage-restitution processes in allergic airways in vivo
  • 1997
  • In: Clinical and Experimental Allergy. - : Wiley. - 1365-2222 .- 0954-7894. ; 27:11, s. 1344-1355
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: Associations between allergen challenge-induced sites of epithelial damage and the distribution of leucocytes and extravasated plasma remain unexplored. OBJECTIVE: To study neutrophils, eosinophils, and fibrinogen at allergen challenge-induced patchy epithelial damage-restitution sites in guinea-pig trachea. METHODS: After local challenge tracheal tissue (cryo sections and whole-mounts) and lumen (selective tracheal lavage) were examined at 1, 5, and 24 h. Eosinophils, neutrophils and fibrinogen were identified by histochemistry. RESULTS: Neutrophils increased markedly in tracheal lavage fluids and in tissue and were strongly associated with the challenge-induced epithelial craters of damage-restitution. At 1 and 24 h eosinophils were increased in the tracheal lumen whereas the surrounding tissue displayed a reversed pattern. Gels rich in fibrinogen, neutrophils, and eosinophils were present in epithelial crater areas, protruding into the lumen. Clusters of free eosinophil granules, Cfegs, released through lysis of eosinophils, and neutrophils with long cytoplasmatic protrusions abounded in these crater areas. CONCLUSION: The present findings provide important new insights into allergic airways where sites of epithelial damage-restitution processes emerge as the major loci for eosinophil, neutrophil, and plasma protein activities, the latter likely causing leukocyte adhesion and activation in vivo. The distribution of eosinophils in this study suggests roles of these cells both in airway mucosa and in regional lymph nodes. Based on the present study we also propose that lysis of eosinophils and Cfegs generation are a major paradigm for activation of these cells in vivo.
  •  
39.
  • Erjefält, Jonas, et al. (author)
  • Cytolysis and piecemeal degranulation as distinct modes of activation of airway mucosal eosinophils
  • 1998
  • In: Journal of Allergy and Clinical Immunology. - 1097-6825. ; 102:2, s. 286-294
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: Cytotoxic eosinophil granule proteins are considered important in the pathogenesis of inflammatory airway diseases, including asthma, rhinitis, and polyposis. However, little is known about the mechanisms involved in the deposition of these tissue-damaging granular products in vivo. OBJECTIVE: We sought to determine the occurrence of degranulating eosinophils, those with morphologic evidence of cytolysis with associated clusters of free eosinophil granules (Cfegs), and to identify the frequency of apoptotic eosinophils in inflamed upper airway tissue. METHODS: Eosinophil-rich nasal polyps were processed for transmission electron microscopy and for light microscopic evaluation of whole-mount preparations subjected to deep tissue staining for eosinophil peroxidase. RESULTS: The mean proportion of eosinophil subtypes were intact and resting (6.8%), intact but degranulating (83%), cytolytic or Cfegs (9.9%), and apoptotic (0.0%). All degranulating eosinophils exhibited piecemeal degranulation. The occurrence of Cfegs was confirmed in nonsectioned whole-mount preparations. Depending on the appearance of their core and matrix, the specific granules were divided into four subtypes, and a degranulation index (altered per total granules) was calculated for each eosinophil. Cytolytic eosinophils had a much lower degranulation index than intact eosinophils present in the same tissue (P < .001). CONCLUSIONS: These data indicate that eosinophil cytolysis is present in human airway mucosa, that its occurrence is not an artifact of the means of tissue handling, and that cytolysis of eosinophils may occur without prior extensive degranulation. We suggest that eosinophil cytolysis is a major activation mechanism, which occurs along with, but is distinct from, other types of degranulation.
  •  
40.
  • Erjefält, Jonas, et al. (author)
  • Degranulation patterns of eosinophil granulocytes as determinants of eosinophil driven disease
  • 2001
  • In: Thorax. - : BMJ. - 1468-3296 .- 0040-6376. ; 56:5, s. 341-344
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: Degranulation of eosinophils in target tissues is considered a key pathogenic event in major chronic eosinophilic diseases. However, because of a lack of appropriate methods, little is known about degranulation of eosinophils in common eosinophilic diseases. METHODS: Using transmission electron microscopic (TEM) analysis, a novel approach has been devised and validated to quantify eosinophil degranulation in human tissues (assessed in individual cells as percentage granules with structural signs of protein release). Biopsy specimens from patients with inflammatory bowel disease, allergic rhinitis, asthma, and nasal polyposis were evaluated. RESULTS: All conditions displayed a similar degree of local tissue eosinophilia, with no differences being observed in eosinophil numbers in the airway mucosa of patients with airway diseases and the colonic mucosa of those with inflammatory bowel disease (IBD). In contrast, marked differences in the mean (SE) extent of eosinophil degranulation were observed between the patient groups; IBD 9.3 (1.4)% altered granules, artificial and natural allergen challenge induced allergic rhinitis 67.8 (6.8)% and 86.6 (3.0)%, respectively, asthma 18.1 (2)%, and nasal polyposis 46.6 (7.6)%. CONCLUSIONS: This study provides the first quantitative data which show that different eosinophilic conditions, despite having similar numbers of tissue eosinophils, may exhibit markedly different degranulation patterns. The present assessment of piecemeal degranulation would thus make it possible to delineate the conditions under which eosinophils are likely to contribute to disease processes. This novel type of analysis may also guide and validate anti-eosinophilic treatment options.
  •  
41.
  • Erjefält, Jonas, et al. (author)
  • Effects of topical budesonide on epithelial restitution in vivo in guinea pig trachea
  • 1995
  • In: Thorax. - 1468-3296. ; 50:7, s. 785-792
  • Journal article (peer-reviewed)abstract
    • BACKGROUND--Continuous epithelial shedding and restitution processes may characterise the airways in diseases such as asthma. Epithelial restitution involves several humoral and cellular mechanisms that may potentially be affected by inhaled anti-asthma drugs. The present study examines the effect of a topical steroid on epithelial restitution in vivo in the guinea pig. METHODS--The airway epithelium was mechanically removed from well defined areas of guinea pig trachea without surgery and without damage to the basement membrane or bleeding. An anti-inflammatory dose of budesonide (1 mg) was administered repeatedly to the tracheal surface by local superfusion 24 hours before, at (0 hours), and 24 hours after the denudation. Migration of epithelial cells, formation of a plasma exudation-derived gel, and appearance of luminal leucocytes were recorded by scanning electron microscopy. Cell proliferation was visualised by bromodeoxyuridine immunohistochemistry and tissue neutrophils and eosinophils by enzyme histochemistry. RESULTS--Immediately after creation of the denuded zone ciliated and secretory cells on its border dedifferentiated, flattened out, and migrated speedily (mean (SE) 2.3 (0.3) micron/min) over the basement membrane. After 48 hours the entire denuded zone (800 microns wide) was covered by a tightly sealed epithelium; at this time increased proliferation was observed in new and old epithelium and subepithelial cells. Budesonide had no detectable effect on epithelial dedifferentiation, migration, sealing, or proliferation. Immediately after denudation and continuously during the migration phase plasma was extravasated creating a fibrinous gel rich in leucocytes, particularly neutrophils, over the denuded area. Budesonide had no effect on either the gel or the leucocyte density. CONCLUSIONS--These observations suggest that topical glucocorticoids may not interfere with a fast and efficient restitution of the epithelium in the airways.
  •  
42.
  • Erjefält, Jonas, et al. (author)
  • Eosinophils, neutrophils, and venular gaps in the airway mucosa at epithelial removal-restitution
  • 1996
  • In: American Journal of Respiratory and Critical Care Medicine. - 1535-4970. ; 153:5, s. 1666-1674
  • Journal article (peer-reviewed)abstract
    • Shedding of epithelium, increased venular permeability, and traffic of activated eosinophils and neutrophils may characterize asthmatic airways. This in vivo study involving briefly anesthetized guinea pigs examines whether epithelial denudation itself affects airway venules and granulocytes. Using an oral probe, a de-epithelialized tracheal zone (0.8 x 30 mm) was produced without bleeding or damage to the basement membrane. After 10 min, 2, 8, and 48 h, the tracheal tissue was examined by scanning and transmission electron microscopy. Silver staining revealed endothelial cell borders. Histochemistry identified neutrophils and eosinophils. Confirming previous observations, epithelial restitution started promptly and occurred speedily under a plasma exudation-derived, leukocyte-rich gel. Ten minutes after de-epithelialization, venular gaps (silver dots) were recognized as plasma exudation sites and, separately, silver rings at endothelial cell borders indicated attachment and extravasation of leukocytes. Tissue neutrophils were increased from 10 min to 48 h. Normally occurring eosinophils decreased in numbers during re-epithelialization, partly due to migration into the airway lumen and local cell death. Clusters of extracellular eosinophil granules were increased from 10 min to 8 h. Gentle removal of airway epithelium thus produced venular gaps, infiltration of neutrophils, and migration, activation, and death of eosinophils. Epithelial shedding-restitution processes may cause part of the microvascular and leukocyte changes that occur in inflammatory airway diseases.
  •  
43.
  • Erjefält, Jonas, et al. (author)
  • Epithelial barrier formation by airway basal cells
  • 1997
  • In: Thorax. - 1468-3296. ; 52:3, s. 213-217
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: Epithelial shedding processes in airway inflammation and defence may produce damaged areas where basal cells are the main remaining epithelial cell type. The present study examines the capacity of basal cells to form an epithelial barrier structure after loss of columnar epithelial cells. METHODS: A technique was developed which allows selective removal of columnar epithelial cells from isolated airways. A drop of tissue adhesive glue was applied on the mucosal surface shortly after excision of guinea pig trachea and human bronchus. Gentle removal of the glue, together with attached columnar cells, left a single layer of cobbled, solitary basal cells. The tissue was kept in culture media. Morphological changes of the basal cells were monitored by immuno-histochemistry and scanning and transmission electron microscopy at several time points. RESULTS: After 20 minutes the basal cells had undergone extensive flattening and established contact with each other. The basement membrane thus became covered by a poorly differentiated epithelium in both guinea pig and human airways. Abundant interdigitating cytoplasmic protrusions were observed at cell borders. CONCLUSIONS: Basal cells promptly flatten out to cover the basement membrane at loss of neighbouring columnar cells. These data may explain why the epithelial barrier function may be uncompromised in desquamative airway diseases. Furthermore, they suggest the possibility that sacrificial release of columnar epithelial cells and prompt creation of a barrier structure constitute important roles of basal cells in airway defence against severe insults.
  •  
44.
  • Erjefält, Jonas, et al. (author)
  • Epithelial pathways for luminal entry of bulk plasma
  • 1995
  • In: Clinical and Experimental Allergy. - : Wiley. - 1365-2222. ; 25:2, s. 187-195
  • Journal article (peer-reviewed)abstract
    • Inflammatory challenges of the airway mucosa cause luminal entry of bulk plasma. Extravasation of plasma is well described but the routes for epithelial passage of plasma are largely unknown. Using colloidal gold (5 nm) as tracer we have now examined the fate of extravasated plasma in the airways. The tracer was given intravenously to anaesthetized, ovalbumin-sensitized guinea-pigs 2min prior to airway mucosal challenge with 12pmol ovalbumin (the dose was selected from a separate dose-response study). Tissue specimens were collected 30s, 3 and 6 min after end of challenge (separate time course experiments suggested that the peak rate of entry of plasma occurred at about 5 min). The colloidal gold particles were visualized by autometallographic silver intensification. The gold produced no circulatory disturbance and had a uniform vascular distribution with negligible adherence to vascular endothelium. After challenge gold was first widely distributed in the lamina propria. At 3 and 6 min the tracer was also in the epithelium and airway lumen. It appeared that plasma was moved distinctly between and all around each epithelial cell. Bright field-, scanning-, and transmission electron-microscopy indicated that the luminal entry of plasma did not affect the integrity of the epithelial lining. This study demonstrates that the plasma exudate moves across an intact epithelial layer through ubiquitous paracellular pathways. Even at a pronounced acute plasma exudation response exceedingly small amounts of plasma may pass around a single cell explaining the non-injurious nature of mucosal exudation of bulk plasma in health and disease.
  •  
45.
  • Erjefält, Jonas, et al. (author)
  • In vivo restitution of airway epithelium
  • 1995
  • In: Cell and Tissue Research. - 1432-0878. ; 281:2, s. 305-316
  • Journal article (peer-reviewed)abstract
    • Epithelial shedding occurs in health and, extensively, in inflammatory airway diseases. This study describes deepithelialisation, reepithelialisation and associated events in guinea-pig trachea after shedding-like epithelial denudation in vivo. Mechanical deepithelialisation of an 800-microns wide tracheal zone was carried out using an orotracheal steel probe without bleeding or damage to the basement membrane. Reepithelialisation was studied by scanning- and transmission electron microscopy and light microscopy. Nerve fibres were examined by immunostaining. Cell proliferation was analysed by [3H]-thymidine autoradiography. Immediately after epithelial removal secretory and ciliated (and presumably basal) epithelial cells at the wound margin dedifferentiated, flattened and migrated rapidly (2-3 microns/min) over the denuded basement membrane. Within 8-15 h a new, flattened epithelium covered the entire deepithelialised zone. At 30 h a tight epithelial barrier was established and after 5 days the epithelium was fully redifferentiated. After completed migration an increased mitotic activity occurred in the epithelium and in fibroblasts/smooth muscle beneath the restitution zone. Reinnervating intraepithelial calcitonin gene-related peptide-containing nerve fibres appeared within 30 h. We conclude that (1) reproducible shedding-like denudation, without bleeding or damage to the basement membrane, can be produced in vivo; (2) secretory and ciliated cells participate in reepithelialisation by dedifferentiation and migration; (3) the initial migration is very fast in vivo; (4) shedding-like denudation may cause strong secretory and exudative responses as well as proliferation of epithelium, and fibroblasts/smooth muscle. Rapid restitution of airway epithelium may depend on contributions from the microcirculation and innervation.
  •  
46.
  • Erjefält, Jonas (author)
  • Mast cells in human airways: the culprit?
  • 2014
  • In: European Respiratory Review. - : European Respiratory Society (ERS). - 1600-0617 .- 0905-9180. ; 23:133, s. 299-307
  • Research review (peer-reviewed)abstract
    • By virtue of their undisputed role in allergy, the study of airway mast cells has focused on nasal and bronchial mast cells and their involvement in allergic rhinitis and asthma. However, recent mechanistic and human studies suggest that peripheral mast cells also have an important role in asthma, as well as chronic obstructive pulmonary disease, respiratory infections and lung fibrosis. Pathogenic roles include immune-modulatory, pro-inflammatory and pro-fibrotic activities. Importantly, mast cells also actively downregulate inflammation and participate in the defence against respiratory infections. Another complicating factor is the notorious mast cell heterogeneity, where each anatomical compartment of the lung harbours site-specific mast cell populations. Alveolar mast cells stand out as they lack the cardinal expression of the high affinity IgE receptor. Supporting the emerging concept of alveolar inflammation in asthma, alveolar mast cells shift to a highly FcϵRI-expressing phenotype in uncontrolled asthma. Site-specific and disease-associated mast cell changes have also recently been described in most other inflammatory conditions of the lung. Thus, in the exploration of new anti-mast cell treatment strategies the search has widened to include the lung periphery and the delicate task of identifying which of the countless potential roles are the critical disease modifying ones in a given clinical situation.
  •  
47.
  • Erjefält, Jonas, et al. (author)
  • Microcirculation-derived factors in airway epithelial repair in vivo
  • 1994
  • In: Microvascular Research. - : Elsevier BV. - 1095-9319 .- 0026-2862. ; 48:2, s. 161-178
  • Journal article (peer-reviewed)abstract
    • Airway epithelial repair, by cell migration over a denuded, intact basement membrane, occurs rapidly in vivo. The present study examines microcirculation-derived factors in the reepithelialization process in the guinea pig. A well-defined tracheal zone was gently deepithelialized; no bleeding occurred and the basement membrane was left intact. Plasma exudation was visualized by use of iv colloidal gold (diameter: 5 nm) or fluoresceinisothiocyanate-labeled dextran. Scanning and transmission electron microscopy confirmed the migration of epithelial cells and, additionally, allowed us to examine the presence of an extracellular matrix gel and leukocytes on the denuded basement membrane. Fibronectin was analyzed by immunocytochemistry. Following epithelial removal plasma promptly extravasates and produces a fibrin-fibronectin gel to cover the denuded basement membrane. Epithelial cells dedifferentiate, flatten, and migrate rapidly (several micron/min) beneath the plasma-derived gel. Within 30 min the gel contains numerous leukocytes, some of which are eosinophils. Plasma exudes into the gel until about 8 hr by which time the entire denuded zone (800 microns) is covered by squamous epithelium. The fibrin-fibronectin gel is suggested to be exclusively plasma-derived. In conclusion, reepithelialization in vivo occurs beneath a gel containing adhesive plasma proteins and leukocytes. We suggest that a plasma exudate provides immediate cover of denuded airway basement membrane and that plasma- and leukocyte-derived factors contribute essentially to reepithelialization in vivo.
  •  
48.
  • Erjefält, Jonas, et al. (author)
  • Mucosal nitric oxide may tonically suppress airways plasma exudation
  • 1994
  • In: American Journal of Respiratory and Critical Care Medicine. - 1535-4970. ; 150:1, s. 227-232
  • Journal article (peer-reviewed)abstract
    • In a search for airway epithelial mechanisms that may affect the subepithelial microcirculation, we examined plasma exudation responses to NG-nitro-L-arginine-methyl ester (L-NAME), a nitric oxide synthase (NOS) inhibitor. L-NAME was applied topically on the tracheal mucosa of guinea pigs that had previously received 125I-albumin and/or colloidal gold particles (5 nm) intravenously. Luminal entry of plasma was determined by the levels of 125I-albumin in tracheal lavage fluid. Topical L-NAME (2.2, 9, and 22 mumol), but not intravenous L-NAME (375 mumol/kg), produced plasma exudation into the airway lumen (p < 0.01 to p < 0.001). The L-NAME enantiomer NG-nitro-D-arginine-methyl ester (D-NAME, 9 mumol) produced no exudative response. Coadministration of L-arginine (27 mumol) abolished the L-NAME-induced exudation. The extravasated plasma was distributed in the lamina propria and between epithelial cells (colloidal gold). The epithelial surface structure (scanning electron microscopy) appeared intact. Staining with nicotinamide adenine dinucleotide phosphate (NADPH)-diaphorase suggested that epithelial basal may contain nitric oxide synthases. We suggest that endogenously released nitric oxide from epithelial or other superficial cells tonically suppresses the macromolecular permeability of the subepithelial microcirculation.
  •  
49.
  •  
50.
  • Erjefält, Jonas, et al. (author)
  • Prompt epithelial damage and restitution processes in allergen challenged guinea-pig trachea in vivo
  • 1997
  • In: Clinical and Experimental Allergy. - : Wiley. - 1365-2222 .- 0954-7894. ; 27:12, s. 1458-1470
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: Little is known about the induction and the morphology of epithelial damage, and of the ensuing epithelial restitution processes in allergic airways. OBJECTIVE: To examine epithelial damage and restitution in allergen challenged guinea-pig trachea. METHODS: Whole-mount techniques, transmission and scanning electron microscopy, cryosectioning, and histochemical staining were used. Cell proliferation was monitored by BrdU-immunohistochemistry. RESULTS: Allergen challenge produced patchy, crater-like, and leucocyte-rich epithelial damage sites. At 1, 5, and 24 h damage was associated with poorly differentiated epithelial restitution cells. Already at 1 h the epithelial craters had a floor of flattened restitution cells and the damaged areas comprised < 1% of the mucosal surface area (whole-mount preparations). In contrast, cryo sections displayed large areas (approximately 20%, 1 h) of denudation. Epithelial, and subepithelial (fibroblasts, smooth muscle) proliferation was increased 5 and 24 h after challenge (P < 0.01). CONCLUSION: Within 1 h allergen challenge has induced patchy damage sites where epithelial restitution is already advanced; although easily produced by cryosectioning frank denudation was not evident in whole-mount preparations. The present findings may explain the well maintained, functional tightness of allergic airways displaying epithelial damage, shedding, and even denudation. The present data also suggest the possibility that epithelial damage-restitution may be causative to allergic airway remodelling.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-50 of 164
Type of publication
journal article (154)
research review (8)
conference paper (1)
doctoral thesis (1)
Type of content
peer-reviewed (161)
other academic/artistic (3)
Author/Editor
Erjefält, Jonas (132)
Persson, Carl (40)
Bjermer, Leif (33)
Mori, Michiko (33)
Erjefält, Jonas S. (32)
Greiff, Lennart (26)
show more...
Sundler, Frank (20)
Sandén, Caroline (17)
Uller, Lena (15)
Andersson, Morgan (14)
Egesten, Arne (13)
Korsgren, Magnus (12)
Bergqvist, Anders (11)
Westergren-Thorsson, ... (10)
Andersson, Cecilia (10)
Mörgelin, Matthias (9)
Rydell-Törmänen, Kri ... (9)
Porsbjerg, Celeste (9)
Persson, C G (9)
Erjefalt, I (9)
Tufvesson, Ellen (8)
Siddhuraj, Premkumar (8)
Humbles, Alison A (8)
Andersson, M (7)
Svensson, Christer (7)
Malm-Erjefält, Monik ... (7)
Löfdahl, Claes-Göran (7)
Andersson, Cecilia K (7)
Shikhagaie, Medya (7)
Hvidtfeldt, Morten (7)
Cardell, Lars-Olaf (6)
Sverrild, Asger (6)
Olin, Anders (6)
Hoffmann, Hans-Jürge ... (6)
Kolbeck, Roland (6)
Hallgren, Oskar (5)
Linden, M. (5)
Andersson Sjöland, A ... (5)
Clausson, Carl-Magnu ... (5)
Jönsson, Jimmie (5)
Jogdand, Prajakta (5)
Wollmer, Per (4)
Eriksson, Leif (4)
Alyamani, Manar (4)
Ankerst, Jaro (4)
Jordana, Manel (4)
Backer, Vibeke (4)
Frøssing, Laurits (4)
Bornesund, Daisy (4)
Kearley, Jennifer (4)
show less...
University
Lund University (162)
Karolinska Institutet (12)
University of Gothenburg (5)
Umeå University (4)
Uppsala University (4)
Linköping University (4)
Language
English (163)
Swedish (1)
Research subject (UKÄ/SCB)
Medical and Health Sciences (161)
Natural sciences (4)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view