SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Fantke P) "

Search: WFRF:(Fantke P)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Owsianiak, M., et al. (author)
  • Ecotoxicity characterization of chemicals: Global recommendations and implementation in USEtox
  • 2023
  • In: Chemosphere. - : Elsevier BV. - 0045-6535. ; 310
  • Journal article (peer-reviewed)abstract
    • Chemicals emitted to the environment affect ecosystem health from local to global scale, and reducing chemical impacts has become an important element of European and global sustainability efforts. The present work ad-vances ecotoxicity characterization of chemicals in life cycle impact assessment by proposing recommendations resulting from international expert workshops and work conducted under the umbrella of the UNEP-SETAC Life Cycle Initiative in the GLAM project (Global guidance on environmental life cycle impact assessment indicators). We include specific recommendations for broadening the assessment scope through proposing to introduce additional environmental compartments beyond freshwater and related ecotoxicity indicators, as well as for adapting the ecotoxicity effect modelling approach to better reflect environmentally relevant exposure levels and including to a larger extent chronic test data. As result, we (1) propose a consistent mathematical framework for calculating freshwater ecotoxicity characterization factors and their underlying fate, exposure and effect pa-rameters; (2) implement the framework into the USEtox scientific consensus model; (3) calculate characteriza-tion factors for chemicals reported in an inventory of a life cycle assessment case study on rice production and consumption; and (4) investigate the influence of effect data selection criteria on resulting indicator scores. Our results highlight the need for careful interpretation of life cycle assessment impact scores in light of robustness of underlying species sensitivity distributions. Next steps are to apply the recommended characterization frame-work in additional case studies, and to adapt it to soil, sediment and the marine environment. Our framework is applicable for evaluating chemicals in life cycle assessment, chemical and environmental footprinting, chemical substitution, risk screening, chemical prioritization, and comparison with environmental sustainability targets.
  •  
3.
  • Persson, L., et al. (author)
  • Outside the Safe Operating Space of the Planetary Boundary for Novel Entities
  • 2021
  • In: Environmental Science and Technology. - : American Chemical Society (ACS). - 0013-936X .- 1520-5851. ; 56:3, s. 1510-1521
  • Journal article (peer-reviewed)abstract
    • We submit that the safe operating space of the planetary boundary of novel entities is exceeded since annual production and releases are increasing at a pace that outstrips the global capacity for assessment and monitoring. The novel entities boundary in the planetary boundaries framework refers to entities that are novel in a geological sense and that could have large-scale impacts that threaten the integrity of Earth system processes. We review the scientific literature relevant to quantifying the boundary for novel entities and highlight plastic pollution as a particular aspect of high concern. An impact pathway from production of novel entities to impacts on Earth system processes is presented. We define and apply three criteria for assessment of the suitability of control variables for the boundary: feasibility, relevance, and comprehensiveness. We propose several complementary control variables to capture the complexity of this boundary, while acknowledging major data limitations. We conclude that humanity is currently operating outside the planetary boundary based on the weight-of-evidence for several of these control variables. The increasing rate of production and releases of larger volumes and higher numbers of novel entities with diverse risk potentials exceed societies' ability to conduct safety related assessments and monitoring. We recommend taking urgent action to reduce the harm associated with exceeding the boundary by reducing the production and releases of novel entities, noting that even so, the persistence of many novel entities and/or their associated effects will continue to pose a threat. ©
  •  
4.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view