SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Farias Fabricio) "

Search: WFRF:(Farias Fabricio)

  • Result 1-10 of 10
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Farias, Fabricio, et al. (author)
  • Cost- and energy-efficient backhaul options for heterogeneous mobile network deployments
  • 2016
  • In: Photonic network communications. - : AMER INST PHYSICS. - 1387-974X .- 1572-8188. ; 32:3, s. 422-437
  • Journal article (peer-reviewed)abstract
    • Heterogeneous networks (HetNets) have the potential to cater for the capacity requirements of mobile broadband services at reduced cost and energy consumption levels. One key aspect in HetNets is the role of the backhaul. More specifically, it is crucial for a mobile operator to understand the impact of specific technological and architectural upgrades in the mobile backhaul network on the capital and operational expenditure (i.e., CAPEX and OPEX). This paper proposes a comprehensive methodology that can be used to analyze the total cost of ownership of a number of backhaul options based on fiber, microwave, and copper technologies. The study considers both a Greenfield and a Brownfield scenario and takes into account the mobile broadband capacity requirements for the time period between years 2015 and 2025. From the results presented in the paper it can be concluded that even though microwave and fiber will be predominately used in the future, the possible migration paths leading to such fiber- and microwave-based backhaul scenarios might be different, depending upon factors such as spectrum and license costs, time to deployment, availability of equipment, and required quality of service levels.
  •  
2.
  • Farias, Fabricio S., et al. (author)
  • Green backhauling for heterogeneous mobile access networks : What are the challenges?
  • 2013
  • In: 2013 9th International Conference on Information, Communications and Signal Processing (ICICS). - : IEEE Computer Society. - 9781479904334 ; , s. 6782868-
  • Conference paper (peer-reviewed)abstract
    • Heterogeneous network (HetNet) deployment strategies have the potential to improve the energy efficiency of mobile access networks. One key aspect to consider in HetNets is the impact of the power consumption of the backhaul, i.e., the overall energy efficiency of a HetNet deployment is affected by the backhaul technology and architecture. This paper presents a preliminary assessment of the design challenges of a future green backhaul segment for a HetNet deployment. The study is based on the analysis of the medium term future outlook (i.e., between now and the year 2025) of the main technologies used in todays'* backhaul networks (i.e., fiber, microwave and copper). It can be concluded that, even if there arc no doubts that both microwave and fiber will be predominately used in the future, the possible migration paths leading to such fiber- and microwave-dominated scenarios might be different, depending on factors such as spectrum and license costs, time to deployment, availability of equipment, and required Quality of Service (QoS) levels.
  •  
3.
  • Fiorani, Matteo, et al. (author)
  • Joint Design of Radio and Transport for Green Residential Access Networks
  • 2016
  • In: IEEE Journal on Selected Areas in Communications. - : Institute of Electrical and Electronics Engineers (IEEE). - 0733-8716 .- 1558-0008. ; 34:4, s. 812-822
  • Journal article (peer-reviewed)abstract
    • d Mobile networks are the largest contributor to the carbon footprint of the telecom sector and their contribution is expected to rapidly increase in the future due to the foreseen traffic growth. Therefore, there is an increasing urgency in the definition of green mobile network deployment strategies. This paper proposes a four-step design and power assessment methodology for mobile networks, taking into consideration both radio and transport segments. A number of mobile network deployment architectures for urban residential areas based on different radio (i.e., macro base station, distributed indoor radio, femto cell) and transport (i.e., microwave, copper, optical fiber) technologies are proposed and evaluated to identify the most energy efficient solution. The results show that with low traffic the conventional macro base station deployment with microwave based backhaul is the best option. However, with higher traffic values heterogeneous networks withmacro base stations and indoor small cells are more energy efficient. The best small cell solution highly depends on the transport network architecture. In particular, our results show that a femto cell based deployment with optical fiber backhaul is the most energy efficient, even if a distributed indoor radio architecture (DRA) deployment with fiber fronthaul is also a competitive approach.
  •  
4.
  • Gao, Hong, et al. (author)
  • The landscape of tolerated genetic variation in humans and primates
  • 2023
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 380:6648
  • Journal article (peer-reviewed)abstract
    • Personalized genome sequencing has revealed millions of genetic differences between individuals, but our understanding of their clinical relevance remains largely incomplete. To systematically decipher the effects of human genetic variants, we obtained whole-genome sequencing data for 809 individuals from 233 primate species and identified 4.3 million common protein-altering variants with orthologs in humans. We show that these variants can be inferred to have nondeleterious effects in humans based on their presence at high allele frequencies in other primate populations. We use this resource to classify 6% of all possible human protein-altering variants as likely benign and impute the pathogenicity of the remaining 94% of variants with deep learning, achieving state-of-the-art accuracy for diagnosing pathogenic variants in patients with genetic diseases.
  •  
5.
  • Kuderna, Lukas F. K., et al. (author)
  • A global catalog of whole-genome diversity from 233 primate species
  • 2023
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 380:6648, s. 906-913
  • Journal article (peer-reviewed)abstract
    • The rich diversity of morphology and behavior displayed across primate species provides an informative context in which to study the impact of genomic diversity on fundamental biological processes. Analysis of that diversity provides insight into long-standing questions in evolutionary and conservation biology and is urgent given severe threats these species are facing. Here, we present high-coverage wholegenome data from 233 primate species representing 86% of genera and all 16 families. This dataset was used, together with fossil calibration, to create a nuclear DNA phylogeny and to reassess evolutionary divergence times among primate clades. We found within-species genetic diversity across families and geographic regions to be associated with climate and sociality, but not with extinction risk. Furthermore, mutation rates differ across species, potentially influenced by effective population sizes. Lastly, we identified extensive recurrence of missense mutations previously thought to be human specific. This study will open a wide range of research avenues for future primate genomic research.
  •  
6.
  • Kuderna, Lukas F. K., et al. (author)
  • Identification of constrained sequence elements across 239 primate genomes
  • 2024
  • In: Nature. - : Springer Nature. - 0028-0836 .- 1476-4687. ; 625:7996, s. 735-742
  • Journal article (peer-reviewed)abstract
    • Noncoding DNA is central to our understanding of human gene regulation and complex diseases1,2, and measuring the evolutionary sequence constraint can establish the functional relevance of putative regulatory elements in the human genome3,4,5,6,7,8,9. Identifying the genomic elements that have become constrained specifically in primates has been hampered by the faster evolution of noncoding DNA compared to protein-coding DNA10, the relatively short timescales separating primate species11, and the previously limited availability of whole-genome sequences12. Here we construct a whole-genome alignment of 239 species, representing nearly half of all extant species in the primate order. Using this resource, we identified human regulatory elements that are under selective constraint across primates and other mammals at a 5% false discovery rate. We detected 111,318 DNase I hypersensitivity sites and 267,410 transcription factor binding sites that are constrained specifically in primates but not across other placental mammals and validate their cis-regulatory effects on gene expression. These regulatory elements are enriched for human genetic variants that affect gene expression and complex traits and diseases. Our results highlight the important role of recent evolution in regulatory sequence elements differentiating primates, including humans, from other placental mammals.
  •  
7.
  •  
8.
  • Tombaz, Sibel, 1984-, et al. (author)
  • Is backhaul becoming a bottleneck for green wireless access networks?
  • 2014
  • In: 2014 IEEE International Conference on Communications, ICC 2014. - : IEEE. - 9781479920037 ; , s. 4029-4035
  • Conference paper (peer-reviewed)abstract
    • Mobile operators are facing an exponential traffic growth due to the proliferation of portable devices that require a high-capacity connectivity. This, in turn, leads to a tremendous increase of the energy consumption of wireless access networks. A promising solution to this problem is the concept of heterogeneous networks, which is based on the dense deployment of low-cost and low-power base stations, in addition to the traditional macro cells. However, in such a scenario the energy consumed by the backhaul, which aggregates the traffic from each base station towards the metro/core segment, becomes significant and may limit the advantages of heterogeneous network deployments. This paper aims at assessing the impact of backhaul on the energy consumption of wireless access networks, taking into consideration different data traffic requirements (i.e., from todays to 2020 traffic levels). Three backhaul architectures combining different technologies (i.e., copper, fiber, and microwave) are considered. Results show that backhaul can amount to up to 50% of the power consumption of a wireless access network. On the other hand, hybrid backhaul architectures that combines fiber and microwave performs relatively well in scenarios where the wireless network is characterized by a high small-base-stations penetration rate.
  •  
9.
  • Yaghoubi, Forough, 1988-, et al. (author)
  • A Techno-Economic Framework for 5G Transport Networks
  • 2017
  • In: IEEE wireless communications. - 1536-1284 .- 1558-0687.
  • Journal article (other academic/artistic)abstract
    • Wireless heterogeneous networks (HetNets) are a cost- and an energy-efficient alternative to provide high capacity to end users in the future 5G communication systems. However, the transport segment of a radio access network (RAN) poses a big challenge in terms of cost and energy consumption. In fact, if not planned properly its resulting high cost might limit the benefits of using small cells and impact the revenues of mobile network operators. Therefore, it is essential to be able to properly assess the economic viability of different transport techonolgies as well as their impact on the cost and profitability of a HetNets deployment (i.e., RAN + transport).This paper first presents a general and comprehensive techno-economic framework able to assess not only the total cost of ownership (TCO) but also the business viability of a HetNets deployment. It then applies it to the specific case study of a backhaul-based transport segment. In the evaluation work two technology options for the transport network are considered (i.e., microwave and fiber) assuming both a homogeneous (i.e., macro cells only) and a HetNet deployments. Our results demonstrate the importance of selecting the right technology and deployment strategy in order not to impact the economic benefits of a HetNet deployment. Moreover, the results also reveal that a deployment solution with the lowest TCO does not always lead to the highest profit.  
  •  
10.
  • Yaghoubi, Forough, 1988-, et al. (author)
  • A techno-economic framework for 5G transport networks
  • 2018
  • In: IEEE wireless communications. - : IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC. - 1536-1284 .- 1558-0687. ; 25:5, s. 56-63
  • Journal article (peer-reviewed)abstract
    • Wireless heterogeneous networks (HetNets) are a cost- and energy-efficient alternative to provide high capacity to end users in the future 5G communication systems. However, the transport segment of a RAN poses a big challenge in terms of cost and energy consumption. In fact, if not planned properly, its resulting high cost might limit the benefits of using small cells and impact the revenues of mobile network operators. Therefore, it is essential to be able to properly assess the economic viability of different transport technologies as well as their impact on the cost and profitability of a HetNet deployment (i.e., RAN plus transport). This article first presents a general and comprehensive techno-economic framework able to assess not only the TCO but also the business viability of a HetNet deployment. The framework is then applied to the specific case study of a backhaul-based transport segment. In the evaluation work two technology options for the transport network are considered (i.e., microwave and fiber) assuming both a homogeneous (i.e., macrocells only) and a HetNet deployment. Our results demonstrate the importance of selecting the right technology and deployment strategy in order not to impact the economic benefits of a HetNet deployment. Moreover, the results also reveal that a deployment solution with the lowest TCO does not always lead to the highest profit.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view