SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Federrath Christoph) "

Search: WFRF:(Federrath Christoph)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Bland-Hawthorn, Joss, et al. (author)
  • Turbulent Gas-rich Disks at High Redshift : Bars and Bulges in a Radial Shear Flow
  • 2024
  • In: Astrophysical Journal. - 0004-637X. ; 968:2
  • Journal article (peer-reviewed)abstract
    • Recent observations of high-redshift galaxies (z ≲ 7) reveal that a substantial fraction have turbulent, gas-rich disks with well-ordered rotation and elevated levels of star formation. In some instances, disks show evidence of spiral arms, with bar-like structures. These remarkable observations have encouraged us to explore a new class of dynamically self-consistent models using our agama/Ramses hydrodynamic N-body simulation framework that mimic a plausible progenitor of the Milky Way at high redshift. We explore disk gas fractions of f gas = 0%, 20%, 40%, 60%, 80%, and 100% and track the creation of stars and metals. The high gas surface densities encourage vigorous star formation, which in turn couples with the gas to drive turbulence. We explore three distinct histories: (i) there is no ongoing accretion and the gas is used up by the star formation, (ii) the star-forming gas is replenished by cooling in the hot halo gas, and (iii) in a companion paper, we revisit these models in the presence of a strong perturbing force. At low f disk (≲0.3), where f disk is the baryon mass fraction of the disk relative to dark matter within 2.2 R disk, a bar does not form in a stellar disk; this remains true even when gas dominates the inner disk potential. For a dominant baryon disk (f disk ≳ 0.5) at all gas fractions, the turbulent gas forms a strong radial shear flow that leads to an intermittent star-forming bar within about 500 Myr; turbulent gas speeds up the formation of bars compared to gas-free models. For f gas ≲ 60%, all bars survive, but for higher gas fractions, the bar devolves into a central bulge after 1 Gyr. The star-forming bars are reminiscent of recent discoveries in high-redshift Atacama Large Millimeter/submillimeter Array observations of gaseous disks.
  •  
2.
  • Menon, Shyam H., et al. (author)
  • The dependence of the hierarchical distribution of star clusters on galactic environment
  • 2021
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 507:4, s. 5542-5566
  • Journal article (peer-reviewed)abstract
    • We use the angular two-point correlation function (TPCF) to investigate the hierarchical distribution of young star clusters in 12 local (3–18 Mpc) star-forming galaxies using star cluster catalogs obtained with the Hubble Space Telescope (HST) as part of the Treasury Program Legacy ExtraGalactic UV Survey. The sample spans a range of different morphological types, allowing us to infer how the physical properties of the galaxy affect the spatial distribution of the clusters. We also prepare a range of physically motivated toy models to compare with and interpret the observed features in the TPCFs. We find that, conforming to earlier studies, young clusters (⁠T≲10Myr⁠) have power-law TPCFs that are characteristic of fractal distributions with a fractal dimension D2, and this scale-free nature extends out to a maximum scale lcorr beyond which the distribution becomes Poissonian. However, lcorr, and D2 vary significantly across the sample, and are correlated with a number of host galaxy physical properties, suggesting that there are physical differences in the underlying star cluster distributions. We also find that hierarchical structuring weakens with age, evidenced by flatter TPCFs for older clusters (⁠T≳10Myr⁠), that eventually converges to the residual correlation expected from a completely random large-scale radial distribution of clusters in the galaxy in ∼100Myr⁠. Our study demonstrates that the hierarchical distribution of star clusters evolves with age, and is strongly dependent on the properties of the host galaxy environment.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view