SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Forbes Ruaridh J. G.) "

Search: WFRF:(Forbes Ruaridh J. G.)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Champenois, Elio G., et al. (author)
  • Femtosecond Electronic and Hydrogen Structural Dynamics in Ammonia Imaged with Ultrafast Electron Diffraction
  • 2023
  • In: Physical Review Letters. - : American Physical Society (APS). - 0031-9007 .- 1079-7114. ; 131:14
  • Journal article (peer-reviewed)abstract
    • Directly imaging structural dynamics involving hydrogen atoms by ultrafast diffraction methods is complicated by their low scattering cross sections. Here we demonstrate that megaelectronvolt ultrafast electron diffraction is sufficiently sensitive to follow hydrogen dynamics in isolated molecules. In a study of the photodissociation of gas phase ammonia, we simultaneously observe signatures of the nuclear and corresponding electronic structure changes resulting from the dissociation dynamics in the time-dependent diffraction. Both assignments are confirmed by ab initio simulations of the photochemical dynamics and the resulting diffraction observable. While the temporal resolution of the experiment is insufficient to resolve the dissociation in time, our results represent an important step towards the observation of proton dynamics in real space and time.
  •  
2.
  • Borne, Kurtis D., et al. (author)
  • Ultrafast electronic relaxation pathways of the molecular photoswitch quadricyclane
  • 2024
  • In: NATURE CHEMISTRY. - 1755-4330 .- 1755-4349. ; 16, s. 499-505
  • Journal article (peer-reviewed)abstract
    • The light-induced ultrafast switching between molecular isomers norbornadiene and quadricyclane can reversibly store and release a substantial amount of chemical energy. Prior work observed signatures of ultrafast molecular dynamics in both isomers upon ultraviolet excitation but could not follow the electronic relaxation all the way back to the ground state experimentally. Here we study the electronic relaxation of quadricyclane after exciting in the ultraviolet (201 nanometres) using time-resolved gas-phase extreme ultraviolet photoelectron spectroscopy combined with non-adiabatic molecular dynamics simulations. We identify two competing pathways by which electronically excited quadricyclane molecules relax to the electronic ground state. The fast pathway (<100 femtoseconds) is distinguished by effective coupling to valence electronic states, while the slow pathway involves initial motions across Rydberg states and takes several hundred femtoseconds. Both pathways facilitate interconversion between the two isomers, albeit on different timescales, and we predict that the branching ratio of norbornadiene/quadricyclane products immediately after returning to the electronic ground state is approximately 3:2.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view