SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Fosdal Inger) "

Search: WFRF:(Fosdal Inger)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Grigelioniene, Giedre, et al. (author)
  • Analysis of short stature homeobox-containing gene ( SHOX) and auxological phenotype in dyschondrosteosis and isolated Madelung deformity
  • 2001
  • In: Human Genetics. - : Springer Science and Business Media LLC. - 1432-1203 .- 0340-6717. ; 109:5, s. 551-558
  • Journal article (peer-reviewed)abstract
    • Dyschondrosteosis (DCO; also called Leri-Weill syndrome) is a skeletal dysplasia characterised by disproportionate short stature because of mesomelic shortening of the limbs. Madelung deformity is a feature of DCO that is distinctive, variable in expressivity and frequently observed. Mutations of the SHOX (short stature homeobox-containing) gene have been previously described as causative in DCO. Isolated Madelung deformity (IMD) without the clinical characteristics of DCO has also been described in sporadic and a few familial cases but the genetic defect underlying IMD is unknown. In this study, we have examined 28 probands with DCO and seven probands with IMD for mutations in the SHOX gene by using polymorphic CA-repeat analysis, fluorescence in situ hybridisation (FISH), Southern blotting, direct sequencing and fibre-FISH analyses. This was combined with auxological examination of the probands and their family members. Evaluation of the auxological data showed a wide intra- and interfamilial phenotype variability in DCO. Out of 28 DCO probands, 22 (79%) were shown to have mutations in the SHOX gene. Sixteen unrelated DCO families had SHOX gene deletions. Four novel DCO-associated mutations were found in different families. In two additional DCO families, the previously described nonsense mutation (Arg195Stop) was detected. We conclude that mutations in the SHOX gene are the major factor in the pathogenesis of DCO. In a female proband with severe IMD and her unaffected sister, we detected an intrachromosomal duplication of the SHOX gene.
  •  
2.
  • Nyegaard, Mette, et al. (author)
  • Mutations in Calmodulin Cause Ventricular Tachycardia and Sudden Cardiac Death
  • 2012
  • In: American Journal of Human Genetics. - : Elsevier BV. - 0002-9297. ; 91:4, s. 703-712
  • Journal article (peer-reviewed)abstract
    • Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a devastating inherited disorder characterized by episodic syncope and/or sudden cardiac arrest during exercise or acute emotion in individuals without structural cardiac abnormalities. Although rare, CPVT is suspected to cause a substantial part of sudden cardiac deaths in young individuals. Mutations in RYR2, encoding the cardiac sarcoplasmic calcium channel, have been identified as causative in approximately half of all dominantly inherited CPVT cases. Applying a genome-wide linkage analysis in a large Swedish family with a severe dominantly inherited form of CPVT-like arrhythmias, we mapped the disease locus to chromosome 14q31-32. Sequencing CALM1 encoding calmodulin revealed a heterozygous missense mutation (c.161A>T [p.Asn53Ile]) segregating with the disease. A second, de novo, missense mutation (c.293A>G [p.Asn97Ser]) was subsequently identified in an individual of Iraqi origin; this individual was diagnosed with CPVT from a screening of 61 arrhythmia samples with no identified RYR2 mutations. Both CALM1 substitutions demonstrated compromised calcium binding, and p.Asn97Ser displayed an aberrant interaction with the RYR2 calmodulin-binding-domain peptide at low calcium concentrations. We conclude that calmodulin mutations can cause severe cardiac arrhythmia and that the calmodulin genes are candidates for genetic screening of individual cases and families with idiopathic ventricular tachycardia and unexplained sudden cardiac death.
  •  
3.
  • Winbo, Annika, et al. (author)
  • Third Trimester Fetal Heart Rate Predicts Phenotype and Mutation Burden in the Type 1 Long QT Syndrome
  • 2015
  • In: Circulation. - 1941-3149 .- 1941-3084. ; 8:4, s. 806-814
  • Journal article (peer-reviewed)abstract
    • Background—Early diagnosis and risk stratification is of clinical importance in the long QT syndrome (LQTS), however, little genotype-specific data are available regarding fetal LQTS. We investigate third trimester fetal heart rate, routinely recorded within public maternal health care, as a possible marker for LQT1 genotype and phenotype.Methods and Results—This retrospective study includes 184 fetuses from 2 LQT1 founder populations segregating p.Y111C and p.R518X (74 noncarriers and 110KCNQ1 mutation carriers, whereof 13 double mutation carriers). Pedigree-based measured genotype analysis revealed significant associations between fetal heart rate, genotype, and phenotype; mean third trimester prelabor fetal heart rates obtained from obstetric records (gestational week 29–41) were lower per added mutation (no mutation, 143±5 beats per minute; single mutation, 134±8 beats per minute; double mutations, 111±6 beats per minute; P<0.0001), and lower in symptomatic versus asymptomatic mutation carriers (122±10 versus 137±9 beats per minute; P<0.0001). Strong correlations between fetal heart rate and neonatal heart rate (r=0.700; P<0.001), and postnatal QTc (r=−0.762; P<0.001) were found. In a multivariable model, fetal genotype explained the majority of variance in fetal heart rate (−10 beats per minute per added mutation; P<1.0×10–23). Arrhythmia symptoms and intrauterine β-blocker exposure each predicted −7 beats per minute, P<0.0001.Conclusions—In this study including 184 fetuses from 2 LQT1 founder populations, third trimester fetal heart rate discriminated between fetal genotypes and correlated with severity of postnatal cardiac phenotype. This finding strengthens the role of fetal heart rate in the early detection and risk stratification of LQTS, particularly for fetuses with double mutations, at high risk of early life-threatening arrhythmias.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view