SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Freese J) "

Search: WFRF:(Freese J)

  • Result 1-24 of 24
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Bergman, A. S., et al. (author)
  • 280 GHz Focal Plane Unit Design and Characterization for the SPIDER-2 Suborbital Polarimeter
  • 2018
  • In: Journal of Low Temperature Physics. - : Springer Science and Business Media LLC. - 0022-2291 .- 1573-7357. ; 193:5-6, s. 1075-1084
  • Journal article (peer-reviewed)abstract
    • We describe the construction and characterization of the 280 GHz bolometric focal plane units (FPUs) to be deployed on the second flight of the balloon-borne SPIDER instrument. These FPUs are vital to SPIDER's primary science goal of detecting or placing an upper limit on the amplitude of the primordial gravitational wave signature in the cosmic microwave background (CMB) by constraining the B-mode contamination in the CMB from Galactic dust emission. Each 280 GHz focal plane contains a 16 x 16 grid of corrugated silicon feedhorns coupled to an array of aluminum-manganese transition-edge sensor (TES) bolometers fabricated on 150 mm diameter substrates. In total, the three 280 GHz FPUs contain 1530 polarization-sensitive bolometers (765 spatial pixels) optimized for the low loading environment in flight and read out by time-division SQUID multiplexing. In this paper, we describe the mechanical, thermal, and magnetic shielding architecture of the focal planes and present cryogenic measurements which characterize yield and the uniformity of several bolometer parameters. The assembled FPUs have high yields, with one array as high as 95% including defects from wiring and readout. We demonstrate high uniformity in device parameters, finding the median saturation power for each TES array to be similar to 3 pW at 300 mK with a less than 6% variation across each array at 1 sigma. These focal planes will be deployed alongside the 95 and 150 GHz telescopes in the SPIDER-2 instrument, slated to fly from McMurdo Station in Antarctica in December 2018.
  •  
2.
  • Ade, P. A. R., et al. (author)
  • A Constraint on Primordial B-modes from the First Flight of the Spider Balloon-borne Telescope
  • 2022
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 927:2
  • Journal article (peer-reviewed)abstract
    • We present the first linear polarization measurements from the 2015 long-duration balloon flight of SPIDER, which is an experiment that is designed to map the polarization of the cosmic microwave background (CMB) on degree angular scales. The results from these measurements include maps and angular power spectra from observations of 4.8% of the sky at 95 and 150 GHz, along with the results of internal consistency tests on these data. While the polarized CMB anisotropy from primordial density perturbations is the dominant signal in this region of sky, Galactic dust emission is also detected with high significance. Galactic synchrotron emission is found to be negligible in the SPIDER bands. We employ two independent foreground-removal techniques to explore the sensitivity of the cosmological result to the assumptions made by each. The primary method uses a dust template derived from Planck data to subtract the Galactic dust signal. A second approach, which constitutes a joint analysis of SPIDER and Planck data in the harmonic domain, assumes a modified-blackbody model for the spectral energy distribution of the dust with no constraint on its spatial morphology. Using a likelihood that jointly samples the template amplitude and r parameter space, we derive 95% upper limits on the primordial tensor-to-scalar ratio from Feldman-Cousins and Bayesian constructions, finding r < 0.11 and r < 0.19, respectively. Roughly half the uncertainty in r derives from noise associated with the template subtraction. New data at 280 GHz from SPIDER´s second flight will complement the Planck polarization maps, providing powerful measurements of the polarized Galactic dust emission.
  •  
3.
  • Filippini, J. P., et al. (author)
  • In-Flight Gain Monitoring of SPIDER's Transition-Edge Sensor Arrays
  • 2022
  • In: Journal of Low Temperature Physics. - : Springer Science and Business Media LLC. - 0022-2291 .- 1573-7357. ; 209:3-4, s. 649-657
  • Journal article (peer-reviewed)abstract
    • Experiments deploying large arrays of transition-edge sensors (TESs) often require a robust method to monitor gain variations with minimal loss of observing time. We propose a sensitive and non-intrusive method for monitoring variations in TES responsivity using small square waves applied to the TES bias. We construct an estimator for a TES's small-signal power response from its electrical response that is exact in the limit of strong electrothermal feedback. We discuss the application and validation of this method using flight data from SPIDER, a balloon-borne telescope that observes the polarization of the cosmic microwave background with more than 2000 TESs. This method may prove useful for future balloon- and space-based instruments, where observing time and ground control bandwidth are limited.
  •  
4.
  • Gambrel, A. E., et al. (author)
  • The XFaster Power Spectrum and Likelihood Estimator for the Analysis of Cosmic Microwave Background Maps
  • 2021
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 922:2
  • Journal article (peer-reviewed)abstract
    • We present the XFaster analysis package, a fast, iterative angular power spectrum estimator based on a diagonal approximation to the quadratic Fisher matrix estimator. It uses Monte Carlo simulations to compute noise biases and filter transfer functions and is thus a hybrid of both Monte Carlo and quadratic estimator methods. In contrast to conventional pseudo-Cℓ–based methods, the algorithm described here requires a minimal number of simulations and does not require them to be precisely representative of the data to estimate accurate covariance matrices for the bandpowers. The formalism works with polarization-sensitive observations and also data sets with identical, partially overlapping, or independent survey regions. The method was first implemented for the analysis of BOOMERanG data and also used as part of the Planck analysis. Here we describe the full, publicly available analysis package, written in Python, as developed for the analysis of data from the 2015 flight of the Spider instrument. The package includes extensions for self-consistently estimating null spectra and estimating fits for Galactic foreground contributions. We show results from the extensive validation of XFaster using simulations and its application to the Spider data set.
  •  
5.
  • Leung, J. S.-Y., et al. (author)
  • A Simulation-based Method for Correcting Mode Coupling in CMB Angular Power Spectra
  • 2022
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 928:2
  • Journal article (peer-reviewed)abstract
    • Modern cosmic microwave background (CMB) analysis pipelines regularly employ complex time-domain filters, beam models, masking, and other techniques during the production of sky maps and their corresponding angular power spectra. However, these processes can generate couplings between multipoles from the same spectrum and from different spectra, in addition to the typical power attenuation. Within the context of pseudo-C-l based, MASTER-style analyses, the net effect of the time-domain filtering is commonly approximated by a multiplicative transfer function, F-l , that can fail to capture mode mixing and is dependent on the spectrum of the signal. To address these shortcomings, we have developed a simulation-based spectral correction approach that constructs a two-dimensional transfer matrix, J(ll'), which contains information about mode mixing in addition to mode attenuation. We demonstrate the application of this approach on data from the first flight of the Spider balloon-borne CMB experiment.
  •  
6.
  • Gualtieri, R., et al. (author)
  • SPIDER : CMB Polarimetry from the Edge of Space
  • 2018
  • In: Journal of Low Temperature Physics. - : Springer Science and Business Media LLC. - 0022-2291 .- 1573-7357. ; 193:5-6, s. 1112-1121
  • Journal article (peer-reviewed)abstract
    • SPIDER is a balloon-borne instrument designed to map the polarization of the millimeter-wave sky at large angular scales. Spider targets the B-mode signature of primordial gravitational waves in the cosmic microwave background (CMB), with a focus on mapping a large sky area with high fidelity at multiple frequencies. SPIDER's first long-duration balloon (LDB) flight in January 2015 deployed a total of 2400 antenna-coupled transition-edge sensors (TESs) at 90 GHz and 150 GHz. In this work we review the design and in-flight performance of the SPIDER instrument, with a particular focus on the measured performance of the detectors and instrument in a space-like loading and radiation environment. SPIDER's second flight in December 2018 will incorporate payload upgrades and new receivers to map the sky at 285 GHz, providing valuable information for cleaning polarized dust emission from CMB maps.
  •  
7.
  • Nagy, J. M., et al. (author)
  • A New Limit on CMB Circular Polarization from SPIDER
  • 2017
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 844:2
  • Journal article (peer-reviewed)abstract
    • We present a new upper limit on cosmic microwave background (CMB) circular polarization from the 2015 flight of SPIDER, a balloon-borne telescope designed to search for B-mode linear polarization from cosmic inflation. Although the level of circular polarization in the CMB is predicted to be very small, experimental limits provide a valuable test of the underlying models. By exploiting the nonzero circular-to-linear polarization coupling of the half-wave plate polarization modulators, data from SPIDER's 2015 Antarctic flight provide a constraint on Stokes V at 95 and 150 GHz in the range 33 < l < 307. No other limits exist over this full range of angular scales, and SPIDER improves on the previous limit by several orders of magnitude, providing 95% C.L. constraints on l (l + 1)C-l(VV) /(2 pi) ranging from 141 to 255 mu K-2 at 150 GHz for a thermal CMB spectrum. As linear CMB polarization experiments become increasingly sensitive, the techniques described in this paper can be applied to obtain even stronger constraints on circular polarization.
  •  
8.
  • Malbet, F., et al. (author)
  • Faint objects in motion: the new frontier of high precision astrometry
  • 2021
  • In: Experimental Astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 51:3, s. 845-886
  • Journal article (peer-reviewed)abstract
    • Sky survey telescopes and powerful targeted telescopes play complementary roles in astronomy. In order to investigate the nature and characteristics of the motions of very faint objects, a flexibly-pointed instrument capable of high astrometric accuracy is an ideal complement to current astrometric surveys and a unique tool for precision astrophysics. Such a space-based mission will push the frontier of precision astrometry from evidence of Earth-mass habitable worlds around the nearest stars, to distant Milky Way objects, and out to the Local Group of galaxies. As we enter the era of the James Webb Space Telescope and the new ground-based, adaptive-optics-enabled giant telescopes, by obtaining these high precision measurements on key objects that Gaia could not reach, a mission that focuses on high precision astrometry science can consolidate our theoretical understanding of the local Universe, enable extrapolation of physical processes to remote redshifts, and derive a much more consistent picture of cosmological evolution and the likely fate of our cosmos. Already several missions have been proposed to address the science case of faint objects in motion using high precision astrometry missions: NEAT proposed for the ESA M3 opportunity, micro-NEAT for the S1 opportunity, and Theia for the M4 and M5 opportunities. Additional new mission configurations adapted with technological innovations could be envisioned to pursue accurate measurements of these extremely small motions. The goal of this White Paper is to address the fundamental science questions that are at stake when we focus on the motions of faint sky objects and to briefly review instrumentation and mission profiles.
  •  
9.
  • Ade, Peter, et al. (author)
  • The Simons Observatory : science goals and forecasts
  • 2019
  • In: Journal of Cosmology and Astroparticle Physics. - : IOP Publishing. - 1475-7516. ; :2
  • Journal article (peer-reviewed)abstract
    • The Simons Observatory (SO) is a new cosmic microwave background experiment being built on Cerro Toco in Chile, due to begin observations in the early 2020s. We describe the scientific goals of the experiment, motivate the design, and forecast its performance. SO will measure the temperature and polarization anisotropy of the cosmic microwave background in six frequency bands centered at: 27, 39, 93, 145, 225 and 280 GHz. The initial con figuration of SO will have three small-aperture 0.5-m telescopes and one large-aperture 6-m telescope, with a total of 60,000 cryogenic bolometers. Our key science goals are to characterize the primordial perturbations, measure the number of relativistic species and the mass of neutrinos, test for deviations from a cosmological constant, improve our understanding of galaxy evolution, and constrain the duration of reionization. The small aperture telescopes will target the largest angular scales observable from Chile, mapping approximate to 10% of the sky to a white noise level of 2 mu K-arcmin in combined 93 and 145 GHz bands, to measure the primordial tensor-to-scalar ratio, r, at a target level of sigma(r) = 0.003. The large aperture telescope will map approximate to 40% of the sky at arcminute angular resolution to an expected white noise level of 6 mu K-arcmin in combined 93 and 145 GHz bands, overlapping with the majority of the Large Synoptic Survey Telescope sky region and partially with the Dark Energy Spectroscopic Instrument. With up to an order of magnitude lower polarization noise than maps from the Planck satellite, the high-resolution sky maps will constrain cosmological parameters derived from the damping tail, gravitational lensing of the microwave background, the primordial bispectrum, and the thermal and kinematic Sunyaev-Zel'dovich effects, and will aid in delensing the large-angle polarization signal to measure the tensor-to-scalar ratio. The survey will also provide a legacy catalog of 16,000 galaxy clusters and more than 20,000 extragalactic sources.
  •  
10.
  • Lee, James J, et al. (author)
  • Gene discovery and polygenic prediction from a genome-wide association study of educational attainment in 1.1 million individuals.
  • 2018
  • In: Nature genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 50:8, s. 1112-1121
  • Journal article (peer-reviewed)abstract
    • Here we conducted a large-scale genetic association analysis of educational attainment in a sample of approximately 1.1million individuals and identify 1,271independent genome-wide-significant SNPs. For the SNPs taken together, we found evidence of heterogeneous effects across environments. The SNPs implicate genes involved in brain-development processes and neuron-to-neuron communication. In a separate analysis of the X chromosome, we identify 10independent genome-wide-significant SNPs and estimate a SNP heritability of around 0.3% in both men and women, consistent with partial dosage compensation. A joint (multi-phenotype) analysis of educational attainment and three related cognitive phenotypes generates polygenic scores that explain 11-13% of the variance in educational attainment and 7-10% of the variance in cognitive performance. This prediction accuracy substantially increases the utility of polygenic scores as tools in research.
  •  
11.
  •  
12.
  • Okbay, Aysu, et al. (author)
  • Polygenic prediction of educational attainment within and between families from genome-wide association analyses in 3 million individuals.
  • 2022
  • In: Nature genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 54:4, s. 437-449
  • Journal article (peer-reviewed)abstract
    • We conduct a genome-wide association study (GWAS) of educational attainment (EA) in a sample of ~3 million individuals and identify 3,952 approximately uncorrelated genome-wide-significant single-nucleotide polymorphisms (SNPs). A genome-wide polygenic predictor, or polygenic index (PGI), explains 12-16% of EA variance and contributes to risk prediction for ten diseases. Direct effects (i.e., controlling for parental PGIs) explain roughly half the PGI's magnitude of association with EA and other phenotypes. The correlation between mate-pair PGIs is far too large to be consistent with phenotypic assortment alone, implying additional assortment on PGI-associated factors. In an additional GWAS of dominance deviations from the additive model, we identify no genome-wide-significant SNPs, and a separate X-chromosome additive GWAS identifies 57.
  •  
13.
  •  
14.
  • Becker, Joel, et al. (author)
  • Resource profile and user guide of the Polygenic Index Repository
  • 2021
  • In: Nature Human Behaviour. - : Nature Research (part of Springer Nature). - 2397-3374. ; 51:6, s. 694-695
  • Journal article (peer-reviewed)abstract
    • Polygenic indexes (PGIs) are DNA-based predictors. Their value for research in many scientific disciplines is growing rapidly. As a resource for researchers, we used a consistent methodology to construct PGIs for 47 phenotypes in 11 datasets. To maximize the PGIs’ prediction accuracies, we constructed them using genome-wide association studies—some not previously published—from multiple data sources, including 23andMe and UK Biobank. We present a theoretical framework to help interpret analyses involving PGIs. A key insight is that a PGI can be understood as an unbiased but noisy measure of a latent variable we call the ‘additive SNP factor’. Regressions in which the true regressor is this factor but the PGI is used as its proxy therefore suffer from errors-in-variables bias. We derive an estimator that corrects for the bias, illustrate the correction, and make a Python tool for implementing it publicly available. © 2021, The Author(s), under exclusive licence to Springer Nature Limited.
  •  
15.
  • Chabris, CF, et al. (author)
  • Most reported genetic associations with general intelligence are probably false positives
  • 2012
  • In: Psychological science. - : SAGE Publications. - 1467-9280 .- 0956-7976. ; 23:11, s. 1314-1323
  • Journal article (peer-reviewed)abstract
    • General intelligence ( g) and virtually all other behavioral traits are heritable. Associations between g and specific single-nucleotide polymorphisms (SNPs) in several candidate genes involved in brain function have been reported. We sought to replicate published associations between g and 12 specific genetic variants (in the genes DTNBP1, CTSD, DRD2, ANKK1, CHRM2, SSADH, COMT, BDNF, CHRNA4, DISC1, APOE, and SNAP25) using data sets from three independent, well-characterized longitudinal studies with samples of 5,571, 1,759, and 2,441 individuals. Of 32 independent tests across all three data sets, only 1 was nominally significant. By contrast, power analyses showed that we should have expected 10 to 15 significant associations, given reasonable assumptions for genotype effect sizes. For positive controls, we confirmed accepted genetic associations for Alzheimer’s disease and body mass index, and we used SNP-based calculations of genetic relatedness to replicate previous estimates that about half of the variance in g is accounted for by common genetic variation among individuals. We conclude that the molecular genetics of psychology and social science requires approaches that go beyond the examination of candidate genes.
  •  
16.
  • Baum, Sebastian, et al. (author)
  • Paleodetectors for Galactic supernova neutrinos
  • 2020
  • In: Physical Review D. - : American Physical Society (APS). - 2470-0010 .- 2470-0029. ; 101:10
  • Journal article (peer-reviewed)abstract
    • Paleodetectors are a proposed experimental technique in which one would search for traces of recoiling nuclei in ancient minerals. Natural minerals on Earth are as old as O(1) Gyr and, in many minerals, the damage tracks left by recoiling nuclei are also preserved for timescales long compared to 1 Gyr once created. Thus, even reading out relatively small target samples of order 100 g, paleodetectors would allow one to search for very rare events thanks to the large exposure, epsilon similar to 100 g Gyr = 10(5) t yr. Here, we explore the potential of paleodetectors to measure nuclear recoils induced by neutrinos from Galactic core collapse supernovae. We find that they would not only allow for a direct measurement of the average core collapse supernova rate in the Milky Way, but would also contain information about the time dependence of the local supernova rate over the past similar to 1 Gyr. Since the supernova rate is thought to be directly proportional to the star formation rate, such a measurement would provide a determination of the local star formation history. We investigate the sensitivity of paleodetectors to both a smooth time evolution and an enhancement of the core collapse supernova rate on relatively short timescales, as would be expected for a starburst period in the local group.
  •  
17.
  • Benjamin, DJ, et al. (author)
  • The Promises and Pitfalls of Genoeconomics*
  • 2012
  • In: Annual review of economics. - : Annual Reviews. - 1941-1383 .- 1941-1391. ; 4, s. 627-
  • Journal article (peer-reviewed)abstract
    • This article reviews existing research at the intersection of genetics and economics, presents some new findings that illustrate the state of genoeconomics research, and surveys the prospects of this emerging field. Twin studies suggest that economic outcomes and preferences, once corrected for measurement error, appear to be about as heritable as many medical conditions and personality traits. Consistent with this pattern, we present new evidence on the heritability of permanent income and wealth. Turning to genetic association studies, we survey the main ways that the direct measurement of genetic variation across individuals is likely to contribute to economics, and we outline the challenges that have slowed progress in making these contributions. The most urgent problem facing researchers in this field is that most existing efforts to find associations between genetic variation and economic behavior are based on samples that are too small to ensure adequate statistical power. This has led to many false positives in the literature. We suggest a number of possible strategies to improve and remedy this problem: (a) pooling data sets, (b) using statistical techniques that exploit the greater information content of many genes jointly, and (c) focusing on economically relevant traits that are most proximate to known biological mechanisms.
  •  
18.
  • Duivenvoorden, Adriaan J., et al. (author)
  • CMB B-mode non-Gaussianity : Optimal bispectrum estimator and Fisher forecasts
  • 2020
  • In: Physical Review D. - 1550-7998 .- 1550-2368. ; 102:2
  • Journal article (peer-reviewed)abstract
    • Upcoming cosmic microwave background (CMB) data can be used to explore harmonic 3-point functions that involve the B-mode component of the CMB polarization signal. We focus on bispectra describing the non-Gaussian correlation of the B-mode field and the CMB temperature anisotropies (T) and/or E-mode polarization, i.e., (TTB), (EEB), and (TER). Such bispectra probe violations of the tensor consistency relation: the model-independent behavior of cosmological correlation functions that involve a large-wavelength tensor mode (gravitational wave). An observed violation of the tensor consistency relation would exclude a large number of inflation models. We describe a generalization of the Komatsu-Spergel-Wandelt (KSW) bispectrum estimator that allows statistical inference on this type of primordial non-Gaussianity with data of the CMB temperature and polarization anisotropies. The generalized estimator shares its statistical properties with the existing KSW estimator and retains the favorable numerical scaling with angular resolution. In this paper, we derive the estimator and present a set of Fisher forecasts. We show how the forecasts scale with various experimental parameters such as minimum and maximum multipole moments, relevant for, e.g., the upcoming ground-based Simons Observatory experiment and proposed LiteBIRD satellite experiment. We comment on possible contaminants due to secondary cosmological and astrophysical sources.
  •  
19.
  • Edwards, Thomas D. P., et al. (author)
  • Digging for dark matter : Spectral analysis and discovery potential of paleo-detectors
  • 2019
  • In: Physical Review D. Particles and fields. - : AMER PHYSICAL SOC. - 0556-2821 .- 1089-4918. ; 99:4
  • Journal article (peer-reviewed)abstract
    • Paleo-detectors are a recently proposed method for the direct detection of dark matter (DM). In such detectors, one would search for the persistent damage features left by DM–nucleus interactions in ancient minerals. Initial sensitivity projections have shown that paleo-detectors could probe much of the remaining weakly interacting massive particle (WIMP) parameter space. In this paper, we improve upon the cut-and-count approach previously used to estimate the sensitivity by performing a full spectral analysis of the background- and DM-induced signal spectra. We consider two scenarios for the systematic errors on the background spectra: (i) systematic errors on the normalization only, and (ii) systematic errors on the shape of the backgrounds. We find that the projected sensitivity is rather robust to imperfect knowledge of the backgrounds. Finally, we study how well the parameters of the true WIMP model could be reconstructed in the hypothetical case of a WIMP discovery.
  •  
20.
  •  
21.
  •  
22.
  • Sivertsson, Sofia, et al. (author)
  • Estimating the local dark matter density in a non-axisymmetric wobbling disc
  • 2022
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 511:2, s. 1977-1991
  • Journal article (peer-reviewed)abstract
    • The density of dark matter near the Sun, ρDM, ⊙, is important for experiments hunting for dark matter particles in the laboratory, and for constraining the local shape of the Milky Way’s dark matter halo. Estimates to date have typically assumed that the Milky Way’s stellar disc is axisymmetric and in a steady-state. Yet the Milky Way disc is neither, exhibiting prominent spiral arms and a bar, and vertical and radial oscillations. We assess the impact of these assumptions on determinations of ρDM, ⊙ by applying a free-form, steady-state, Jeans method to two different N-body simulations of Milky Way-like galaxies. In one, the galaxy has experienced an ancient major merger, similar to the hypothesized Gaia–Sausage–Enceladus; in the other, the galaxy is perturbed more recently by the repeated passage and slow merger of a Sagittarius-like dwarf galaxy. We assess the impact of each of the terms in the Jeans–Poisson equations on our ability to correctly extract ρDM, ⊙ from the simulated data. We find that common approximations employed in the literature – axisymmetry and a locally flat rotation curve – can lead to significant systematic errors of up to a factor ∼1.5 in the recovered surface mass density ∼2 kpc above the disc plane, implying a fractional error on ρDM, ⊙ of the order of unity. However, once we add in the tilt term and the rotation curve term in our models, we obtain an unbiased estimate of ρDM, ⊙, consistent with the true value within our 95 per cent confidence intervals for realistic 20 per cent uncertainties on the baryonic surface density of the disc. Other terms – the axial tilt, 2nd Poisson and time-dependent terms – contribute less than 10 per cent to ρDM, ⊙ (given current data) and can be safely neglected for now. In the future, as more data become available, these terms will need to be included in the analysis.
  •  
23.
  • Westerberg, Håkan, et al. (author)
  • Modeling the drift of European (Anguilla anguilla) and American (Anguilla rostrata) eel larvae during the year of spawning
  • 2018
  • In: Canadian Journal of Fisheries and Aquatic Sciences. - : Canadian Science Publishing. - 0706-652X .- 1205-7533. ; 75, s. 224-234
  • Journal article (peer-reviewed)abstract
    • © 2018, Canadian Science Publishing. All rights reserved. The distribution of the leptocephalus larvae of European (Anguilla anguilla) and American (Anguilla rostrata) eels collected during recent Sargasso Sea surveys was used to model larval drift. The drift trajectories of individual larva were back-calculated to the estimated time of spawning, using current data from two global oceanographic assimilation models. The results of both models give the same overall result; widespread spawning extended in time from December to March. The drift was also calculated forwards for approximately 1 year. The forward drift modelling showed that most leptocephali remained in the area south of the Subtropical Frontal Zone. One conclusion is that the majority of leptocephali remain trapped and possibly die in the retention area. A small proportion of leptocephali are entrained into the Gulf Stream system. An implication is that the spawning success may be highly sensitive to oceanographic and climatic factors that alter the dispersion of leptocephali out from the retention area. An alternative interpretation is that the surveys were made too late after the peak spawning period and that the core spawning area was missed.
  •  
24.
  • Ziegler, Joshua J., et al. (author)
  • Non-universal stellar initial mass functions : large uncertainties in star formation rates at z ≈ 2-4 and other astrophysical probes
  • 2022
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 517:2, s. 2471-2484
  • Journal article (peer-reviewed)abstract
    • We explore the assumption, widely used in many astrophysical calculations, that the stellar initial mass function (IMF) is universal across all galaxies. By considering both a canonical broken-power-law IMF and a non-universal IMF, we are able to compare the effect of different IMFs on multiple observables and derived quantities in astrophysics. Specifically, we consider a non-universal IMF that varies as a function of the local star formation rate, and explore the effects on the star formation rate density (SFRD), the extragalactic background light, the supernova (both core-collapse and thermonuclear) rates, and the diffuse supernova neutrino background. Our most interesting result is that our adopted varying IMF leads to much greater uncertainty on the SFRD at z ≈ 2−4 than is usually assumed. Indeed, we find an SFRD (inferred using observed galaxy luminosity distributions) that is a factor of ≳ 3 lower than canonical results obtained using a universal IMF. Secondly, the non-universal IMF we explore implies a reduction in the supernova core-collapse rate of a factor of ∼ 2⁠, compared against a universal IMF. The other potential tracers are only slightly affected by changes to the properties of the IMF. We find that currently available data do not provide a clear preference for universal or non-universal IMF. However, improvements to measurements of the star formation rate and core-collapse supernova rate at redshifts z ≳ 2 may offer the best prospects for discernment.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-24 of 24
Type of publication
journal article (23)
conference paper (1)
Type of content
peer-reviewed (22)
other academic/artistic (2)
Author/Editor
Freese, Katherine (14)
Gudmundsson, Jón E. (8)
Li, S. (7)
Galloway, M. (7)
Song, X. (7)
Huang, Z. (7)
show more...
Tucker, C. (7)
Ade, P. A. R. (7)
Bock, J. J. (7)
Bond, J. R. (7)
Chiang, H. C. (7)
Eriksen, H. K. (7)
Fraisse, A. A. (7)
Jones, W. C. (7)
Netterfield, C. B. (7)
Racine, B. (7)
Wehus, I. K. (7)
Amiri, M. (7)
Benton, S. J. (7)
Bergman, A. S. (7)
Bryan, S. A. (7)
Contaldi, C. R. (7)
Farhang, M. (7)
Filippini, J. P. (7)
Gambrel, A. E. (7)
Gandilo, N. N. (7)
Halpern, M. (7)
Hartley, J. (7)
Hasselfield, M. (7)
Hilton, G. (7)
Holmes, W. (7)
Hristov, V. V. (7)
Irwin, K. D. (7)
Kuo, C. L. (7)
Kermish, Z. D. (7)
Megerian, K. (7)
Moncelsi, L. (7)
Morford, T. A. (7)
Nagy, J. M. (7)
Nolta, M. (7)
Padilla, I. L. (7)
Rahlin, A. S. (7)
Reintsema, C. (7)
Ruhl, J. E. (7)
Ruud, T. M. (7)
Shariff, J. A. (7)
Soler, J. D. (7)
Trangsrud, A. (7)
Tucker, R. S. (7)
Turner, A. D. (7)
show less...
University
Stockholm University (14)
Karolinska Institutet (8)
Stockholm School of Economics (6)
Uppsala University (4)
University of Gothenburg (3)
Royal Institute of Technology (2)
show more...
Lund University (1)
Chalmers University of Technology (1)
Swedish University of Agricultural Sciences (1)
show less...
Language
English (24)
Research subject (UKÄ/SCB)
Natural sciences (17)
Medical and Health Sciences (4)
Engineering and Technology (1)
Social Sciences (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view