SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Fuxe K) "

Search: WFRF:(Fuxe K)

  • Result 1-50 of 681
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  •  
11.
  • Wydra, K, et al. (author)
  • Adenosine A2AReceptors in Substance Use Disorders: A Focus on Cocaine
  • 2020
  • In: Cells. - : MDPI AG. - 2073-4409. ; 9:6
  • Journal article (peer-reviewed)abstract
    • Several psychoactive drugs can evoke substance use disorders (SUD) in humans and animals, and these include psychostimulants, opioids, cannabinoids (CB), nicotine, and alcohol. The etiology, mechanistic processes, and the therapeutic options to deal with SUD are not well understood. The common feature of all abused drugs is that they increase dopamine (DA) neurotransmission within the mesocorticolimbic circuitry of the brain followed by the activation of DA receptors. D2 receptors were proposed as important molecular targets for SUD. The findings showed that D2 receptors formed heteromeric complexes with other GPCRs, which forced the addiction research area in new directions. In this review, we updated the view on the brain D2 receptor complexes with adenosine (A)2A receptors (A2AR) and discussed the role of A2AR in different aspects of addiction phenotypes in laboratory animal procedures that permit the highly complex syndrome of human drug addiction. We presented the current knowledge on the neurochemical in vivo and ex vivo mechanisms related to cocaine use disorder (CUD) and discussed future research directions for A2AR heteromeric complexes in SUD.
  •  
12.
  •  
13.
  •  
14.
  •  
15.
  •  
16.
  •  
17.
  •  
18.
  •  
19.
  •  
20.
  •  
21.
  •  
22.
  •  
23.
  • Borroto-Escuela, DO, et al. (author)
  • Multiple D2 heteroreceptor complexes: new targets for treatment of schizophrenia
  • 2016
  • In: Therapeutic advances in psychopharmacology. - : SAGE Publications. - 2045-1253 .- 2045-1261. ; 6:2, s. 77-94
  • Journal article (peer-reviewed)abstract
    • The dopamine (DA) neuron system most relevant for schizophrenia is the meso-limbic-cortical DA system inter alia densely innervating subcortical limbic regions. The field of dopamine D2 receptors and schizophrenia changed markedly with the discovery of many types of D2 heteroreceptor complexes in subcortical limbic areas as well as the dorsal striatum. The results indicate that the D2 is a hub receptor which interacts not only with many other G protein-coupled receptors (GPCRs) including DA isoreceptors but also with ion-channel receptors, receptor tyrosine kinases, scaffolding proteins and DA transporters. Disturbances in several of these D2 heteroreceptor complexes may contribute to the development of schizophrenia through changes in the balance of diverse D2 homo- and heteroreceptor complexes mediating the DA signal, especially to the ventral striato-pallidal γ-aminobutyric acid (GABA) pathway. This will have consequences for the control of this pathway of the glutamate drive to the prefrontal cortex via the mediodorsal thalamic nucleus which can contribute to psychotic processes. Agonist activation of the A2A protomer in the A2A–D2 heteroreceptor complex inhibits D2 Gi/o mediated signaling but increases the D2 β-arrestin2 mediated signaling. Through this allosteric receptor–receptor interaction, the A2A agonist becomes a biased inhibitory modulator of the Gi/o mediated D2 signaling, which may the main mechanism for its atypical antipsychotic properties especially linked to the limbic A2A–D2 heterocomplexes. The DA and glutamate hypotheses of schizophrenia come together in the signal integration in D2– N-methyl-d-aspartate (NMDA) and A2A–D2–metabotropic glutamate receptor 5 (mGlu5) heteroreceptor complexes, especially in the ventral striatum. 5-Hydroxytryptamine 2A (5-HT2A)–D2 heteroreceptor complexes are special targets for atypical antipsychotics with high potency to block their 5-HT2A protomer signaling in view of the potential development of pathological allosteric facilitatory 5-HT2A–D2 interaction increasing D2 protomer signaling. Neurotensin (NTS1)–D2 heterocomplexes also exist in the ventral and dorsal striatum, and likely also in midbrain DA nerve cells as NTS1-D2 autoreceptor complexes where neurotensin produces antipsychotic and propsychotic actions, respectively.
  •  
24.
  • Borroto-Escuela, DO, et al. (author)
  • On the g-protein-coupled receptor heteromers and their allosteric receptor-receptor interactions in the central nervous system: focus on their role in pain modulation
  • 2013
  • In: Evidence-based complementary and alternative medicine : eCAM. - : Hindawi Limited. - 1741-427X .- 1741-4288. ; 2013, s. 563716-
  • Journal article (peer-reviewed)abstract
    • The modulatory role of allosteric receptor-receptor interactions in the pain pathways of the Central Nervous System and the peripheral nociceptors has become of increasing interest. As integrators of nociceptive and antinociceptive wiring and volume transmission signals, with a major role for the opioid receptor heteromers, they likely have an important role in the pain circuits and may be involved in acupuncture. The delta opioid receptor (DOR) exerts an antagonistic allosteric influence on the mu opioid receptor (MOR) function in a MOR-DOR heteromer. This heteromer contributes to morphine-induced tolerance and dependence, since it becomes abundant and develops a reduced G-protein-coupling with reduced signaling mainly operating viaβ-arrestin2 upon chronic morphine treatment. A DOR antagonist causes a return of the Gi/o binding and coupling to the heteromer and the biological actions of morphine. The gender- and ovarian steroid-dependent recruitment of spinal cord MOR/kappa opioid receptor (KOR) heterodimers enhances antinociceptive functions and if impaired could contribute to chronic pain states in women. MOR1D heterodimerizes with gastrin-releasing peptide receptor (GRPR) in the spinal cord, mediating morphine induced itch. Other mechanism for the antinociceptive actions of acupuncture along meridians may be that it enhances the cross-desensitization of the TRPA1 (chemical nociceptor)-TRPV1 (capsaicin receptor) heteromeric channel complexes within the nociceptor terminals located along these meridians. Selective ionotropic cannabinoids may also produce cross-desensitization of the TRPA1-TRPV1 heteromeric nociceptor channels by being negative allosteric modulators of these channels leading to antinociception and antihyperalgesia.
  •  
25.
  • Borroto-Escuela, DO, et al. (author)
  • OSU-6162, a Sigma1R Ligand in Low Doses, Can Further Increase the Effects of Cocaine Self-Administration on Accumbal D2R Heteroreceptor Complexes
  • 2020
  • In: Neurotoxicity research. - : Springer Science and Business Media LLC. - 1476-3524 .- 1029-8428. ; 37:2, s. 433-444
  • Journal article (peer-reviewed)abstract
    • Cocaine was previously shown to act at the Sigma1R which is a target for counteracting cocaine actions. It therefore becomes of interest to test if the monoamine stabilizer (–) OSU-6162 (OSU-6162) with a nanomolar affinity for the Sigma1R can acutely modulate in low doses the effects of cocaine self-administration. In behavioral studies, OSU-6162 (5 mg/kg, s.c.) did not significantly change the number of active lever pressing and cocaine infusions. However, a trend to reduce cocaine readouts was found after 3 days of treatment. In contrast, in maintenance of cocaine self-administration, the proximity ligation assay performed on brains from rats pretreated with OSU-6162 showed highly significant increases in the density of the D2R-Sigma1R heteroreceptor complexes in the shell of the nucleus accumbens versus OSU-6162 induced increases in this region of yoked saline rats. In cocaine self-administration, highly significant increases were also induced by OSU-6162 in the A2AR-D2R heteroreceptor complexes in the nucleus accumbens shell versus vehicle-treated rats. Furthermore, ex vivo, the A2AR agonist CGS21680 (100 nM) produced a marked and significant increase of the D2R Ki high values in the OSU-6162-treated versus vehicle-treated rats under maintenance of cocaine self-administration. These results indicate a substantial increase in the inhibitory allosteric A2AR-D2R interactions following cocaine self-administration upon activation by the A2AR agonist ex vivo. The current results indicate that OSU-6162 via its high affinity for the Sigma1R may increase the number of accumbal shell D2R-Sigma1R and A2AR-D2R heteroreceptor complexes associated with further increases in the antagonistic A2AR-D2R interactions in cocaine self-administration.
  •  
26.
  • Borroto-Escuela, DO, et al. (author)
  • The Balance of MU-Opioid, Dopamine D2 and Adenosine A2A Heteroreceptor Complexes in the Ventral Striatal-Pallidal GABA Antireward Neurons May Have a Significant Role in Morphine and Cocaine Use Disorders
  • 2021
  • In: Frontiers in pharmacology. - : Frontiers Media SA. - 1663-9812. ; 12, s. 627032-
  • Journal article (peer-reviewed)abstract
    • The widespread distribution of heteroreceptor complexes with allosteric receptor-receptor interactions in the CNS represents a novel integrative molecular mechanism in the plasma membrane of neurons and glial cells. It was proposed that they form the molecular basis for learning and short-and long-term memories. This is also true for drug memories formed during the development of substance use disorders like morphine and cocaine use disorders. In cocaine use disorder it was found that irreversible A2AR-D2R complexes with an allosteric brake on D2R recognition and signaling are formed in increased densities in the ventral enkephalin positive striatal-pallidal GABA antireward neurons. In this perspective article we discuss and propose how an increase in opioid heteroreceptor complexes, containing MOR-DOR, MOR-MOR and MOR-D2R, and their balance with each other and A2AR-D2R complexes in the striatal-pallidal enkephalin positive GABA antireward neurons, may represent markers for development of morphine use disorders. We suggest that increased formation of MOR-DOR complexes takes place in the striatal-pallidal enkephalin positive GABA antireward neurons after chronic morphine treatment in part through recruitment of MOR from the MOR-D2R complexes due to the possibility that MOR upon morphine treatment can develop a higher affinity for DOR. As a result, increased numbers of D2R monomers/homomers in these neurons become free to interact with the A2A receptors found in high densities within such neurons. Increased numbers of A2AR-D2R heteroreceptor complexes are formed and contribute to enhanced firing of these antireward neurons due to loss of inhibitory D2R protomer signaling which finally leads to the development of morphine use disorder. Development of cocaine use disorder may instead be reduced through enkephalin induced activation of the MOR-DOR complex inhibiting the activity of the enkephalin positive GABA antireward neurons. Altogether, we propose that these altered complexes could be pharmacological targets to modulate the reward and the development of substance use disorders.
  •  
27.
  • Borroto-Escuela, DO, et al. (author)
  • The coming together of allosteric and phosphorylation mechanisms in the molecular integration of A2A heteroreceptor complexes in the dorsal and ventral striatal-pallidal GABA neurons
  • 2021
  • In: Pharmacological reports : PR. - : Springer Science and Business Media LLC. - 2299-5684 .- 1734-1140. ; 73:4, s. 1096-1108
  • Journal article (peer-reviewed)abstract
    • The role of adenosine A2A receptor (A2AR) and striatal-enriched protein tyrosine phosphatase (STEP) interactions in the striatal-pallidal GABA neurons was recently discussed in relation to A2AR overexpression and cocaine-induced increases of brain adenosine levels. As to phosphorylation, combined activation of A2AR and metabotropic glutamate receptor 5 (mGluR5) in the striatal-pallidal GABA neurons appears necessary for phosphorylation of the GluA1 unit of the AMPA receptor to take place. Robert Yasuda (J Neurochem 152: 270–272, 2020) focused on finding a general mechanism by which STEP activation is enhanced by increased A2AR transmission in striatal-pallidal GABA neurons expressing A2AR and dopamine D2 receptor. In his Editorial, he summarized in a clear way the significant effects of A2AR activation on STEP in the dorsal striatal-pallidal GABA neurons which involves a rise of intracellular levels of calcium causing STEP activation through its dephosphorylation. However, the presence of the A2AR in an A2AR-fibroblast growth factor receptor 1 (FGFR1) heteroreceptor complex can be required in the dorsal striatal-pallidal GABA neurons for the STEP activation. Furthermore, Won et al. (Proc Natl Acad Sci USA 116: 8028–8037, 2019) found in mass spectrometry experiments that the STEP splice variant STEP61 can bind to mGluR5 and inactivate it. In addition, A2AR overexpression can lead to increased formation of A2AR-mGluR5 heterocomplexes in ventral striatal-pallidal GABA neurons. It involves enhanced facilitatory allosteric interactions leading to increased Gq-mediated mGluR5 signaling activating STEP. The involvement of both A2AR and STEP in the actions of cocaine on synaptic downregulation was also demonstrated. The enhancement of mGluR5 protomer activity by the A2AR protomer in A2AR-mGluR5 heterocomplexes in the nucleus accumbens shell appears to have a novel significant role in STEP mechanisms by both enhancing the activation of STEP and being a target for STEP61.
  •  
28.
  • Borroto-Escuela, DO, et al. (author)
  • The role of transmitter diffusion and flow versus extracellular vesicles in volume transmission in the brain neural-glial networks
  • 2015
  • In: Philosophical transactions of the Royal Society of London. Series B, Biological sciences. - : The Royal Society. - 1471-2970. ; 370:1672
  • Journal article (peer-reviewed)abstract
    • Two major types of intercellular communication are found in the central nervous system (CNS), namely wiring transmission (point-to-point communication, the prototype being synaptic transmission with axons and terminals) and volume transmission (VT; communication in the extracellular fluid and in the cerebrospinal fluid (CSF)) involving large numbers of cells in the CNS. Volume and synaptic transmission become integrated inter alia through the ability of their chemical signals to activate different types of receptor protomers in heteroreceptor complexes located synaptically or extrasynaptically in the plasma membrane. The demonstration of extracellular dopamine (DA) and serotonin (5-HT) fluorescence around the DA and 5-HT nerve cell bodies with the Falck–Hillarp formaldehyde fluorescence method after treatment with amphetamine and chlorimipramine, respectively, gave the first indications of the existence of VT in the brain, at least at the soma level. There exist different forms of VT. Early studies on VT only involved spread including diffusion and flow of soluble biological signals, especially transmitters and modulators, a communication called extrasynaptic (short distance) and long distance (paraaxonal and paravascular and CSF pathways) VT. Also, the extracellular vesicle type of VT was demonstrated. The exosomes (endosome-derived vesicles) appear to be the major vesicular carriers for VT but the larger microvesicles also participate. Both mainly originate at the soma–dendritic level. They can transfer lipids and proteins, including receptors, Rab GTPases, tetraspanins, cholesterol, sphingolipids and ceramide. Within them there are also subsets of mRNAs and non-coding regulatory microRNAs. At the soma–dendritic membrane, sets of dynamic postsynaptic heteroreceptor complexes (built up of different types of physically interacting receptors and proteins) involving inter alia G protein-coupled receptors including autoreceptors, ion channel receptors and receptor tyrosine kinases are hypothesized to be the molecular basis for learning and memory. At nerve terminals, the presynaptic heteroreceptor complexes are postulated to undergo plastic changes to maintain the pattern of multiple transmitter release reflecting the firing pattern to be learned by the heteroreceptor complexes in the postsynaptic membrane.
  •  
29.
  • Borroto-Escuela, DO, et al. (author)
  • Understanding the Functional Plasticity in Neural Networks of the Basal Ganglia in Cocaine Use Disorder: A Role for Allosteric Receptor-Receptor Interactions in A2A-D2 Heteroreceptor Complexes
  • 2016
  • In: Neural plasticity. - : Hindawi Limited. - 1687-5443 .- 2090-5904. ; 2016, s. 4827268-
  • Journal article (peer-reviewed)abstract
    • Our hypothesis is that allosteric receptor-receptor interactions in homo- and heteroreceptor complexes may form the molecular basis of learning and memory. This principle is illustrated by showing how cocaine abuse can alter the adenosine A2AR-dopamine D2R heterocomplexes and their receptor-receptor interactions and hereby induce neural plasticity in the basal ganglia. Studies with A2AR ligands using cocaine self-administration procedures indicate that antagonistic allosteric A2AR-D2R heterocomplexes of the ventral striatopallidal GABA antireward pathway play a significant role in reducing cocaine induced reward, motivation, and cocaine seeking. Anticocaine actions of A2AR agonists can also be produced at A2AR homocomplexes in these antireward neurons, actions in which are independent of D2R signaling. At the A2AR-D2R heterocomplex, they are dependent on the strength of the antagonistic allosteric A2AR-D2R interaction and the number of A2AR-D2R and A2AR-D2R-sigma1R heterocomplexes present in the ventral striatopallidal GABA neurons. It involves a differential cocaine-induced increase in sigma1Rs in the ventral versus the dorsal striatum. In contrast, the allosteric brake on the D2R protomer signaling in the A2AR-D2R heterocomplex of the dorsal striatopallidal GABA neurons is lost upon cocaine self-administration. This is potentially due to differences in composition and allosteric plasticity of these complexes versus those in the ventral striatopallidal neurons.
  •  
30.
  •  
31.
  •  
32.
  •  
33.
  •  
34.
  •  
35.
  •  
36.
  • Diaz-Cabiale, Z, et al. (author)
  • Oxytocin/alpha(2)-Adrenoceptor interactions in feeding responses
  • 2000
  • In: Neuroendocrinology. - : S. Karger AG. - 0028-3835 .- 1423-0194. ; 71:3, s. 209-218
  • Journal article (peer-reviewed)abstract
    • The modulation of α<sub>2</sub>-adrenoceptor-induced food intake by oxytocin has been evaluated in studies on food intake and by quantitative receptor autoradiography in the hypothalamus and the amygdala of the rat. The effects of lateral intracerebroventricular administration of clonidine and oxytocin were evaluated on food intake in satiated animals. Food consumption was measured at 30, 90, 240 min and 22 h (1,320 min) after injection. The coinjection of oxytocin and clonidine was found to counteract the increase in food intake produced by clonidine (p < 0.001) in satiated rats. Receptor autoradiographic experiments showed that oxytocin significantly increased the K<sub>d</sub> values of [<sup>3</sup>H]<i>p</i>-aminoclonidine α<sub>2</sub>-agonist-binding sites in the hypothalamus. Effective oxytocin concentrations ranged between 0.3 and 1 n<i>M</i> (p < 0.05) with a maximal action of 250% at 1 n<i>M</i>. The B<sub>max</sub> value was significantly increased (p < 0.05) for all concentrations of oxytocin. In the amygdala, oxytocin also increased both the K<sub>d</sub> of [<sup>3</sup>H]<i>p</i>-aminoclonidine-binding sites by about 190% at 1 n<i>M</i> and the B<sub>max</sub> values at 1 and 3 n<i>M</i> (p < 0.05). Oxytocin (1 n<i>M</i>) also significantly and substantially (p < 0.01) increased the K<sub>d</sub> and B<sub>max</sub> values of the [<sup>3</sup>H]UK 14.304 α<sub>2</sub>-agonist-binding sites in the hypothalamus and amygdala in agreement with the results obtained with the other agonist of the α<sub>2</sub>-adrenoceptor [<sup>3</sup>H]<i>p</i>-aminoclonidine. This effect was partially blocked by the presence of the specific oxytocin receptor antagonist, CAP. These findings suggest the existence of an antagonistic oxytocin/α<sub>2</sub>-receptor interaction in the hypothalamus and amygdala that may be of relevance for the demonstrated modulation of α<sub>2</sub>-adrenoceptor-induced feeding responses by oxytocin.
  •  
37.
  •  
38.
  •  
39.
  •  
40.
  •  
41.
  •  
42.
  •  
43.
  • Gaengel, K., et al. (author)
  • The Sphingosine-1-Phosphate Receptor S1PR1 Restricts Sprouting Angiogenesis by Regulating the Interplay between VE-Cadherin and VEGFR2
  • 2012
  • In: Developmental Cell. - : Elsevier BV. - 1534-5807 .- 1878-1551. ; 23:3, s. 587-599
  • Journal article (peer-reviewed)abstract
    • Angiogenesis, the process by which new blood vessels arise from preexisting ones, is critical for embryonic development and is an integral part of many disease processes. Recent studies have provided detailed information on how angiogenic sprouts initiate, elongate, and branch, but less is known about how these processes cease. Here, we show that S1PR1, a receptor for the blood-borne bioactive lipid sphingosine-1-phosphate (S1P), is critical for inhibition of angiogenesis and acquisition of vascular stability. Loss of S1PR1 leads to increased endothelial cell sprouting and the formation of ectopic vessel branches. Conversely, S1PR1 signaling inhibits angiogenic sprouting and enhances cell-to-cell adhesion. This correlates with inhibition of vascular endothelial growth factor-A (VEGF-A)-induced signaling and stabilization of vascular endothelial (VE)-cadherin localization at endothelial junctions. Our data suggest that S1PR1 signaling acts as a vascular-intrinsic stabilization mechanism, protecting developing blood vessels against aberrant angiogenic responses.
  •  
44.
  •  
45.
  •  
46.
  • Janson, A M, et al. (author)
  • Protective effects of chronic nicotine treatment on lesioned nigrostriatal dopamine neurons in the male rat
  • 1989
  • In: Progress in Brain Research. - 1875-7855. ; 79, s. 257-265
  • Journal article (peer-reviewed)abstract
    • The present results demonstrate that chronic nicotine treatment can in part protect against mechanically-induced and neurotoxin-induced degeneration of nigrostriatal DA neurons. These results indicate that in sufficient doses chronic treatment with nicotine may be considered in the pharmacological treatment of Parkinson's disease. It remains to be demonstrated whether these protective actions can be extended to include also other injured neurons such as the cholinergic neurons, known to be severely affected in Alzheimer's disease.
  •  
47.
  •  
48.
  •  
49.
  •  
50.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-50 of 681

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view