SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Garcia Ribas G.) "

Search: WFRF:(Garcia Ribas G.)

  • Result 1-49 of 49
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Schael, S, et al. (author)
  • Precision electroweak measurements on the Z resonance
  • 2006
  • In: Physics Reports. - : Elsevier BV. - 0370-1573 .- 1873-6270. ; 427:5-6, s. 257-454
  • Research review (peer-reviewed)abstract
    • We report on the final electroweak measurements performed with data taken at the Z resonance by the experiments operating at the electron-positron colliders SLC and LEP. The data consist of 17 million Z decays accumulated by the ALEPH, DELPHI, L3 and OPAL experiments at LEP, and 600 thousand Z decays by the SLID experiment using a polarised beam at SLC. The measurements include cross-sections, forward-backward asymmetries and polarised asymmetries. The mass and width of the Z boson, m(Z) and Gamma(Z), and its couplings to fermions, for example the p parameter and the effective electroweak mixing angle for leptons, are precisely measured: m(Z) = 91.1875 +/- 0.0021 GeV, Gamma(Z) = 2.4952 +/- 0.0023 GeV, rho(l) = 1.0050 +/- 0.0010, sin(2)theta(eff)(lept) = 0.23153 +/- 0.00016. The number of light neutrino species is determined to be 2.9840 +/- 0.0082, in agreement with the three observed generations of fundamental fermions. The results are compared to the predictions of the Standard Model (SM). At the Z-pole, electroweak radiative corrections beyond the running of the QED and QCD coupling constants are observed with a significance of five standard deviations, and in agreement with the Standard Model. Of the many Z-pole measurements, the forward-backward asymmetry in b-quark production shows the largest difference with respect to its SM expectation, at the level of 2.8 standard deviations. Through radiative corrections evaluated in the framework of the Standard Model, the Z-pole data are also used to predict the mass of the top quark, m(t) = 173(+10)(+13) GeV, and the mass of the W boson, m(W) = 80.363 +/- 0.032 GeV. These indirect constraints are compared to the direct measurements, providing a stringent test of the SM. Using in addition the direct measurements of m(t) and m(W), the mass of the as yet unobserved SM Higgs boson is predicted with a relative uncertainty of about 50% and found to be less than 285 GeV at 95% confidence level. (c) 2006 Elsevier B.V. All rights reserved.
  •  
2.
  • Lind, Lars, et al. (author)
  • Heterogeneous contributions of change in population distribution of body mass index to change in obesity and underweight NCD Risk Factor Collaboration (NCD-RisC)
  • 2021
  • In: eLife. - : eLife Sciences Publications Ltd. - 2050-084X. ; 10
  • Journal article (peer-reviewed)abstract
    • From 1985 to 2016, the prevalence of underweight decreased, and that of obesity and severe obesity increased, in most regions, with significant variation in the magnitude of these changes across regions. We investigated how much change in mean body mass index (BMI) explains changes in the prevalence of underweight, obesity, and severe obesity in different regions using data from 2896 population-based studies with 187 million participants. Changes in the prevalence of underweight and total obesity, and to a lesser extent severe obesity, are largely driven by shifts in the distribution of BMI, with smaller contributions from changes in the shape of the distribution. In East and Southeast Asia and sub-Saharan Africa, the underweight tail of the BMI distribution was left behind as the distribution shifted. There is a need for policies that address all forms of malnutrition by making healthy foods accessible and affordable, while restricting unhealthy foods through fiscal and regulatory restrictions.
  •  
3.
  • Bixby, H., et al. (author)
  • Rising rural body-mass index is the main driver of the global obesity epidemic in adults
  • 2019
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 569:7755, s. 260-4
  • Journal article (peer-reviewed)abstract
    • Body-mass index (BMI) has increased steadily in most countries in parallel with a rise in the proportion of the population who live in cities(.)(1,2) This has led to a widely reported view that urbanization is one of the most important drivers of the global rise in obesity(3-6). Here we use 2,009 population-based studies, with measurements of height and weight in more than 112 million adults, to report national, regional and global trends in mean BMI segregated by place of residence (a rural or urban area) from 1985 to 2017. We show that, contrary to the dominant paradigm, more than 55% of the global rise in mean BMI from 1985 to 2017-and more than 80% in some low- and middle-income regions-was due to increases in BMI in rural areas. This large contribution stems from the fact that, with the exception of women in sub-Saharan Africa, BMI is increasing at the same rate or faster in rural areas than in cities in low- and middle-income regions. These trends have in turn resulted in a closing-and in some countries reversal-of the gap in BMI between urban and rural areas in low- and middle-income countries, especially for women. In high-income and industrialized countries, we noted a persistently higher rural BMI, especially for women. There is an urgent need for an integrated approach to rural nutrition that enhances financial and physical access to healthy foods, to avoid replacing the rural undernutrition disadvantage in poor countries with a more general malnutrition disadvantage that entails excessive consumption of low-quality calories.
  •  
4.
  •  
5.
  • Abreu, P., et al. (author)
  • Measurement of the gluon fragmentation function and a comparison of the scaling violation in gluon and quark jets
  • 2000
  • In: European Physical Journal C. - : Springer Science and Business Media LLC. - 1434-6044 .- 1434-6052. ; 13:4, s. 573-589
  • Journal article (peer-reviewed)abstract
    • The fragmentation functions of quarks and gluons are measured in various three-jet topologies in Z decays from the full data set collected with the DELPHI detector at the Z resonance between 1992 and 995. The results at different values of transverse momentum-like scales are compared. A parameterization of the quark and gluon fragmentation functions at a fixed reference scale is given. The quark and gluon fragmentation functions show the predicted pattern of scaling violations. The scaling violation for quark jets as a function of a transverse momentum-like scale is in a good agreement with that observed in lower energy e+e- annihilation experiments. For gluon jets it appears to be significantly stronger. The scale dependences of the gluon and quark fragmentation functions agree with the prediction of the DGLAP evolution equations from which the colour factor ratio CA/CF is measured to be: CA/CF = 2.26 ± 0.09stat. ± 0.06sys. ± 0.12clus.,scale..
  •  
6.
  • Abreu, P., et al. (author)
  • Study of dimuon production in photon-photon collisions and measurement of QED photon structure functions at LEP
  • 2001
  • In: European Physical Journal C. - : Springer Science and Business Media LLC. - 1434-6044 .- 1434-6052. ; 19:1, s. 15-28
  • Journal article (peer-reviewed)abstract
    • Muon pair production in the process e+e- → e+e- μ+μ- is studied using the data taken at LEP1 (√s ≃ mz) with the DELPHI detector during the years 1992-1995. The corresponding integrated luminosity is 138.5 pb-1. The QED predictions have been tested over the whole Q2 range accessible at LEP1 (from several GeV2/c4 to several hundred GeV2/c4) by comparing experimental distributions with distributions resulting from Monte Carlo simulations using various generators. Selected events are used to extract the leptonic photon structure function Fγ 2. Azimuthal correlations are used to obtain information on additional structure functions, Fγ A and Fγ B, which originate from interference terms of the scattering amplitudes. The measured ratios Fγ A/Fγ 2 and FγB/Fγ 2 are significantly different from zero and consistent with QED predictions.
  •  
7.
  • Mishra, A, et al. (author)
  • Diminishing benefits of urban living for children and adolescents' growth and development
  • 2023
  • In: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 615:7954, s. 874-883
  • Journal article (peer-reviewed)abstract
    • Optimal growth and development in childhood and adolescence is crucial for lifelong health and well-being1–6. Here we used data from 2,325 population-based studies, with measurements of height and weight from 71 million participants, to report the height and body-mass index (BMI) of children and adolescents aged 5–19 years on the basis of rural and urban place of residence in 200 countries and territories from 1990 to 2020. In 1990, children and adolescents residing in cities were taller than their rural counterparts in all but a few high-income countries. By 2020, the urban height advantage became smaller in most countries, and in many high-income western countries it reversed into a small urban-based disadvantage. The exception was for boys in most countries in sub-Saharan Africa and in some countries in Oceania, south Asia and the region of central Asia, Middle East and north Africa. In these countries, successive cohorts of boys from rural places either did not gain height or possibly became shorter, and hence fell further behind their urban peers. The difference between the age-standardized mean BMI of children in urban and rural areas was <1.1 kg m–2 in the vast majority of countries. Within this small range, BMI increased slightly more in cities than in rural areas, except in south Asia, sub-Saharan Africa and some countries in central and eastern Europe. Our results show that in much of the world, the growth and developmental advantages of living in cities have diminished in the twenty-first century, whereas in much of sub-Saharan Africa they have amplified.
  •  
8.
  • Abreu, P., et al. (author)
  • Search for sleptons in e+e- collisions at √s = 183 to 189 GeV
  • 2001
  • In: European Physical Journal C. - : Springer Science and Business Media LLC. - 1434-6044 .- 1434-6052. ; 19:1, s. 29-42
  • Journal article (peer-reviewed)abstract
    • Data taken by the DELPHI experiment at centre-of-mass energies of 183 GeV and 189 GeV with a total integrated luminosity of 212 pb-1 have been used to search for the supersymmetric partners of the electrons, muons, and taus in the context of the Minimal Supersymmetric Standard Model (MSSM). The decay topologies searched for were the direct decay (ℓ̃ → ℓx̃), producing acoplanar lepton pairs plus missing energy, and the cascade decay (ℓ → ℓx̃0 2 → ℓγx̃0 1), producing acoplanar lepton and photon pairs plus missing energy. The observed number of events is in agreement with Standard Model predictions. The 95% CL excluded mass limits for selectrons, smuons and staus are mẽ ≤ 87 GeV/c2, mμ̃ ≤ 80 GeV/c2 and mτ̃ 75 GeV/c2, respectively, for values of μ=-200 GeV/c2 and tanβ=1.5.
  •  
9.
  •  
10.
  •  
11.
  • de Rojas, I., et al. (author)
  • Common variants in Alzheimer’s disease and risk stratification by polygenic risk scores
  • 2021
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 12:1
  • Journal article (peer-reviewed)abstract
    • Genetic discoveries of Alzheimer’s disease are the drivers of our understanding, and together with polygenetic risk stratification can contribute towards planning of feasible and efficient preventive and curative clinical trials. We first perform a large genetic association study by merging all available case-control datasets and by-proxy study results (discovery n = 409,435 and validation size n = 58,190). Here, we add six variants associated with Alzheimer’s disease risk (near APP, CHRNE, PRKD3/NDUFAF7, PLCG2 and two exonic variants in the SHARPIN gene). Assessment of the polygenic risk score and stratifying by APOE reveal a 4 to 5.5 years difference in median age at onset of Alzheimer’s disease patients in APOE ɛ4 carriers. Because of this study, the underlying mechanisms of APP can be studied to refine the amyloid cascade and the polygenic risk score provides a tool to select individuals at high risk of Alzheimer’s disease. © 2021, The Author(s).
  •  
12.
  •  
13.
  •  
14.
  •  
15.
  • Bousquet, J, et al. (author)
  • Nrf2-interacting nutrients and COVID-19: time for research to develop adaptation strategies
  • 2020
  • In: Clinical and translational allergy. - : Wiley. - 2045-7022. ; 10:1, s. 58-
  • Journal article (peer-reviewed)abstract
    • There are large between- and within-country variations in COVID-19 death rates. Some very low death rate settings such as Eastern Asia, Central Europe, the Balkans and Africa have a common feature of eating large quantities of fermented foods whose intake is associated with the activation of the Nrf2 (Nuclear factor (erythroid-derived 2)-like 2) anti-oxidant transcription factor. There are many Nrf2-interacting nutrients (berberine, curcumin, epigallocatechin gallate, genistein, quercetin, resveratrol, sulforaphane) that all act similarly to reduce insulin resistance, endothelial damage, lung injury and cytokine storm. They also act on the same mechanisms (mTOR: Mammalian target of rapamycin, PPARγ:Peroxisome proliferator-activated receptor, NFκB: Nuclear factor kappa B, ERK: Extracellular signal-regulated kinases and eIF2α:Elongation initiation factor 2α). They may as a result be important in mitigating the severity of COVID-19, acting through the endoplasmic reticulum stress or ACE-Angiotensin-II-AT1R axis (AT1R) pathway. Many Nrf2-interacting nutrients are also interacting with TRPA1 and/or TRPV1. Interestingly, geographical areas with very low COVID-19 mortality are those with the lowest prevalence of obesity (Sub-Saharan Africa and Asia). It is tempting to propose that Nrf2-interacting foods and nutrients can re-balance insulin resistance and have a significant effect on COVID-19 severity. It is therefore possible that the intake of these foods may restore an optimal natural balance for the Nrf2 pathway and may be of interest in the mitigation of COVID-19 severity.
  •  
16.
  • Bellenguez, C, et al. (author)
  • New insights into the genetic etiology of Alzheimer's disease and related dementias
  • 2022
  • In: Nature genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 54:4, s. 412-436
  • Journal article (peer-reviewed)abstract
    • Characterization of the genetic landscape of Alzheimer’s disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/‘proxy’ AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele.
  •  
17.
  •  
18.
  •  
19.
  •  
20.
  •  
21.
  • Leleu, A., et al. (author)
  • Six transiting planets and a chain of Laplace resonances in TOI-178
  • 2021
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 649
  • Journal article (peer-reviewed)abstract
    • Determining the architecture of multi-planetary systems is one of the cornerstones of understanding planet formation and evolution. Resonant systems are especially important as the fragility of their orbital configuration ensures that no significant scattering or collisional event has taken place since the earliest formation phase when the parent protoplanetary disc was still present. In this context, TOI-178 has been the subject of particular attention since the first TESS observations hinted at the possible presence of a near 2:3:3 resonant chain. Here we report the results of observations from CHEOPS, ESPRESSO, NGTS, and SPECULOOS with the aim of deciphering the peculiar orbital architecture of the system. We show that TOI-178 harbours at least six planets in the super-Earth to mini-Neptune regimes, with radii ranging from 1.152 to 2.87 Earth radii and periods of 1.91, 3.24, 6.56, 9.96, 15.23, and 20.71 days. All planets but the innermost one form a 2:4:6:9:12 chain of Laplace resonances, and the planetary densities show important variations from planet to planet, jumping from 1.02 to 0.177 times the Earth's density between planets c and d. Using Bayesian interior structure retrieval models, we show that the amount of gas in the planets does not vary in a monotonous way, contrary to what one would expect from simple formation and evolution models and unlike other known systems in a chain of Laplace resonances. The brightness of TOI-178 (H = 8.76 mag, J = 9.37 mag, V = 11.95 mag) allows for a precise characterisation of its orbital architecture as well as of the physical nature of the six presently known transiting planets it harbours. The peculiar orbital configuration and the diversity in average density among the planets in the system will enable the study of interior planetary structures and atmospheric evolution, providing important clues on the formation of super-Earths and mini-Neptunes. -0.070 -0.13 -0.23 -0.061 +0.073 +0.14 +0.28 +0.055
  •  
22.
  • Tinetti, Giovanna, et al. (author)
  • The EChO science case
  • 2015
  • In: Experimental astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 40:2-3, s. 329-391
  • Journal article (peer-reviewed)abstract
    • The discovery of almost two thousand exoplanets has revealed an unexpectedly diverse planet population. We see gas giants in few-day orbits, whole multi-planet systems within the orbit of Mercury, and new populations of planets with masses between that of the Earth and Neptune-all unknown in the Solar System. Observations to date have shown that our Solar System is certainly not representative of the general population of planets in our Milky Way. The key science questions that urgently need addressing are therefore: What are exoplanets made of? Why are planets as they are? How do planetary systems work and what causes the exceptional diversity observed as compared to the Solar System? The EChO (Exoplanet Characterisation Observatory) space mission was conceived to take up the challenge to explain this diversity in terms of formation, evolution, internal structure and planet and atmospheric composition. This requires in-depth spectroscopic knowledge of the atmospheres of a large and well-defined planet sample for which precise physical, chemical and dynamical information can be obtained. In order to fulfil this ambitious scientific program, EChO was designed as a dedicated survey mission for transit and eclipse spectroscopy capable of observing a large, diverse and well-defined planet sample within its 4-year mission lifetime. The transit and eclipse spectroscopy method, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allows us to measure atmospheric signals from the planet at levels of at least 10(-4) relative to the star. This can only be achieved in conjunction with a carefully designed stable payload and satellite platform. It is also necessary to provide broad instantaneous wavelength coverage to detect as many molecular species as possible, to probe the thermal structure of the planetary atmospheres and to correct for the contaminating effects of the stellar photosphere. This requires wavelength coverage of at least 0.55 to 11 mu m with a goal of covering from 0.4 to 16 mu m. Only modest spectral resolving power is needed, with R similar to 300 for wavelengths less than 5 mu m and R similar to 30 for wavelengths greater than this. The transit spectroscopy technique means that no spatial resolution is required. A telescope collecting area of about 1 m(2) is sufficiently large to achieve the necessary spectro-photometric precision: for the Phase A study a 1.13 m(2) telescope, diffraction limited at 3 mu m has been adopted. Placing the satellite at L2 provides a cold and stable thermal environment as well as a large field of regard to allow efficient time-critical observation of targets randomly distributed over the sky. EChO has been conceived to achieve a single goal: exoplanet spectroscopy. The spectral coverage and signal-to-noise to be achieved by EChO, thanks to its high stability and dedicated design, would be a game changer by allowing atmospheric composition to be measured with unparalleled exactness: at least a factor 10 more precise and a factor 10 to 1000 more accurate than current observations. This would enable the detection of molecular abundances three orders of magnitude lower than currently possible and a fourfold increase from the handful of molecules detected to date. Combining these data with estimates of planetary bulk compositions from accurate measurements of their radii and masses would allow degeneracies associated with planetary interior modelling to be broken, giving unique insight into the interior structure and elemental abundances of these alien worlds. EChO would allow scientists to study exoplanets both as a population and as individuals. The mission can target super-Earths, Neptune-like, and Jupiter-like planets, in the very hot to temperate zones (planet temperatures of 300-3000 K) of F to M-type host stars. The EChO core science would be delivered by a three-tier survey. The EChO Chemical Census: This is a broad survey of a few-hundred exoplanets, which allows us to explore the spectroscopic and chemical diversity of the exoplanet population as a whole. The EChO Origin: This is a deep survey of a subsample of tens of exoplanets for which significantly higher signal to noise and spectral resolution spectra can be obtained to explain the origin of the exoplanet diversity (such as formation mechanisms, chemical processes, atmospheric escape). The EChO Rosetta Stones: This is an ultra-high accuracy survey targeting a subsample of select exoplanets. These will be the bright "benchmark" cases for which a large number of measurements would be taken to explore temporal variations, and to obtain two and three dimensional spatial information on the atmospheric conditions through eclipse-mapping techniques. If EChO were launched today, the exoplanets currently observed are sufficient to provide a large and diverse sample. The Chemical Census survey would consist of > 160 exoplanets with a range of planetary sizes, temperatures, orbital parameters and stellar host properties. Additionally, over the next 10 years, several new ground- and space-based transit photometric surveys and missions will come on-line (e.g. NGTS, CHEOPS, TESS, PLATO), which will specifically focus on finding bright, nearby systems. The current rapid rate of discovery would allow the target list to be further optimised in the years prior to EChO's launch and enable the atmospheric characterisation of hundreds of planets.
  •  
23.
  • Barros, S. C. C., et al. (author)
  • Detection of the tidal deformation of WASP-103b at 3σ with CHEOPS
  • 2022
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 657
  • Journal article (peer-reviewed)abstract
    • Context. Ultra-short period planets undergo strong tidal interactions with their host star which lead to planet deformation and orbital tidal decay.Aims. WASP-103b is the exoplanet with the highest expected deformation signature in its transit light curve and one of the shortest expected spiral-in times. Measuring the tidal deformation of the planet would allow us to estimate the second degree fluid Love number and gain insight into the planet's internal structure. Moreover, measuring the tidal decay timescale would allow us to estimate the stellar tidal quality factor, which is key to constraining stellar physics.Methods. We obtained 12 transit light curves of WASP-103b with the CHaracterising ExOplanet Satellite (CHEOPS) to estimate the tidal deformation and tidal decay of this extreme system. We modelled the high-precision CHEOPS transit light curves together with systematic instrumental noise using multi-dimensional Gaussian process regression informed by a set of instrumental parameters. To model the tidal deformation, we used a parametrisation model which allowed us to determine the second degree fluid Love number of the planet. We combined our light curves with previously observed transits of WASP-103b with the Hubble Space Telescope (HST) and Spitzer to increase the signal-to-noise of the light curve and better distinguish the minute signal expected from the planetary deformation.Results. We estimate the radial Love number of WASP-103b to be h(f) = 1.59(-0.53)(+0.45). This is the first time that the tidal deformation is directly detected (at 3 sigma) from the transit light curve of an exoplanet. Combining the transit times derived from CHEOPS, HST, and Spitzer light curves with the other transit times available in the literature, we find no significant orbital period variation for WASP-103b. However, the data show a hint of an orbital period increase instead of a decrease, as is expected for tidal decay. This could be either due to a visual companion star if this star is bound, the Applegate effect, or a statistical artefact.Conclusions. The estimated Love number of WASP-103b is similar to Jupiter's. This will allow us to constrain the internal structure and composition of WASP-103b, which could provide clues on the inflation of hot Jupiters. Future observations with James Webb Space Telescope can better constrain the radial Love number of WASP-103b due to their high signal-to-noise and the smaller signature of limb darkening in the infrared. A longer time baseline is needed to constrain the tidal decay in this system.
  •  
24.
  •  
25.
  • Tinetti, G., et al. (author)
  • A chemical survey of exoplanets with ARIEL
  • 2018
  • In: Experimental Astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 46:1, s. 135-209
  • Journal article (peer-reviewed)abstract
    • Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 μm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.
  •  
26.
  • Fortier, A., et al. (author)
  • CHEOPS in-flight performance: A comprehensive look at the first 3.5 yr of operations
  • 2024
  • In: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 687
  • Journal article (peer-reviewed)abstract
    • Context. Since the discovery of the first exoplanet almost three decades ago, the number of known exoplanets has increased dramatically. By beginning of the 2000s it was clear that dedicated facilities to advance our studies in this field were needed. The CHaracterising ExOPlanet Satellite (CHEOPS) is a space telescope specifically designed to monitor transiting exoplanets orbiting bright stars. In September 2023, CHEOPS completed its nominal mission duration of 3.5 yr and remains in excellent operational conditions. As a testament to this, the mission has been extended until the end of 2026. Aims. Scientific and instrumental data have been collected throughout in-orbit commissioning and nominal operations, enabling a comprehensive analysis of the missiona's performance. In this article, we present the results of this analysis with a twofold goal. First, we aim to inform the scientific community about the present status of the mission and what can be expected as the instrument ages. Secondly, we intend for this publication to serve as a legacy document for future missions, providing insights and lessons learned from the successful operation of CHEOPS. Methods. To evaluate the instrument performance in flight, we developed a comprehensive monitoring and characterisation (M&C) programme. It consists of dedicated observations that allow us to characterise the instrumenta's response and continuously monitor its behaviour. In addition to the standard collection of nominal science and housekeeping data, these observations provide valuable input for detecting, modelling, and correcting instrument systematics, discovering and addressing anomalies, and comparing the instrumenta's actual performance with expectations. Results. The precision of the CHEOPS measurements has enabled the mission objectives to be met and exceeded. The satellitea's performance remains stable and reliable, ensuring accurate data collection throughout its operational life. Careful modelling of the instrumental systematics allows the data quality to be significantly improved during the light curve analysis phase, resulting in more precise scientific measurements. Conclusions. CHEOPS is compliant with the driving scientific requirements of the mission. Although visible, the ageing of the instrument has not affected the missiona's performance. The satellitea's capabilities remain robust, and we are confident that we will continue to acquire high-quality data during the mission extension.
  •  
27.
  • Luque, R., et al. (author)
  • A resonant sextuplet of sub-Neptunes transiting the bright star HD 110067
  • 2023
  • In: Nature. - 0028-0836 .- 1476-4687. ; 623:7989, s. 932-937
  • Journal article (peer-reviewed)abstract
    • Planets with radii between that of the Earth and Neptune (hereafter referred to as ‘sub-Neptunes’) are found in close-in orbits around more than half of all Sun-like stars 1,2. However, their composition, formation and evolution remain poorly understood 3. The study of multiplanetary systems offers an opportunity to investigate the outcomes of planet formation and evolution while controlling for initial conditions and environment. Those in resonance (with their orbital periods related by a ratio of small integers) are particularly valuable because they imply a system architecture practically unchanged since its birth. Here we present the observations of six transiting planets around the bright nearby star HD 110067. We find that the planets follow a chain of resonant orbits. A dynamical study of the innermost planet triplet allowed the prediction and later confirmation of the orbits of the rest of the planets in the system. The six planets are found to be sub-Neptunes with radii ranging from 1.94R ⊕ to 2.85R ⊕. Three of the planets have measured masses, yielding low bulk densities that suggest the presence of large hydrogen-dominated atmospheres.
  •  
28.
  • Morales, J. C., et al. (author)
  • A giant exoplanet orbiting a very-low-mass star challenges planet formation models
  • 2019
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 365:6460, s. 1441-1445
  • Journal article (peer-reviewed)abstract
    • Surveys have shown that super-Earth and Neptune-mass exoplanets are more frequent than gas giants around low-mass stars, as predicted by the core accretion theory of planet formation. We report the discovery of a giant planet around the very-low-mass star GJ 3512, as determined by optical and near-infrared radial-velocity observations. The planet has a minimum mass of 0.46 Jupiter masses, very high for such a small host star, and an eccentric 204-day orbit. Dynamical models show that the high eccentricity is most likely due to planet-planet interactions. We use simulations to demonstrate that the GJ 3512 planetary system challenges generally accepted formation theories, and that it puts constraints on the planet accretion and migration rates. Disk instabilities may be more efficient in forming planets than previously thought.
  •  
29.
  • Morris, B. M., et al. (author)
  • CHEOPS precision phase curve of the Super-Earth 55 Cancri e
  • 2021
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 653
  • Journal article (peer-reviewed)abstract
    • Context. 55 Cnc e is a transiting super-Earth (radius 1.88 R-circle plus and mass 8 M-circle plus) orbiting a G8V host star on a 17-h orbit. Spitzer observations of the planet's phase curve at 4.5 mu m revealed a time-varying occultation depth, and MOST optical observations are consistent with a time-varying phase curve amplitude and phase offset of maximum light. Both broadband and high-resolution spectroscopic analyses are consistent with either a high mean molecular weight atmosphere or no atmosphere for planet e. A long-term photometric monitoring campaign on an independent optical telescope is needed to probe the variability in this system. Aims. We seek to measure the phase variations of 55 Cnc e with a broadband optical filter with the 30 cm effective aperture space telescope CHEOPS and explore how the precision photometry narrows down the range of possible scenarios. Methods. We observed 55 Cnc for 1.6 orbital phases in March of 2020. We designed a phase curve detrending toolkit for CHEOPS photometry which allowed us to study the underlying flux variations in the 55 Cnc system. Results. We detected a phase variation with a full-amplitude of 72 +/- 7 ppm, but did not detect a significant secondary eclipse of the planet. The shape of the phase variation resembles that of a piecewise-Lambertian; however, the non-detection of the planetary secondary eclipse, and the large amplitude of the variations exclude reflection from the planetary surface as a possible origin of the observed phase variations. They are also likely incompatible with magnetospheric interactions between the star and planet, but may imply that circumplanetary or circumstellar material modulate the flux of the system. Conclusions. This year, further precision photometry of 55 Cnc from CHEOPS will measure variations in the phase curve amplitude and shape over time.
  •  
30.
  • Szabó, G.M., et al. (author)
  • The changing face of AU Mic b: Stellar spots, spin-orbit commensurability, and transit timing variations as seen by CHEOPS and TESS
  • 2021
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 654
  • Journal article (peer-reviewed)abstract
    • AU Mic is a young planetary system with a resolved debris disc showing signs of planet formation and two transiting warm Neptunes near mean-motion resonances. Here we analyse three transits of AU Mic b observed with the CHaracterising ExOPlanet Satellite (CHEOPS), supplemented with sector 1 and 27 Transiting Exoplanet Survey Satellite (TESS) photometry, and the All-Sky Automated Survey from the ground. The refined orbital period of AU Mic b is 8.462995 ± 0.000003 d, whereas the stellar rotational period is Prot = 4.8367 ± 0.0006 d. The two periods indicate a 7:4 spin-orbit commensurability at a precision of 0.1%. Therefore, all transits are observed in front of one of the four possible stellar central longitudes. This is strongly supported by the observation that the same complex star-spot pattern is seen in the second and third CHEOPS visits that were separated by four orbits (and seven stellar rotations). Using a bootstrap analysis we find that flares and star spots reduce the accuracy of transit parameters by up to 10% in the planet-to-star radius ratio and the accuracy on transit time by 3-4 min. Nevertheless, occulted stellar spot features independently confirm the presence of transit timing variations (TTVs) with an amplitude of at least 4 min. We find that the outer companion, AU Mic c, may cause the observed TTVs.
  •  
31.
  •  
32.
  • Bluhm, P., et al. (author)
  • Precise mass and radius of a transiting super-Earth planet orbiting the M dwarf TOI-1235: a planet in the radius gap?
  • 2020
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 639
  • Journal article (peer-reviewed)abstract
    • We report the confirmation of a transiting planet around the bright weakly active M0.5 V star TOI-1235 (TYC 4384-1735-1, V ≈ 11.5 mag), whose transit signal was detected in the photometric time series of sectors 14, 20, and 21 of the TESS space mission. We confirm the planetary nature of the transit signal, which has a period of 3.44 d, by using precise RV measurements with the CARMENES, HARPS-N, and iSHELL spectrographs, supplemented by high-resolution imaging and ground-based photometry. A comparison of the properties derived for TOI-1235 b with theoretical models reveals that the planet has a rocky composition, with a bulk density slightly higher than that of Earth. In particular, we measure a mass of Mp = 5.9 ± 0.6 M⊕ and a radius of Rp = 1.69 ± 0.08 R⊕, which together result in a density of ρp = 6.7- 1.1+ 1.3 g cm-3. When compared with other well-characterized exoplanetary systems, the particular combination of planetary radius and mass places our discovery in the radius gap, which is a transition region between rocky planets and planets with significant atmospheric envelopes. A few examples of planets occupying the radius gap are known to date. While the exact location of the radius gap for M dwarfs is still a matter of debate, our results constrain it to be located at around 1.7 R⊕ or larger at the insolation levels received by TOI-1235 b (~60 S⊕). This makes it an extremely interesting object for further studies of planet formation and atmospheric evolution.
  •  
33.
  • Bonfanti, A., et al. (author)
  • CHEOPS observations of the HD 108236 planetary system: A fifth planet, improved ephemerides, and planetary radii
  • 2021
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 646
  • Journal article (peer-reviewed)abstract
    • Context. The detection of a super-Earth and three mini-Neptunes transiting the bright (V = 9.2 mag) star HD 108236 (also known as TOI-1233) was recently reported on the basis of TESS and ground-based light curves. Aims. We perform a first characterisation of the HD 108236 planetary system through high-precision CHEOPS photometry and improve the transit ephemerides and system parameters. Methods. We characterise the host star through spectroscopic analysis and derive the radius with the infrared flux method. We constrain the stellar mass and age by combining the results obtained from two sets of stellar evolutionary tracks. We analyse the available TESS light curves and one CHEOPS transit light curve for each known planet in the system. Results. We find that HD 108236 is a Sun-like star with R? = 0.877 ± 0.008 R? , M? = 0.869-0.048+0.050 M? , and an age of 6.7-5.1+4.0 Gyr. We report the serendipitous detection of an additional planet, HD 108236 f, in one of the CHEOPS light curves. For this planet, the combined analysis of the TESS and CHEOPS light curves leads to a tentative orbital period of about 29.5 days. From the light curve analysis, we obtain radii of 1.615 ± 0.051, 2.071 ± 0.052, 2.539-0.065+0.062, 3.083 ± 0.052, and 2.017-0.057+0.052 R? for planets HD 108236 b to HD 108236 f, respectively. These values are in agreement with previous TESS-based estimates, but with an improved precision of about a factor of two. We perform a stability analysis of the system, concluding that the planetary orbits most likely have eccentricities smaller than 0.1. We also employ a planetary atmospheric evolution framework to constrain the masses of the five planets, concluding that HD 108236 b and HD 108236 c should have an Earth-like density, while the outer planets should host a low mean molecular weight envelope. Conclusions. The detection of the fifth planet makes HD 108236 the third system brighter than V = 10 mag to host more than four transiting planets. The longer time span enables us to significantly improve the orbital ephemerides such that the uncertainty on the transit times will be of the order of minutes for the years to come. A comparison of the results obtained from the TESS and CHEOPS light curves indicates that for a V - 9 mag solar-like star and a transit signal of -500 ppm, one CHEOPS transit light curve ensures the same level of photometric precision as eight TESS transits combined, although this conclusion depends on the length and position of the gaps in the light curve.
  •  
34.
  • Garcia-Closas, Montserrat, et al. (author)
  • Heterogeneity of breast cancer associations with five susceptibility loci by clinical and pathological characteristics
  • 2008
  • In: PLoS genetics. - : Public Library of Science (PLoS). - 1553-7404. ; 4:4, s. e1000054-
  • Journal article (peer-reviewed)abstract
    • A three-stage genome-wide association study recently identified single nucleotide polymorphisms (SNPs) in five loci (fibroblast growth receptor 2 (FGFR2), trinucleotide repeat containing 9 (TNRC9), mitogen-activated protein kinase 3 K1 (MAP3K1), 8q24, and lymphocyte-specific protein 1 (LSP1)) associated with breast cancer risk. We investigated whether the associations between these SNPs and breast cancer risk varied by clinically important tumor characteristics in up to 23,039 invasive breast cancer cases and 26,273 controls from 20 studies. We also evaluated their influence on overall survival in 13,527 cases from 13 studies. All participants were of European or Asian origin. rs2981582 in FGFR2 was more strongly related to ER-positive (per-allele OR (95%CI) = 1.31 (1.27-1.36)) than ER-negative (1.08 (1.03-1.14)) disease (P for heterogeneity = 10(-13)). This SNP was also more strongly related to PR-positive, low grade and node positive tumors (P = 10(-5), 10(-8), 0.013, respectively). The association for rs13281615 in 8q24 was stronger for ER-positive, PR-positive, and low grade tumors (P = 0.001, 0.011 and 10(-4), respectively). The differences in the associations between SNPs in FGFR2 and 8q24 and risk by ER and grade remained significant after permutation adjustment for multiple comparisons and after adjustment for other tumor characteristics. Three SNPs (rs2981582, rs3803662, and rs889312) showed weak but significant associations with ER-negative disease, the strongest association being for rs3803662 in TNRC9 (1.14 (1.09-1.21)). rs13281615 in 8q24 was associated with an improvement in survival after diagnosis (per-allele HR = 0.90 (0.83-0.97). The association was attenuated and non-significant after adjusting for known prognostic factors. Our findings show that common genetic variants influence the pathological subtype of breast cancer and provide further support for the hypothesis that ER-positive and ER-negative disease are biologically distinct. Understanding the etiologic heterogeneity of breast cancer may ultimately result in improvements in prevention, early detection, and treatment.
  •  
35.
  • Eiroa, C., et al. (author)
  • Cold DUst around NEarby Stars (DUNES). First results A resolved exo-Kuiper belt around the solar-like star zeta(2) Ret
  • 2010
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 518, s. L131-
  • Journal article (peer-reviewed)abstract
    • We present the first far-IR observations of the solar-type stars delta Pav, HR 8501, 51 Peg and zeta(2) Ret, taken within the context of the DUNES Herschel open time key programme (OTKP). This project uses the PACS and SPIRE instruments with the objective of studying infrared excesses due to exo-Kuiper belts around nearby solar-type stars. The observed 100 mu m fluxes from delta Pav, HR 8501, and 51 Peg agree with the predicted photospheric fluxes, excluding debris disks brighter than L-dust/L-star similar to 5 x 10(-7) (1 sigma level) around those stars. A flattened, disk-like structure with a semi-major axis of similar to 100 AU in size is detected around zeta(2) Ret. The resolved structure suggests the presence of an eccentric dust ring, which we interpret as an exo-Kuiper belt with L-dust/L-star approximate to 10(-5).
  •  
36.
  • Eiroa, C., et al. (author)
  • DUst around NEarby Stars. The survey observational results
  • 2013
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 555, s. A11-
  • Journal article (peer-reviewed)abstract
    • Context. Debris discs are a consequence of the planet formation process and constitute the fingerprints of planetesimal systems. Their solar system counterparts are the asteroid and Edgeworth-Kuiper belts. Aims. The DUNES survey aims at detecting extra-solar analogues to the Edgeworth-Kuiper belt around solar-type stars, putting in this way the solar system into context. The survey allows us to address some questions related to the prevalence and properties of planetesimal systems. Methods. We used Herschel/PACS to observe a sample of nearby FGK stars. Data at 100 and 160 mu m were obtained, complemented in some cases with observations at 70 mu m, and at 250, 350 and 500 mu m using SPIRE. The observing strategy was to integrate as deep as possible at 100 mu m to detect the stellar photosphere. Results. Debris discs have been detected at a fractional luminosity level down to several times that of the Edgeworth-Kuiper belt. The incidence rate of discs around the DUNES stars is increased from a rate of similar to 12.1% +/- 5% before Herschel to similar to 20.2% +/- 2%. A significant fraction (similar to 52%) of the discs are resolved, which represents an enormous step ahead from the previously known resolved discs. Some stars are associated with faint far-IR excesses attributed to a new class of cold discs. Although it cannot be excluded that these excesses are produced by coincidental alignment of background galaxies, statistical arguments suggest that at least some of them are true debris discs. Some discs display peculiar SEDs with spectral indexes in the 70-160 mu m range steeper than the Rayleigh-Jeans one. An analysis of the debris disc parameters suggests that a decrease might exist of the mean black body radius from the F-type to the K-type stars. In addition, a weak trend is suggested for a correlation of disc sizes and an anticorrelation of disc temperatures with the stellar age.
  •  
37.
  • Gandolfi, D., et al. (author)
  • The Transiting Multi-planet System HD15337: Two Nearly Equal-mass Planets Straddling the Radius Gap
  • 2019
  • In: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 876:2
  • Journal article (peer-reviewed)abstract
    • We report the discovery of a super-Earth and a sub-Neptune transiting the star HD 15337 (TOI-402, TIC 120896927), a bright (V = 9) K1 dwarf observed by the Transiting Exoplanet Survey Satellite (TESS) in Sectors 3 and 4. We combine the TESS photometry with archival High Accuracy Radial velocity Planet Searcher spectra to confirm the planetary nature of the transit signals and derive the masses of the two transiting planets. With an orbital period of 4.8 days, a mass of {7.51}-1.01+1.09 {M}\oplus and a radius of 1.64 ± 0.06 R ⊕, HD 15337 b joins the growing group of short-period super-Earths known to have a rocky terrestrial composition. The sub-Neptune HD 15337 c has an orbital period of 17.2 days, a mass of {8.11}-1.69+1.82 {{{M}}}\oplus , and a radius of 2.39 ± 0.12 R ⊕, suggesting that the planet might be surrounded by a thick atmospheric envelope. The two planets have similar masses and lie on opposite sides of the radius gap, and are thus an excellent testbed for planet formation and evolution theories. Assuming that HD 15337 c hosts a hydrogen-dominated envelope, we employ a recently developed planet atmospheric evolution algorithm in a Bayesian framework to estimate the history of the high-energy (extreme ultraviolet and X-ray) emission of the host star. We find that at an age of 150 Myr, the star possessed on average between 3.7 and 127 times the high-energy luminosity of the current Sun.
  •  
38.
  • Le Guen, Yann, et al. (author)
  • Multiancestry analysis of the HLA locus in Alzheimer's and Parkinson's diseases uncovers a shared adaptive immune response mediated by HLA-DRB1*04 subtypes.
  • 2023
  • In: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences (PNAS). - 1091-6490 .- 0027-8424. ; 120:36
  • Journal article (peer-reviewed)abstract
    • Across multiancestry groups, we analyzed Human Leukocyte Antigen (HLA) associations in over 176,000 individuals with Parkinson's disease (PD) and Alzheimer's disease (AD) versus controls. We demonstrate that the two diseases share the same protective association at the HLA locus. HLA-specific fine-mapping showed that hierarchical protective effects of HLA-DRB1*04 subtypes best accounted for the association, strongest with HLA-DRB1*04:04 and HLA-DRB1*04:07, and intermediary with HLA-DRB1*04:01 and HLA-DRB1*04:03. The same signal was associated with decreased neurofibrillary tangles in postmortem brains and was associated with reduced tau levels in cerebrospinal fluid and to a lower extent with increased Aβ42. Protective HLA-DRB1*04 subtypes strongly bound the aggregation-prone tau PHF6 sequence, however only when acetylated at a lysine (K311), a common posttranslational modification central to tau aggregation. An HLA-DRB1*04-mediated adaptive immune response decreases PD and AD risks, potentially by acting against tau, offering the possibility of therapeutic avenues.
  •  
39.
  • Lendl, M., et al. (author)
  • The hot dayside and asymmetric transit of WASP-189 b seen by CHEOPS
  • 2020
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 643
  • Journal article (peer-reviewed)abstract
    • The CHEOPS space mission dedicated to exoplanet follow-up was launched in December 2019, equipped with the capacity to perform photometric measurements at the 20 ppm level. As CHEOPS carries out its observations in a broad optical passband, it can provide insights into the reflected light from exoplanets and constrain the short-wavelength thermal emission for the hottest of planets by observing occultations and phase curves. Here, we report the first CHEOPS observation of an occultation, namely, that of the hot Jupiter WASP-189 b, a MP ≈ 2MJ planet orbiting an A-type star. We detected the occultation of WASP-189 b at high significance in individual measurements and derived an occultation depth of dF = 87.9 ± 4.3 ppm based on four occultations. We compared these measurements to model predictions and we find that they are consistent with an unreflective atmosphere heated to a temperature of 3435 ± 27 K, when assuming inefficient heat redistribution. Furthermore, we present two transits of WASP-189 b observed by CHEOPS. These transits have an asymmetric shape that we attribute to gravity darkening of the host star caused by its high rotation rate. We used these measurements to refine the planetary parameters, finding a ~25% deeper transit compared to the discovery paper and updating the radius of WASP-189 b to 1.619 ± 0.021RJ. We further measured the projected orbital obliquity to be λ = 86.4-4.4+2.9°, a value that is in good agreement with a previous measurement from spectroscopic observations, and derived a true obliquity of ψ = 85.4 ± 4.3°. Finally, we provide reference values for the photometric precision attained by the CHEOPS satellite: for the V = 6.6 mag star, and using a 1-h binning, we obtain a residual RMS between 10 and 17 ppm on the individual light curves, and 5.7 ppm when combining the four visits.
  •  
40.
  • Benz, W., et al. (author)
  • The CHEOPS mission
  • 2021
  • In: Experimental Astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 51:1, s. 109-151
  • Journal article (peer-reviewed)abstract
    • The CHaracterising ExOPlanet Satellite (CHEOPS) was selected on October 19, 2012, as the first small mission (S-mission) in the ESA Science Programme and successfully launched on December 18, 2019, as a secondary passenger on a Soyuz-Fregat rocket from Kourou, French Guiana. CHEOPS is a partnership between ESA and Switzerland with important contributions by ten additional ESA Member States. CHEOPS is the first mission dedicated to search for transits of exoplanets using ultrahigh precision photometry on bright stars already known to host planets. As a follow-up mission, CHEOPS is mainly dedicated to improving, whenever possible, existing radii measurements or provide first accurate measurements for a subset of those planets for which the mass has already been estimated from ground-based spectroscopic surveys. The expected photometric precision will also allow CHEOPS to go beyond measuring only transits and to follow phase curves or to search for exo-moons, for example. Finally, by unveiling transiting exoplanets with high potential for in-depth characterisation, CHEOPS will also provide prime targets for future instruments suited to the spectroscopic characterisation of exoplanetary atmospheres. To reach its science objectives, requirements on the photometric precision and stability have been derived for stars with magnitudes ranging from 6 to 12 in the V band. In particular, CHEOPS shall be able to detect Earth-size planets transiting G5 dwarf stars (stellar radius of 0.9R⊙) in the magnitude range 6 ≤ V ≤ 9 by achieving a photometric precision of 20 ppm in 6 hours of integration time. In the case of K-type stars (stellar radius of 0.7R⊙) of magnitude in the range 9 ≤ V ≤ 12, CHEOPS shall be able to detect transiting Neptune-size planets achieving a photometric precision of 85 ppm in 3 hours of integration time. This precision has to be maintained over continuous periods of observation for up to 48 hours. This precision and stability will be achieved by using a single, frame-transfer, back-illuminated CCD detector at the focal plane assembly of a 33.5 cm diameter, on-axis Ritchey-Chrétien telescope. The nearly 275 kg spacecraft is nadir-locked, with a pointing accuracy of about 1 arcsec rms, and will allow for at least 1 Gbit/day downlink. The sun-synchronous dusk-dawn orbit at 700 km altitude enables having the Sun permanently on the backside of the spacecraft thus minimising Earth stray light. A mission duration of 3.5 years in orbit is foreseen to enable the execution of the science programme. During this period, 20% of the observing time is available to the wider community through yearly ESA call for proposals, as well as through discretionary time approved by ESA’s Director of Science. At the time of this writing, CHEOPS commissioning has been completed and CHEOPS has been shown to fulfill all its requirements. The mission has now started the execution of its science programme.
  •  
41.
  •  
42.
  •  
43.
  • Quanz, S. P., et al. (author)
  • Large Interferometer For Exoplanets (LIFE) I. Improved exoplanet detection yield estimates for a large mid-infrared space-interferometer mission
  • 2022
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 664
  • Journal article (peer-reviewed)abstract
    • Context. One of the long-term goals of exoplanet science is the atmospheric characterization of dozens of small exoplanets in order to understand their diversity and search for habitable worlds and potential biosignatures. Achieving this goal requires a space mission of sufficient scale that can spatially separate the signals from exoplanets and their host stars and thus directly scrutinize the exoplanets and their atmospheres.Aims. We seek to quantify the exoplanet detection performance of a space-based mid-infrared (MIR) nulling interferometer that measures the thermal emission of exoplanets. We study the impact of various parameters and compare the performance with that of large single-aperture mission concepts that detect exoplanets in reflected light.Methods. We have developed an instrument simulator that considers all major astrophysical noise sources and coupled it with Monte Carlo simulations of a synthetic exoplanet population around main-sequence stars within 20 pc of the Sun. This allows us to quantify the number (and types) of exoplanets that our mission concept could detect. Considering single visits only, we discuss two different scenarios for distributing 2.5 yr of an initial search phase among the stellar targets. Different apertures sizes and wavelength ranges are investigated.Results. An interferometer consisting of four 2 m apertures working in the 4–18.5 μ.m wavelength range with a total instrument throughput of 5% could detect up to ≈550 exoplanets with radii between 0.5 and 6 R⊕ with an integrated S/N ≥ 7. At least ≈160 of the detected exoplanets have radii ≤1.5 R⊕. Depending on the observing scenario, ≈25–45 rocky exoplanets (objects with radii between 0.5 and 1.5 R⊕) orbiting within the empirical habitable zone (eHZ) of their host stars are among the detections. With four 3.5 m apertures, the total number of detections can increase to up to ≈770, including ≈60–80 rocky eHZ planets. With four times 1 m apertures, the maximum detection yield is ≈315 exoplanets, including ≤20 rocky eHZ planets. The vast majority of small, temperate exoplanets are detected around M dwarfs. The impact of changing the wavelength range to 3–20 μm or 6–17 μm on the detection yield is negligible.Conclusions. A large space-based MIR nulling interferometer will be able to directly detect hundreds of small, nearby exoplanets, tens of which would be habitable world candidates. This shows that such a mission can compete with large single-aperture reflected light missions. Further increasing the number of habitable world candidates, in particular around solar-type stars, appears possible via the implementation of a multi-visit strategy during the search phase. The high median S/N of most of the detected planets will allow for first estimates of their radii and effective temperatures and will help prioritize the targets for a second mission phase to obtain high-S/N thermal emission spectra, leveraging the superior diagnostic power of the MIR regime compared to shorter wavelengths.
  •  
44.
  • Cox, Angela, et al. (author)
  • A common coding variant in CASP8 is associated with breast cancer risk
  • 2007
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 39:3, s. 352-358
  • Journal article (peer-reviewed)abstract
    • The Breast Cancer Association Consortium (BCAC) has been established to conduct combined case-control analyses with augmented statistical power to try to confirm putative genetic associations with breast cancer. We genotyped nine SNPs for which there was some prior evidence of an association with breast cancer: CASP8 D302H (rs1045485), IGFBP3 -202 C --> A (rs2854744), SOD2 V16A (rs1799725), TGFB1 L10P (rs1982073), ATM S49C (rs1800054), ADH1B 3' UTR A --> G (rs1042026), CDKN1A S31R (rs1801270), ICAM5 V301I (rs1056538) and NUMA1 A794G (rs3750913). We included data from 9-15 studies, comprising 11,391-18,290 cases and 14,753-22,670 controls. We found evidence of an association with breast cancer for CASP8 D302H (with odds ratios (OR) of 0.89 (95% confidence interval (c.i.): 0.85-0.94) and 0.74 (95% c.i.: 0.62-0.87) for heterozygotes and rare homozygotes, respectively, compared with common homozygotes; P(trend) = 1.1 x 10(-7)) and weaker evidence for TGFB1 L10P (OR = 1.07 (95% c.i.: 1.02-1.13) and 1.16 (95% c.i.: 1.08-1.25), respectively; P(trend) = 2.8 x 10(-5)). These results demonstrate that common breast cancer susceptibility alleles with small effects on risk can be identified, given sufficiently powerful studies.
  •  
45.
  • Delrez, Laetitia, et al. (author)
  • Transit detection of the long-period volatile-rich super-Earth nu(2) Lupi d with CHEOPS
  • 2021
  • In: Nature Astronomy. - : Springer Science and Business Media LLC. - 2397-3366. ; :5, s. 775-787
  • Journal article (peer-reviewed)abstract
    • Exoplanets transiting bright nearby stars are key objects for advancing our knowledge of planetary formation and evolution. The wealth of photons from the host star gives detailed access to the atmospheric, interior and orbital properties of the planetary companions. nu(2) Lupi (HD 136352) is a naked-eye (V = 5.78) Sun-like star that was discovered to host three low-mass planets with orbital periods of 11.6, 27.6 and 107.6 d via radial-velocity monitoring(1). The two inner planets (b and c) were recently found to transit(2), prompting a photometric follow-up by the brand new Characterising Exoplanets Satellite (CHEOPS). Here, we report that the outer planet d is also transiting, and measure its radius and mass to be 2.56 +/- 0.09 R-circle plus and 8.82 +/- 0.94 M-circle plus, respectively. With its bright Sun-like star, long period and mild irradiation (similar to 5.7 times the irradiation of Earth), nu(2) Lupi d unlocks a completely new region in the parameter space of exoplanets amenable to detailed characterization. We refine the properties of all three planets: planet b probably has a rocky mostly dry composition, while planets c and d seem to have retained small hydrogen-helium envelopes and a possibly large water fraction. This diversity of planetary compositions makes the nu(2) Lupi system an excellent laboratory for testing formation and evolution models of low-mass planets.
  •  
46.
  •  
47.
  •  
48.
  •  
49.
  • Subjak, Jan, et al. (author)
  • TOI-503: The First Known Brown-dwarf Am-star Binary from the TESS Mission
  • 2020
  • In: Astronomical Journal. - : American Astronomical Society. - 1538-3881 .- 0004-6256. ; 159:4
  • Journal article (peer-reviewed)abstract
    • We report the discovery of an intermediate-mass transiting brown dwarf (BD), TOI-503b, from the TESS mission. TOI-503b is the first BD discovered by TESS, and it has circular orbit around a metallic-line A-type star with a period of P.=.3.6772.+/-.0.0001 days. The light curve from TESS indicates that TOI-503b transits its host star in a grazing manner, which limits the precision with which we measure the BD's radius ( = R 1.34+ R b 0.150.26 J). We obtained highresolution spectroscopic observations with the FIES, Ondr.ejov, PARAS, Tautenburg, and TRES spectrographs, and measured the mass of TOI-503b to be Mb.=.53.7.+/-.1.2 MJ. The host star has a mass of Ma.=.1.80.+/-.0.06Me, a radius of Ra.=.1.70.+/-.0.05Re, an effective temperature of Teff.=.7650.+/-.160 K, and a relatively high metallicity of 0.61.+/-.0.07 dex. We used stellar isochrones to derive the age of the system to be 180 Myr, which places its age between that of RIK 72b (a 10 Myr old BD in the Upper Scorpius stellar association) and AD 3116b (a 600 Myr old BD in the Praesepe cluster). Given the difficulty in measuring the tidal interactions between BDs and their host stars, we cannot precisely say whether this BD formed in situ or has had its orbit circularized by its host star over the relatively short age of the system. Instead, we offer an examination of plausible values for the tidal quality factor for the star and BD. TOI-503b joins a growing number of known short-period, intermediate-mass BDs orbiting mainsequence stars, and is the second such BD known to transit an A star, after HATS-70b. With the growth in the population in this regime, the driest region in the BD desert (35-55MJ sin i) is reforesting.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-49 of 49
Type of publication
journal article (48)
research review (1)
Type of content
peer-reviewed (47)
other academic/artistic (2)
Author/Editor
Ribas, I. (16)
Fridlund, Malcolm, 1 ... (14)
Rauer, H. (12)
Cabrera, J. (11)
Palle, E. (11)
Amouyel, P (10)
show more...
Ehrenreich, D. (10)
Charnoz, S. (10)
Fossati, L. (10)
Gandolfi, D. (10)
Ottensamer, R. (10)
Pagano, I. (10)
Williams, J (9)
Beck, M (9)
Walton, N. A. (9)
Davies, Melvyn B (9)
Nordestgaard, BG (9)
Erikson, Anders (9)
Barros, S.C.C. (9)
Lendl, M. (9)
Fortier, A. (9)
Demory, B.O. (9)
Sousa, S.G. (9)
Scandariato, Gaetano (9)
Alibert, Y. (9)
Alonso, R. (9)
Bárczy, T. (9)
Baumjohann, W. (9)
Beck, T. (9)
Benz, W. (9)
Billot, N. (9)
Bonfils, X. (9)
Broeg, C. (9)
Deleuil, M. (9)
Delrez, L. (9)
Gillon, Michaël (9)
Hoyer, S. (9)
Laskar, J. (9)
Magrin, D. (9)
Nascimbeni, Valerio (9)
Peter, G. (9)
Queloz, D. (9)
Rando, N. (9)
Santos, N. C. (9)
Segransan, D. (9)
Simon, A.E. (9)
Udry, S. (9)
Van Grootel, V. (9)
Olofsson, Göran (9)
Barrado, D. (9)
show less...
University
Karolinska Institutet (26)
Lund University (18)
Chalmers University of Technology (18)
Uppsala University (15)
Stockholm University (15)
University of Gothenburg (9)
show more...
Umeå University (5)
University of Skövde (5)
Royal Institute of Technology (1)
Luleå University of Technology (1)
Jönköping University (1)
Högskolan Dalarna (1)
Marie Cederschiöld högskola (1)
show less...
Language
English (49)
Research subject (UKÄ/SCB)
Natural sciences (23)
Medical and Health Sciences (13)
Engineering and Technology (6)
Social Sciences (2)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view