SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Gaspar Isabel M.) "

Search: WFRF:(Gaspar Isabel M.)

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Tinetti, G., et al. (author)
  • A chemical survey of exoplanets with ARIEL
  • 2018
  • In: Experimental Astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 46:1, s. 135-209
  • Journal article (peer-reviewed)abstract
    • Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 μm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.
  •  
2.
  • Beal, Jacob, et al. (author)
  • Robust estimation of bacterial cell count from optical density
  • 2020
  • In: Communications Biology. - : Springer Science and Business Media LLC. - 2399-3642. ; 3:1
  • Journal article (peer-reviewed)abstract
    • Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data.
  •  
3.
  •  
4.
  • Vallejo-Vaz, Antonio J., et al. (author)
  • Pooling and expanding registries of familial hypercholesterolaemia to assess gaps in care and improve disease management and outcomes: Rationale and design of the global EAS Familial Hypercholesterolaemia Studies Collaboration
  • 2016
  • In: Atherosclerosis Supplements. - : ELSEVIER IRELAND LTD. - 1567-5688 .- 1878-5050. ; 22
  • Journal article (peer-reviewed)abstract
    • Background: The potential for global collaborations to better inform public health policy regarding major non-hypercholesterolaemia (FH), a common genetic disorder associated with premature cardiovascular disease, is yet to be reliably ascertained using similar approaches. The European Atherosclerosis Society FH Studies Collaboration (EAS FHSC) is a new initiative of international stakeholders which will help establish a global FH registry to generate large-scale, robust data on the burden of FH worldwide. Methods: The EAS FHSC will maximise the potential exploitation of currently available and future FH data (retrospective and prospective) by bringing together regional/national/international data sources with access to individuals with a clinical and/or genetic diagnosis of heterozygous or homozygous FH. A novel bespoke electronic platform and FH Data Warehouse will be developed to allow secure data sharing, validation, cleaning, pooling, harmonisation and analysis irrespective of the source or format. Standard statistical procedures will allow us to investigate cross-sectional associations, patterns of real-world practice, trends over time, and analyse risk and outcomes (e.g. cardiovascular outcomes, all-cause death), accounting for potential confounders and subgroup effects. Conclusions: The EAS FHSC represents an excellent opportunity to integrate individual efforts across the world to tackle the global burden of FH. The information garnered from the registry will help reduce gaps in knowledge, inform best practices, assist in clinical trials design, support clinical guidelines and policies development, and ultimately improve the care of FH patients. (C) 2016 Elsevier Ireland Ltd.
  •  
5.
  • Matias, Marisa, et al. (author)
  • Profiles of Parental Burnout Around the Globe : Similarities and Differences Across 36 Countries
  • 2023
  • In: Cross-cultural research. - 1069-3971 .- 1552-3578. ; 57:5, s. 499-538
  • Journal article (peer-reviewed)abstract
    • Parental burnout (PB) is a pervasive phenomenon. Parenting is embedded in cultural values, and previous research has shown the role of individualism in PB. In this paper, we reanalyze previously collected data to identify profiles based on the four dimensions of PB, and explore whether these profiles vary across countries’ levels of collectivistic-individualistic (COL-IND) values. Our sample comprised 16,885 individuals from 36 countries (73% women; 27% men), and we used a latent profile approach to uncover PB profiles. The findings showed five profiles: Fulfilled, Not in PB, Low risk of PB, High risk of PB and Burned out. The profiles pointed to climbing levels of PB in the total sample and in each of the three country groups (High COL/Low IND, Medium COL-IND, Low COL/High IND). Exploratory analyses revealed that distinct dimensions of PB had the most prominent roles in the climbing pattern, depending on the countries’ levels of COL/IND. In particular, we found contrast to be a hallmark dimension and an indicator of severe burnout for individualistic countries. Contrary to our predictions, emotional distance and saturation did not allow a clear differentiation across collectivistic countries. Our findings support several research avenues regarding PB measurement and intervention.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view