SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Gerhardt Ellen) "

Search: WFRF:(Gerhardt Ellen)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Szegő, Éva M., et al. (author)
  • Cytosolic Trapping of a Mitochondrial Heat Shock Protein Is an Early Pathological Event in Synucleinopathies
  • 2019
  • In: Cell Reports. - : Elsevier BV. - 2211-1247. ; 28:1, s. 6-77
  • Journal article (peer-reviewed)abstract
    • Alpha-synuclein (aSyn) accumulates in intracellular inclusions in synucleinopathies, but the molecular mechanisms leading to disease are unclear. We identify the 10 kDa heat shock protein (HSP10) as a mediator of aSyn-induced mitochondrial impairments in striatal synaptosomes. We find an age-associated increase in the cytosolic levels of HSP10, and a concomitant decrease in the mitochondrial levels, in aSyn transgenic mice. The levels of superoxide dismutase 2, a client of the HSP10/HSP60 folding complex, and synaptosomal spare respiratory capacity are also reduced. Overexpression of HSP10 ameliorates aSyn-associated mitochondrial dysfunction and delays aSyn pathology in vitro and in vivo. Altogether, our data indicate that increased levels of aSyn induce mitochondrial deficits, at least partially, by sequestering HSP10 in the cytosol and preventing it from acting in mitochondria. Importantly, these alterations manifest first at presynaptic terminals. Our study not only provides mechanistic insight into synucleinopathies but opens new avenues for targeting underlying cellular pathologies. Szegő et al. identify HSP10 as a modulator of alpha-synuclein-induced mitochondrial impairment in striatal synaptosomes. Age-associated increase in the cytosolic and decrease in mitochondrial levels of HSP10 results in a reduction in the levels of SOD2 and of synaptosomal ATP production on demand. HSP10 overexpression delays alpha-synuclein pathology both in vitro and in vivo.
  •  
2.
  • Torres-Garcia, Laura, et al. (author)
  • Monitoring the interactions between alpha-synuclein and Tau in vitro and in vivo using bimolecular fluorescence complementation
  • 2022
  • In: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 12, s. 1-11
  • Journal article (peer-reviewed)abstract
    • Parkinson’s disease (PD) and Alzheimer’s disease (AD) are characterized by pathological accumulation and aggregation of different amyloidogenic proteins, α-synuclein (aSyn) in PD, and amyloid-β (Aβ) and Tau in AD. Strikingly, few PD and AD patients’ brains exhibit pure pathology with most cases presenting mixed types of protein deposits in the brain. Bimolecular fluorescence complementation (BiFC) is a technique based on the complementation of two halves of a fluorescent protein, which allows direct visualization of protein–protein interactions. In the present study, we assessed the ability of aSyn and Tau to interact with each other. For in vitro evaluation, HEK293 and human neuroblastoma cells were used, while in vivo studies were performed by AAV6 injection in the substantia nigra pars compacta (SNpc) of mice and rats. We observed that the co-expression of aSyn and Tau led to the emergence of fluorescence, reflecting the interaction of the proteins in cell lines, as well as in mouse and rat SNpc. Thus, our data indicates that aSyn and Tau are able to interact with each other in a biologically relevant context, and that the BiFC assay is an effective tool for studying aSyn-Tau interactions in vitro and in different rodent models in vivo.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view