SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Gomez Enrique D.) "

Search: WFRF:(Gomez Enrique D.)

  • Result 1-12 of 12
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • van Leeuwen, F., et al. (author)
  • Gaia Data Release 1 : Open cluster astrometry: Performance, limitations, and future prospects
  • 2017
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 601
  • Journal article (peer-reviewed)abstract
    • Context. The first Gaia Data Release contains the Tycho-Gaia Astrometric Solution (TGAS). This is a subset of about 2 million stars for which, besides the position and photometry, the proper motion and parallax are calculated using Hipparcos and Tycho-2 positions in 1991.25 as prior information. Aims. We investigate the scientific potential and limitations of the TGAS component by means of the astrometric data for open clusters. Methods. Mean cluster parallax and proper motion values are derived taking into account the error correlations within the astrometric solutions for individual stars, an estimate of the internal velocity dispersion in the cluster, and, where relevant, the effects of the depth of the cluster along the line of sight. Internal consistency of the TGAS data is assessed. Results. Values given for standard uncertainties are still inaccurate and may lead to unrealistic unit-weight standard deviations of least squares solutions for cluster parameters. Reconstructed mean cluster parallax and proper motion values are generally in very good agreement with earlier Hipparcos-based determination, although the Gaia mean parallax for the Pleiades is a significant exception. We have no current explanation for that discrepancy. Most clusters are observed to extend to nearly 15 pc from the cluster centre, and it will be up to future Gaia releases to establish whether those potential cluster-member stars are still dynamically bound to the clusters. Conclusions. The Gaia DR1 provides the means to examine open clusters far beyond their more easily visible cores, and can provide membership assessments based on proper motions and parallaxes. A combined HR diagram shows the same features as observed before using the Hipparcos data, with clearly increased luminosities for older A and F dwarfs.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  • Jones, Benedict C, et al. (author)
  • To which world regions does the valence-dominance model of social perception apply?
  • 2021
  • In: Nature Human Behaviour. - : Springer Science and Business Media LLC. - 2397-3374. ; 5:1, s. 159-169
  • Journal article (peer-reviewed)abstract
    • Over the past 10 years, Oosterhof and Todorov's valence-dominance model has emerged as the most prominent account of how people evaluate faces on social dimensions. In this model, two dimensions (valence and dominance) underpin social judgements of faces. Because this model has primarily been developed and tested in Western regions, it is unclear whether these findings apply to other regions. We addressed this question by replicating Oosterhof and Todorov's methodology across 11 world regions, 41 countries and 11,570 participants. When we used Oosterhof and Todorov's original analysis strategy, the valence-dominance model generalized across regions. When we used an alternative methodology to allow for correlated dimensions, we observed much less generalization. Collectively, these results suggest that, while the valence-dominance model generalizes very well across regions when dimensions are forced to be orthogonal, regional differences are revealed when we use different extraction methods and correlate and rotate the dimension reduction solution. PROTOCOL REGISTRATION: The stage 1 protocol for this Registered Report was accepted in principle on 5 November 2018. The protocol, as accepted by the journal, can be found at https://doi.org/10.6084/m9.figshare.7611443.v1 .
  •  
6.
  • Cruz, Raquel, et al. (author)
  • Novel genes and sex differences in COVID-19 severity
  • 2022
  • In: Human Molecular Genetics. - : Oxford University Press. - 0964-6906 .- 1460-2083. ; 31:22, s. 3789-3806
  • Journal article (peer-reviewed)abstract
    • Here, we describe the results of a genome-wide study conducted in 11 939 coronavirus disease 2019 (COVID-19) positive cases with an extensive clinical information that were recruited from 34 hospitals across Spain (SCOURGE consortium). In sex-disaggregated genome-wide association studies for COVID-19 hospitalization, genome-wide significance (P < 5 × 10−8) was crossed for variants in 3p21.31 and 21q22.11 loci only among males (P = 1.3 × 10−22 and P = 8.1 × 10−12, respectively), and for variants in 9q21.32 near TLE1 only among females (P = 4.4 × 10−8). In a second phase, results were combined with an independent Spanish cohort (1598 COVID-19 cases and 1068 population controls), revealing in the overall analysis two novel risk loci in 9p13.3 and 19q13.12, with fine-mapping prioritized variants functionally associated with AQP3 (P = 2.7 × 10−8) and ARHGAP33 (P = 1.3 × 10−8), respectively. The meta-analysis of both phases with four European studies stratified by sex from the Host Genetics Initiative (HGI) confirmed the association of the 3p21.31 and 21q22.11 loci predominantly in males and replicated a recently reported variant in 11p13 (ELF5, P = 4.1 × 10−8). Six of the COVID-19 HGI discovered loci were replicated and an HGI-based genetic risk score predicted the severity strata in SCOURGE. We also found more SNP-heritability and larger heritability differences by age (<60 or ≥60 years) among males than among females. Parallel genome-wide screening of inbreeding depression in SCOURGE also showed an effect of homozygosity in COVID-19 hospitalization and severity and this effect was stronger among older males. In summary, new candidate genes for COVID-19 severity and evidence supporting genetic disparities among sexes are provided.
  •  
7.
  • Tinetti, G., et al. (author)
  • A chemical survey of exoplanets with ARIEL
  • 2018
  • In: Experimental Astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 46:1, s. 135-209
  • Journal article (peer-reviewed)abstract
    • Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 μm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.
  •  
8.
  • Caggiano, N.J., et al. (author)
  • Local Chain Alignment via Nematic Ordering Reduces Chain Entanglement in Conjugated Polymers
  • 2018
  • In: Macromolecules. - : American Chemical Society (ACS). - 1520-5835 .- 0024-9297. ; 51:24, s. 10271-10284
  • Journal article (peer-reviewed)abstract
    • Chain entanglements govern the dynamics of polymers and will therefore affect the processability and kinetics of ordering; it follows that through these parameters chain dynamics can also affect charge transport in conjugated polymers. The effect of nematic coupling on chain entanglements is probed by linear viscoelastic measurements on poly[N-9′-heptadecanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole)] (PCDTBT) and poly((9,9-dioctylfluorene-2,7-diyl)-alt-(4,7-di(thiophene-2-yl)-2,1,3-benzothiadiazole)-5′,5″-diyl) (PFTBT) with varying molecular weights. We first verify the existence of nematic phases in both PFTBT and PCDTBT and identify nematic-isotropic transition temperatures, TIN, between 260 and 300 °C through a combination of differential scanning calorimetry, polarized optical microscopy, temperature-dependent X-ray scattering, and rheology. In addition, both PCDTBT and PFTBT show a glass transition temperature (Tg) and TIN, whereas only PFTBT has a melting temperature Tm of 260 °C. Comparing the molecular weight dependence of TIN with theoretical predictions of nematic phases in conjugated polymers yields the nematic coupling constant, α = (550 ± 80 K)/T + (2.1 ± 0.1), and the long-chain limit TIN as 350 ± 10 °C for PFTBT. The entanglement molecular weight (Me) in the isotropic phase is extracted to be 11 ± 1 kg/mol for PFTBT and 22 ± 2 kg/mol for PCDTBT by modeling the linear viscoelastic response. Entanglements are significantly reduced through the isotropic-to-nematic transition, leading to a 10-fold increase in Me for PFTBT and a 15-fold increase for PCDTBT in the nematic phase.
  •  
9.
  • Gomez-Espinosa, Alfonso, et al. (author)
  • Neural Network Direct Control with Online Learning for Shape Memory Alloy Manipulators
  • 2019
  • In: Sensors. - : MDPI. - 1424-8220. ; 19:11
  • Journal article (peer-reviewed)abstract
    • New actuators and materials are constantly incorporated into industrial processes, and additional challenges are posed by their complex behavior. Nonlinear hysteresis is commonly found in shape memory alloys, and the inclusion of a suitable hysteresis model in the control system allows the controller to achieve a better performance, although a major drawback is that each system responds in a unique way. In this work, a neural network direct control, with online learning, is developed for position control of shape memory alloy manipulators. Neural network weight coefficients are updated online by using the actuator position data while the controller is applied to the system, without previous training of the neural network weights, nor the inclusion of a hysteresis model. A real-time, low computational cost control system was implemented; experimental evaluation was performed on a 1-DOF manipulator system actuated by a shape memory alloy wire. Test results verified the effectiveness of the proposed control scheme to control the system angular position, compensating for the hysteretic behavior of the shape memory alloy actuator. Using a learning algorithm with a sine wave as reference signal, a maximum static error of 0.83 degrees was achieved when validated against several set-points within the possible range.
  •  
10.
  • Mattsson, Viktor, et al. (author)
  • Muscle Analyzer System : Exploring Correlation Between Novel Microwave Resonator and Ultrasound-based Tissue Information in the Thigh
  • 2022
  • In: 2022 16TH EUROPEAN CONFERENCE ON ANTENNAS AND PROPAGATION (EUCAP). - : Institute of Electrical and Electronics Engineers (IEEE). - 9788831299046
  • Conference paper (peer-reviewed)abstract
    • A microwave sensor to safely measure quality of muscle tissue for diagnosis and screening of diseases and medical conditions characterized by fat infiltration in muscle is presented. Fat infiltration in muscle may be seen by a lower dielectric constant of muscle at microwave frequencies corresponding to the large contrast between fat and muscle tissues. A planar resonator based on a bandstop filter and optimized to noninvasively interrogate muscle in the thigh on tissue quality is proposed. Currently, a study based on clinical trials is carried out, and, here, we present a preliminary correlation between skin and fat thicknesses and rectus femoris cross sectional area (CSA) measured with ultrasound and the proposed sensor's resonance frequency. CST simulations based on the ultrasound information guide the analysis. We see that although there are signs of a potential correlation between CSA and resonance, skin and fat variability is still an issue to overcome.
  •  
11.
  • Sternby, Hanna, et al. (author)
  • Determinants of Severity in Acute Pancreatitis : A Nation-wide Multicenter Prospective Cohort Study
  • 2019
  • In: Annals of Surgery. - 1528-1140. ; 270:2, s. 348-355
  • Journal article (peer-reviewed)abstract
    • OBJECTIVE: The aim of this study was to compare and validate the different classifications of severity in acute pancreatitis (AP) and to investigate which characteristics of the disease are associated with worse outcomes. SUMMARY OF BACKGROUND DATA: AP is a heterogeneous disease, ranging from uneventful cases to patients with considerable morbidity and high mortality rates. Severity classifications based on legitimate determinants of severity are important to correctly describe the course of disease. METHODS: A prospective multicenter cohort study involving patients with AP from 23 hospitals in Spain. The Atlanta Classification (AC), Revised Atlanta Classification (RAC), and Determinant-based Classification (DBC) were compared. Binary logistic multivariate analysis was performed to investigate independent determinants of severity. RESULTS: A total of 1655 patients were included; 70 patients (4.2%) died. RAC and DBC were equally superior to AC for describing the clinical course of AP. Although any kind of organ failure was associated with increased morbidity and mortality, persistent organ failure (POF) was the most significant determinant of severity. All local complications were associated with worse outcomes. Infected pancreatic necrosis correlated with high morbidity, but in the presence of POF, it was not associated to higher mortality when compared with sterile necrotizing pancreatitis. Exacerbation of previous comorbidity was associated with increased morbidity and mortality. CONCLUSION: The RAC and DBC both signify an advance in the description and differentiation of AP patients. Herein, we describe the complications of the disease independently associated to morbidity and mortality. Our findings are valuable not only when designing future studies on AP but also for the improvement of current classifications.
  •  
12.
  • Zokaei, Sepideh, 1991, et al. (author)
  • Tuning of the elastic modulus of a soft polythiophene through molecular doping
  • 2022
  • In: Materials Horizons. - : Royal Society of Chemistry (RSC). - 2051-6355 .- 2051-6347. ; 9:1, s. 433-443
  • Journal article (peer-reviewed)abstract
    • Molecular doping of a polythiophene with oligoethylene glycol side chains is found to strongly modulate not only the electrical but also the mechanical properties of the polymer. An oxidation level of up to 18% results in an electrical conductivity of more than 52 S cm(-1) and at the same time significantly enhances the elastic modulus from 8 to more than 200 MPa and toughness from 0.5 to 5.1 MJ m(-3). These changes arise because molecular doping strongly influences the glass transition temperature T-g and the degree of pi-stacking of the polymer, as indicated by both X-ray diffraction and molecular dynamics simulations. Surprisingly, a comparison of doped materials containing mono- or dianions reveals that - for a comparable oxidation level - the presence of multivalent counterions has little effect on the stiffness. Evidently, molecular doping is a powerful tool that can be used for the design of mechanically robust conducting materials, which may find use within the field of flexible and stretchable electronics.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-12 of 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view