SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Goniche M) "

Search: WFRF:(Goniche M)

  • Result 1-50 of 50
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Krasilnikov, A., et al. (author)
  • Evidence of 9 Be + p nuclear reactions during 2ω CH and hydrogen minority ICRH in JET-ILW hydrogen and deuterium plasmas
  • 2018
  • In: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 58:2
  • Journal article (peer-reviewed)abstract
    • The intensity of 9Be + p nuclear fusion reactions was experimentally studied during second harmonic (2ω CH) ion-cyclotron resonance heating (ICRH) and further analyzed during fundamental hydrogen minority ICRH of JET-ILW hydrogen and deuterium plasmas. In relatively low-density plasmas with a high ICRH power, a population of fast H+ ions was created and measured by neutral particle analyzers. Primary and secondary nuclear reaction products, due to 9Be + p interaction, were observed with fast ion loss detectors, γ-ray spectrometers and neutron flux monitors and spectrometers. The possibility of using 9Be(p, d)2α and 9Be(p, α)6Li nuclear reactions to create a population of fast alpha particles and study their behaviour in non-active stage of ITER operation is discussed in the paper.
  •  
2.
  •  
3.
  • Joffrin, E., et al. (author)
  • Overview of the JET preparation for deuterium-tritium operation with the ITER like-wall
  • 2019
  • In: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 59:11
  • Research review (peer-reviewed)abstract
    • For the past several years, the JET scientific programme (Pamela et al 2007 Fusion Eng. Des. 82 590) has been engaged in a multi-campaign effort, including experiments in D, H and T, leading up to 2020 and the first experiments with 50%/50% D-T mixtures since 1997 and the first ever D-T plasmas with the ITER mix of plasma-facing component materials. For this purpose, a concerted physics and technology programme was launched with a view to prepare the D-T campaign (DTE2). This paper addresses the key elements developed by the JET programme directly contributing to the D-T preparation. This intense preparation includes the review of the physics basis for the D-T operational scenarios, including the fusion power predictions through first principle and integrated modelling, and the impact of isotopes in the operation and physics of D-T plasmas (thermal and particle transport, high confinement mode (H-mode) access, Be and W erosion, fuel recovery, etc). This effort also requires improving several aspects of plasma operation for DTE2, such as real time control schemes, heat load control, disruption avoidance and a mitigation system (including the installation of a new shattered pellet injector), novel ion cyclotron resonance heating schemes (such as the three-ions scheme), new diagnostics (neutron camera and spectrometer, active Alfven eigenmode antennas, neutral gauges, radiation hard imaging systems...) and the calibration of the JET neutron diagnostics at 14 MeV for accurate fusion power measurement. The active preparation of JET for the 2020 D-T campaign provides an incomparable source of information and a basis for the future D-T operation of ITER, and it is also foreseen that a large number of key physics issues will be addressed in support of burning plasmas.
  •  
4.
  • Murari, A., et al. (author)
  • A control oriented strategy of disruption prediction to avoid the configuration collapse of tokamak reactors
  • 2024
  • In: Nature Communications. - 2041-1723 .- 2041-1723. ; 15:1
  • Journal article (peer-reviewed)abstract
    • The objective of thermonuclear fusion consists of producing electricity from the coalescence of light nuclei in high temperature plasmas. The most promising route to fusion envisages the confinement of such plasmas with magnetic fields, whose most studied configuration is the tokamak. Disruptions are catastrophic collapses affecting all tokamak devices and one of the main potential showstoppers on the route to a commercial reactor. In this work we report how, deploying innovative analysis methods on thousands of JET experiments covering the isotopic compositions from hydrogen to full tritium and including the major D-T campaign, the nature of the various forms of collapse is investigated in all phases of the discharges. An original approach to proximity detection has been developed, which allows determining both the probability of and the time interval remaining before an incoming disruption, with adaptive, from scratch, real time compatible techniques. The results indicate that physics based prediction and control tools can be developed, to deploy realistic strategies of disruption avoidance and prevention, meeting the requirements of the next generation of devices.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  •  
11.
  •  
12.
  •  
13.
  •  
14.
  •  
15.
  •  
16.
  •  
17.
  •  
18.
  •  
19.
  •  
20.
  •  
21.
  •  
22.
  •  
23.
  •  
24.
  •  
25.
  • Overview of the JET results
  • 2015
  • In: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 55:10
  • Journal article (peer-reviewed)
  •  
26.
  •  
27.
  • Abel, I, et al. (author)
  • Overview of the JET results with the ITER-like wall
  • 2013
  • In: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 53:10, s. 104002-
  • Journal article (peer-reviewed)abstract
    • Following the completion in May 2011 of the shutdown for the installation of the beryllium wall and the tungsten divertor, the first set of JET campaigns have addressed the investigation of the retention properties and the development of operational scenarios with the new plasma-facing materials. The large reduction in the carbon content (more than a factor ten) led to a much lower Z(eff) (1.2-1.4) during L- and H-mode plasmas, and radiation during the burn-through phase of the plasma initiation with the consequence that breakdown failures are almost absent. Gas balance experiments have shown that the fuel retention rate with the new wall is substantially reduced with respect to the C wall. The re-establishment of the baseline H-mode and hybrid scenarios compatible with the new wall has required an optimization of the control of metallic impurity sources and heat loads. Stable type-I ELMy H-mode regimes with H-98,H-y2 close to 1 and beta(N) similar to 1.6 have been achieved using gas injection. ELM frequency is a key factor for the control of the metallic impurity accumulation. Pedestal temperatures tend to be lower with the new wall, leading to reduced confinement, but nitrogen seeding restores high pedestal temperatures and confinement. Compared with the carbon wall, major disruptions with the new wall show a lower radiated power and a slower current quench. The higher heat loads on Be wall plasma-facing components due to lower radiation made the routine use of massive gas injection for disruption mitigation essential.
  •  
28.
  • Romanelli, F, et al. (author)
  • Overview of the JET results
  • 2011
  • In: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 51:9
  • Journal article (peer-reviewed)abstract
    • Since the last IAEA Conference JET has been in operation for one year with a programmatic focus on the qualification of ITER operating scenarios, the consolidation of ITER design choices and preparation for plasma operation with the ITER-like wall presently being installed in JET. Good progress has been achieved, including stationary ELMy H-mode operation at 4.5 MA. The high confinement hybrid scenario has been extended to high triangularity, lower ρ*and to pulse lengths comparable to the resistive time. The steady-state scenario has also been extended to lower ρ*and ν*and optimized to simultaneously achieve, under stationary conditions, ITER-like values of all other relevant normalized parameters. A dedicated helium campaign has allowed key aspects of plasma control and H-mode operation for the ITER non-activated phase to be evaluated. Effective sawtooth control by fast ions has been demonstrated with3He minority ICRH, a scenario with negligible minority current drive. Edge localized mode (ELM) control studies using external n = 1 and n = 2 perturbation fields have found a resonance effect in ELM frequency for specific q95values. Complete ELM suppression has, however, not been observed, even with an edge Chirikov parameter larger than 1. Pellet ELM pacing has been demonstrated and the minimum pellet size needed to trigger an ELM has been estimated. For both natural and mitigated ELMs a broadening of the divertor ELM-wetted area with increasing ELM size has been found. In disruption studies with massive gas injection up to 50% of the thermal energy could be radiated before, and 20% during, the thermal quench. Halo currents could be reduced by 60% and, using argon/deuterium and neon/deuterium gas mixtures, runaway electron generation could be avoided. Most objectives of the ITER-like ICRH antenna have been demonstrated; matching with closely packed straps, ELM resilience, scattering matrix arc detection and operation at high power density (6.2 MW m-2) and antenna strap voltages (42 kV). Coupling measurements are in very good agreement with TOPICA modelling. © 2011 IAEA, Vienna.
  •  
29.
  • Bécoulet, A., et al. (author)
  • Science and technology research and development in support to ITER and the Broader Approach at CEA
  • 2013
  • In: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 53:10
  • Journal article (peer-reviewed)abstract
    • In parallel to the direct contribution to the procurement phase of ITER and Broader Approach, CEA has initiated research & development programmes, accompanied by experiments together with a significant modelling effort, aimed at ensuring robust operation, plasma performance, as well as mitigating the risks of the procurement phase. This overview reports the latest progress in both fusion science and technology including many areas, namely the mitigation of superconducting magnet quenches, disruption-generated runaway electrons, edge-localized modes (ELMs), the development of imaging surveillance, and heating and current drive systems for steady-state operation. The WEST (W Environment for Steady-state Tokamaks) project, turning Tore Supra into an actively cooled W-divertor platform open to the ITER partners and industries, is presented.
  •  
30.
  • Lerche, E., et al. (author)
  • Optimization of ICRH for core impurity control in JET-ILW
  • 2016
  • In: Nuclear Fusion. - JET, Culham Sci Ctr, EUROfus Consortium, Abingdon OX14 3DB, Oxon, England. [Lerche, E.; Van Eester, D.; Crombe, K.; Kazakov, Y.; Krivska, A.; Ongena, J.] TEC Partner, Assoc EUROFUS Belgian State, LPP ERM KMS, Brussels, Belgium. [Lerche, E.; Jacquet, P.; Giroud, C.; Monakhov, I.; Casson, F. J.; Rimini, F.; Blackman, T.; Brix, M.; Challis, C.; Graham, M.; Kiptily, V.; Lennholm, M.; Lomas, P.; Maggi, C.; Mathews, G.; Mayoral, M. -L.; Santala, M.; Shaw, A.; Stamp, M.] Euratom CCFE Fus Assoc, Culham Sci Ctr, Abingdon, Oxon, England. [Goniche, M.; Colas, L.; Fedorczak, N.; Joffrin, E.; Monier-Garbet, P.] Assoc EUROFUS CEA, IRFM, St Paul Les Durance, France. [Bobkov, V.; Angioni, C.; Hobirk, J.; Puetterich, T.; Reich, M.] EUROFUS Assoziat, Max Planck Inst Plasmaphys, Garching, Germany. [Baruzzo, M.] EUROFUS ENEA Assoc, Consorzio RFX, Padua, Italy. [Brezinsek, S.] TEC Partner, EUROFUS Assoziat, Forschungszentrum Juelich, Julich, Germany. [Czarnecka, A.] EUROFUS Assoc, IPPLM, Warsaw, Poland. [Eriksson, J.] Uppsala Univ, Dept Phys & Astron, Assoc EUROFUS VR, Uppsala, Sweden. [Graves, J. P.] Assoc EUROFUS Confederat Suisse, CRPP EPFL, Lausanne, Switzerland. [Gorini, G.; Mantica, P.; Nocente, M.; Tardocchi, M.; Valisa, M.] EUROFUS ENEA CNR Assoc, Inst Fis Plasma, Milan, Italy. [Johnson, T.] KTH, EES, Fus Plasma Phys, Assoc EUROFUS VR, Stockholm, Sweden. [Meneses, L.; Nave, M. F.; Nunes, I.] EUROFUS IST Assoc, Inst Plasmas & Fusao Nucl, Lisbon, Portugal. [Mlynar, J.; Petrzilka, V.] EUROFUS IPP CR Assoc, Inst Plasma Phys, Prague, Czech Republic. [Petravich, G.] EUROFUS Assoc, MTA Wigner FK RMI, Budapest, Hungary. [Solano, E. R.] EUROFUS Assoc, LNF CIEMAT, Madrid, Spain. [Solano, E. R.] Culham Sci Ctr, EUROfus PMU, Abingdon OX14 3DB, Oxon, England. [Sips, G.] Culham Sci Ctr, JET Exploitat Unit, Abingdon OX14 3DB, Oxon, England. [Tsalas, M.] EUROFUS Assoc, FOM Inst DIFFER, Nieuwegein, Netherlands. : Institute of Physics (IOP). - 0029-5515 .- 1741-4326. ; 56:3
  • Journal article (peer-reviewed)abstract
    • Ion cyclotron resonance frequency (ICRF) heating has been an essential component in the development of high power H-mode scenarios in the Jet European Torus ITER-like wall (JET-ILW). The ICRF performance was improved by enhancing the antenna-plasma coupling with dedicated main chamber gas injection, including the preliminary minimization of RF-induced plasma-wall interactions, while the RF heating scenarios where optimized for core impurity screening in terms of the ion cyclotron resonance position and the minority hydrogen concentration. The impact of ICRF heating on core impurity content in a variety of 2.5 MA JET-ILW H-mode plasmas will be presented, and the steps that were taken for optimizing ICRF heating in these experiments will be reviewed.
  •  
31.
  • Hobirk, J., et al. (author)
  • The JET hybrid scenario in Deuterium, Tritium and Deuterium-Tritium
  • 2023
  • In: Nuclear Fusion. - : Institute of Physics Publishing (IOPP). - 0029-5515 .- 1741-4326. ; 63:11
  • Journal article (peer-reviewed)abstract
    • The JET hybrid scenario has been developed from low plasma current carbon wall discharges to the record-breaking Deuterium-Tritium plasmas obtained in 2021 with the ITER-like Be/W wall. The development started in pure Deuterium with refinement of the plasma current, and toroidal magnetic field choices and succeeded in solving the heat load challenges arising from 37 MW of injected power in the ITER like wall environment, keeping the radiation in the edge and core controlled, avoiding MHD instabilities and reaching high neutron rates. The Deuterium hybrid plasmas have been re-run in Tritium and methods have been found to keep the radiation controlled but not at high fusion performance probably due to time constraints. For the first time this scenario has been run in Deuterium-Tritium (50:50). These plasmas were re-optimised to have a radiation-stable H-mode entry phase, good impurity control through edge Ti gradient screening and optimised performance with fusion power exceeding 10 MW for longer than three alpha particle slow down times, 8.3 MW averaged over 5 s and fusion energy of 45.8 MJ.
  •  
32.
  • Ongena, J., et al. (author)
  • Overview of recent results on Heating and Current Drive in JET
  • 2007
  • In: RADIO FREQUENCY POWER IN PLASMAS. - : AIP. ; , s. 249-256
  • Conference paper (peer-reviewed)abstract
    • Recent progress on heating and current drive on JET is reported. Topics discussed are: high power coupling of ICRF/LH at ITER relevant antenna/launcher-separatrix distances, succesfull demonstration of 3 dB couplers for ELM tolerance of the ICRF system, influence of ICRF on LH operation, rotation studies in plasma without external momentum with standard and enhanced JET toriodal field ripple, studies of different ICRF heating schemes and of NTM avoidance schemes using Ion Cyclotron Current Drive. A brief outlook on future plans for experiments at JET is given.
  •  
33.
  • Mayoral, M. -L, et al. (author)
  • Overview of Recent Results on Heating and Current Drive in the JET tokamak
  • 2009
  • In: RADIO FREQUENCY POWER IN PLASMAS. - : AIP. - 9780735407534 ; , s. 39-46
  • Conference paper (peer-reviewed)abstract
    • In this paper, significant results in the heating and current drive domains obtained at JET in the past few years following systems upgrade and dedicated experimental time, will be reviewed. Firstly, an overview of the new Ion Cyclotron Resonance Frequency (ICRF) heating capabilities will be presented i.e. results from the ITER-Like ICRF antenna (ILA), the use of External Conjugate-T and 3dB hybrid couplers to increase the ICRF power during ELMy H-mode, Furthermore, experiments to study the influence of the phasing of the ICRF antenna on power absorption and coupling will be described. Looking at Low Hybrid (I-H) issues for ITER, the effect of the location of gas injection on the LH coupling improvement at large launcher-separatrix distances will be discussed as the possibility to operate at ITER-relevant power densities. Experiments to characterise the LH power losses in the Scrape-Off-Layer (SOL) and to determine the LH wave absorption and current drive using power modulation will be shown. Finally, plasma rotation studies in the presence of ICRF heating with standard and enhanced JET toroidal field ripple will be presented.
  •  
34.
  • Graves, J. P., et al. (author)
  • Sawtooth control in JET with ITER relevant low field side resonance ICRH and ITER like wall
  • 2014
  • In: 41st EPS Conference on Plasma Physics, EPS 2014. - : European Physical Society (EPS).
  • Conference paper (peer-reviewed)abstract
    • New experiments at JET with the ITER like wall show for the first time that ITER-relevant low field side resonance first harmonic ICRH with can be used to control sawteeth that have been initially lengthened by fast particles. In contrast to previous [J. P. Graves et al, Nature Communs 3, 624 (2012)] high field side resonance sawtooth control experiments undertaken at JET, it is found that the sawteeth of L-mode plasmas can be controlled with less accurate alignment between the resonance layer and the sawtooth inversion radius. This advantage, as well as the discovery that sawteeth can be shortened with various antenna phasings, including dipole, indicates that ICRH is a particularly effective and versatile tool that can be used in future fusion machines for controlling sawteeth. Without sawtooth control, NTMs and locked modes were triggered at very low normalised beta. High power H-mode experiments show the extent to which ICRH can be tuned to control sawteeth and NTMs while simultaneously providing effective electron heating with improved flushing of high Z core impurities. Dedicated ICRH simulations using SELFO, SCENIC and EVE, including wide drift orbit effects, explain why sawtooth control is effective with various antenna phasings, and show that the sawtooth control mechanism cannot be explained by enhancement of the magnetic shear. Hybrid kinetic-MHD stability calculations using MISHKA and HAGIS unravel the optimal sawtooth control regimes in these ITER relevant plasma conditions.
  •  
35.
  • Graves, J. P., et al. (author)
  • Sawtooth control in JET with ITER relevant low field side resonance ion cyclotron resonance heating and ITER-like wall
  • 2015
  • In: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 0741-3335 .- 1361-6587. ; 57:1, s. 014033-
  • Journal article (peer-reviewed)abstract
    • New experiments at JET with the ITER-like wall show for the first time that ITER-relevant low field side resonance first harmonic ion cyclotron resonance heating (ICRH) can be used to control sawteeth that have been initially lengthened by fast particles. In contrast to previous (Graves et al 2012 Nat. Commun. 3 624) high field side resonance sawtooth control experiments undertaken at JET, it is found that the sawteeth of L-mode plasmas can be controlled with less accurate alignment between the resonance layer and the sawtooth inversion radius. This advantage, as well as the discovery that sawteeth can be shortened with various antenna phasings, including dipole, indicates that ICRH is a particularly effective and versatile tool that can be used in future fusion machines for controlling sawteeth. Without sawtooth control, neoclassical tearing modes (NTMs) and locked modes were triggered at very low normalised beta. High power H-mode experiments show the extent to which ICRH can be tuned to control sawteeth and NTMs while simultaneously providing effective electron heating with improved flushing of high Z core impurities. Dedicated ICRH simulations using SELFO, SCENIC and EVE, including wide drift orbit effects, explain why sawtooth control is effective with various antenna phasings and show that the sawtooth control mechanism cannot be explained by enhancement of the magnetic shear. Hybrid kinetic-magnetohydrodynamic stability calculations using MISHKA and HAGIS unravel the optimal sawtooth control regimes in these ITER relevant plasma conditions.
  •  
36.
  • Ekedahl, A., et al. (author)
  • Influence of gas puff location on the coupling of lower hybrid waves in JET ELMy H-mode plasmas
  • 2012
  • In: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 0741-3335 .- 1361-6587. ; 54:7, s. 074004-
  • Journal article (peer-reviewed)abstract
    • Reliable coupling of the lower hybrid current drive (LHCD) to H-mode plasmas in JET is made feasible through a dedicated gas injection system, located at the outer wall and magnetically connected to the antenna (Pericoli Ridolfini et al 2004 Plasma Phys. Control. Fusion 46 349, Ekedahl et al 2005 Nucl. Fusion 45 351, Ekedahl et al 2009 Plasma Phys. Control. Fusion 51 044001). An experiment was carried out in JET in order to investigate whether a gas injection from the top of the torus, as is foreseen for the main gas injection in ITER, could also provide good coupling of the LH waves if magnetically connected to the antenna. The results show that a top gas injection was not efficient for providing a reliable LHCD power injection, in spite of being magnetically connected and in spite of using almost twice the amount of gas flow compared with the dedicated outer mid-plane gas puffing system. A dedicated gas injection system, set in the outer wall and magnetically connected to the LHCD antenna, is therefore recommended in order to provide the reliable coupling conditions for an LHCD antenna in ITER.
  •  
37.
  • Giroud, C., et al. (author)
  • Progress at JET in integrating ITER-relevant core and edge plasmas within the constraints of an ITER-like wall
  • 2015
  • In: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 0741-3335 .- 1361-6587. ; 57:3
  • Journal article (peer-reviewed)abstract
    • This paper reports the progress made at JET-ILW on integrating the requirements of the reference ITER baseline scenario with normalized confinement factor of 1, at a normalized pressure of 1.8 together with partially detached divertor whilst maintaining these conditions over many energy confinement times. The 2.5 MA high triangularity ELMy H-modes are studied with two different divertor configurations with D-gas injection and nitrogen seeding. The power load reduction with N seeding is reported. The relationship between an increase in energy confinement and pedestal pressure with triangularity is investigated. The operational space of both plasma configurations is studied together with the ELM energy losses and stability of the pedestal of unseeded and seeded plasmas. The achievement of stationary plasma conditions over many energy confinement times is also reported.
  •  
38.
  • Lennholm, M., et al. (author)
  • Real-time control of ELM and sawtooth frequencies : Similarities and differences
  • 2015
  • In: Nuclear Fusion. - : Institute of Physics Publishing (IOPP). - 0029-5515 .- 1741-4326. ; 56:1
  • Journal article (peer-reviewed)abstract
    • ELMs and Sawteeth, located in different parts of the plasma, are similar from a control engineering point of view. Both manifest themselves through quiescent periods interrupted by periodic collapses. For both, large collapses, following long quiescent periods, have detrimental effects while short periods are associated with decreased confinement. Following the installation of the all metal ’ITER like wall’ on JET, sawteeth and ELMs also play an important role by expelling tungsten from the core and edge of the plasma respectively. Control of tungsten has therefore been added to divertor heat load reduction, NTM avoidance and helium ash removal as reasons for requiring ELM and sawtooth control. It is therefore of interest to implement control systems to maintain the sawtooth and ELM frequencies in the desired ranges. On JET, ELM frequency control uses radial field ’kicks’ and pellet and gas injection as actuators, while sawtooth control uses ion cyclotron resonance heating (ICRH). JET experiments have, for the first time, established feedback control of the ELM frequency, via real time variation of the injected gas flow [1]. Using this controller in conjunction with pellet injection allows the ELM frequency to be kept as required despite variations in pellet ELM triggering efficiency. JET Sawtooth control experiments have, for the first time, demonstrated that low field side ICRH, as foreseen for ITER, can shorten sawteeth lengthened by central fast ions [2]. The development of ELM and sawtooth control could be key to achieve stable high performance JET discharges with minimal tungsten content. Integrating such schemes into an overall control strategy will be required in future tokamaks and gaining experience on current tokamaks is essential.
  •  
39.
  •  
40.
  • Hillairet, J., et al. (author)
  • Recent progress on lower hybrid current drive and implications for ITER
  • 2013
  • In: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 53:7
  • Journal article (peer-reviewed)abstract
    • The sustainment of steady-state plasmas in tokamaks requires efficient current drive systems. Lower hybrid current drive is currently the most efficient method to generate a continuous additional off-axis toroidal plasma current and to reduce the poloidal flux consumption during the plasma current ramp-up phase. The operation of the Tore Supra ITER-like lower hybrid (LH) launcher has demonstrated the capability to couple LH power at ITER-like power densities with very low reflected power during long pulses. In addition, the installation of eight 700 kW/CW klystrons at the LH transmitter has allowed increasing the total LH power in long-pulse scenarios. However, in order to achieve pure stationary LH-sustained plasmas, some R&D is needed to increase the reliability of all the systems and codes, from radio-frequency (RF) sources to plasma scenario prediction. The CEA/IRFM is addressing some of these issues by leading a R&D programme towards an ITER LH system and by the validation of an integrated LH modelling suite of codes. In 2011, the RF design of a mode converter was validated at a low power. A 500 kW/5 s RF window is currently under manufacture and will be tested at a high power in 2012 in collaboration with the National Fusion Research Institute. All of this work aims to reduce the operational risks associated with the ITER steady-state operations.
  •  
41.
  • Goniche, M., et al. (author)
  • Lower hybrid current drive at high density on Tore Supra
  • 2013
  • In: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 53:3
  • Journal article (peer-reviewed)abstract
    • Lower hybrid current drive (LHCD) experiments with line-averaged density varying between 1.5 x 1019 and 6 x 10(19) m(-3) are performed on the Tore Supra tokamak under quasi-steady-state conditions with respect to the fast electron dynamics. The LHCD efficiency is analysed from the fast electron bremsstrahlung (FEB) and electron cyclotron emission (ECE). The effect of plasma equilibrium and particle fuelling is documented. It is concluded that the fast decay of FEB with plasma density could be consistent with simple scaling of the current drive efficiency and FEB. Plasma edge measurements are presented looking for the effect on fast electron emission. In a specific case of particle fuelling, an anomalous decay of the hard x-ray and ECE signals suggests deleterious interaction of the wave with edge plasma.
  •  
42.
  •  
43.
  • Rantamäki, K., et al. (author)
  • LH wave coupling over ITER-like distances at JET
  • 2007
  • In: Radio Frequency Power in Plasmas. - : American Institute of Physics (AIP). - 0735404445 - 9780735404441 ; , s. 261-264
  • Conference paper (peer-reviewed)abstract
    • Good coupling of LH power at plasma-launcher distance of 15 cm has been obtained at JET. Near-gas injection is used to increase the density in front of the grill. The role of LH power in the density increase at constant gas level is demonstrated. For the first time at JET the temperature of the hot spots caused by parasitic absorption of LH power has been measured.
  •  
44.
  • Decker, J., et al. (author)
  • Modelling of LHCD at various densities in tore supra tokamak
  • 2012
  • In: 39th EPS Conference on Plasma Physics 2012, EPS 2012 and the 16th International Congress on Plasma Physics; Stockholm; Sweden; 2 July 2012 through 6 July 2012; Code 96757. - 9781622769810 ; 2, s. 934-937
  • Conference paper (peer-reviewed)
  •  
45.
  • Dumont, R.J., et al. (author)
  • Advances in multi-megawatt, long pulse operation in Tore Supra
  • 2012
  • In: 39th EPS Conference on Plasma Physics 2012, EPS 2012 and the 16th International Congress on Plasma Physics; Stockholm; Sweden; 2 July 2012 through 6 July 2012; Code 96757. - 9781622769810 ; 2, s. 1118-1121
  • Conference paper (peer-reviewed)
  •  
46.
  • Dumont, R. J., et al. (author)
  • Multi-megawatt, gigajoule plasma operation in Tore Supra
  • 2014
  • In: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 1361-6587 .- 0741-3335. ; 56:7
  • Journal article (peer-reviewed)abstract
    • Integrating several important technological elements required for long pulse operation in magnetic fusion devices, the Tore Supra tokamak routinely addresses the physics and technology issues related to this endeavor and, as a result, contributes essential information on critical issues for ITER. During the last experimental campaign, components of the radiofrequency system including an ITER relevant launcher (passive active multijunction (PAM)) and continuous wave/3.7 GHz klystrons, have been extensively qualified, and then used to develop steady state scenarios in which the lower hybrid (LH), ion cyclotron (IC) and electron cyclotron (EC) systems have been combined in fully stationary shots (duration similar to 150 s, injected power up to similar to 8MW, injected/extracted energy up to similar to 1 GJ). Injection of LH power in the 5.0-6.0MW range has extended the domain of accessible plasma parameters to higher densities and non-inductive currents. These discharges exhibit steady electron internal transport barriers (ITBs). We report here on various issues relevant to the steady state operation of future devices, ranging from operational aspects and limitations related to the achievement of long pulses in a fully actively cooled fusion device (e. g. overheating due to fast particle losses), to more fundamental plasma physics topics. The latter include a beneficial influence of IC resonance heating on the magnetohydrodynamic (MHD) stability in these discharges, which has been studied in detail. Another interesting observation is the appearance of oscillations of the central temperature with typical periods of the order of one to several seconds, caused by a nonlinear interplay between LH deposition, MHD activity and bootstrap current in the presence of an ITB.
  •  
47.
  • Ekedahl, A., et al. (author)
  • Effect of gas injection during LH wave coupling at ITER-relevant plasma-wall distances in JET
  • 2009
  • In: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 0741-3335 .- 1361-6587. ; 51:4
  • Journal article (peer-reviewed)abstract
    • Good coupling of lower hybrid (LH) waves has been demonstrated in different H-mode scenarios in JET, at high triangularity (delta similar to 0.4) and at large distance between the last closed flux surface and the LH launcher ( up to 15 cm). Local gas injection of D-2 in the region magnetically connected to the LH launcher is used for increasing the local density in the scrape-off layer ( SOL). Reciprocating Langmuir probe measurements magnetically connected to the LH launcher indicate that the electron density profile flattens in the far SOL during gas injection and LH power application. Some degradation in normalized H-mode confinement, as given by the H98(gamma,2)-factor, could be observed at high gas injection rates in these scenarios, but this was rather due to total gas injection and not specifically to the local gas puffing used for LH coupling. Furthermore, experiments carried out in L-mode plasmas in order to evaluate the effect on the LH current drive efficiency, when using local gas injection to improve the coupling, indicate only a small degradation (Delta I-LH/I-LH similar to 15%). This effect is largely compensated by the improvement in coupling and thus increase in coupled power when using gas puffing.
  •  
48.
  • Goniche, M., et al. (author)
  • Ion cyclotron resonance heating for tungsten control in various JET H-mode scenarios
  • 2017
  • In: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 0741-3335 .- 1361-6587. ; 59:5
  • Journal article (peer-reviewed)abstract
    • Ion cyclotron resonance heating (ICRH) in the hydrogen minority scheme provides central ion heating and acts favorably on the core tungsten transport. Full wave modeling shows that, at medium power level (4MW), after collisional redistribution, the ratio of power transferred to the ions and the electrons vary little with the minority (hydrogen) concentration n(H)/n(e) but the high-Z impurity screening provided by the fast ions temperature increases with the concentration. The power radiated by tungsten in the core of the JET discharges has been analyzed on a large database covering the 2013-2014 campaign. In the baseline scenario with moderate plasma current (I-p. =. 2.5 MA) ICRH modifies efficiently tungsten transport to avoid its accumulation in the plasma centre and, when the ICRH power is increased, the tungsten radiation peaking evolves as predicted by the neo-classical theory. At higher current (3-4MA), tungsten accumulation can be only avoided with 5MW of ICRH power with high gas injection rate. For discharges in the hybrid scenario, the strong initial peaking of the density leads to strong tungsten accumulation. When this initial density peaking is slightly reduced, with an ICRH power in excess of 4 MW, very low tungsten concentration in the core (similar to 10(-5)) is maintained for 3 s. MHD activity plays a key role in tungsten transport and modulation of the tungsten radiation during a sawtooth cycle is correlated to the fishbone activity triggered by the fast ion pressure gradient.
  •  
49.
  •  
50.
  • Nilsson, Emelie, 1985, et al. (author)
  • Comparative modelling of lower hybrid current drive with two launcher designs in the Tore Supra tokamak
  • 2013
  • In: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 53:8
  • Journal article (peer-reviewed)abstract
    • Fully non-inductive operation with lower hybrid current drive (LHCD) in the Tore Supra tokamak is achieved using either a fully active multijunction (FAM) launcher or a more recent ITER-relevant passive active multijunction (PAM) launcher, or both launchers simultaneously. While both antennas show comparable experimental efficiencies, the analysis of stability properties in long discharges suggest different current profiles. We present comparative modelling of LHCD with the two different launchers to characterize the effect of the respective antenna spectra on the driven current profile. The interpretative modelling of LHCD is carried out using a chain of codes calculating, respectively, the global discharge evolution (tokamak simulator METIS), the spectrum at the antenna mouth (LH coupling code ALOHA), the LH wave propagation (ray-tracing code C3PO), and the distribution function (3D Fokker-Planck code LUKE). Essential aspects of the fast electron dynamics in time, space and energy are obtained from hard x-ray measurements of fast electron bremsstrahlung emission using a dedicated tomographic system. LHCD simulations are validated by systematic comparisons between these experimental measurements and the reconstructed signal calculated by the code R5X2 from the LUKE electron distribution. An excellent agreement is obtained in the presence of strong Landau damping (found under low density and high-power conditions in Tore Supra) for which the ray-tracing model is valid for modelling the LH wave propagation. Two aspects of the antenna spectra are found to have a significant effect on LHCD. First, the driven current is found to be proportional to the directivity, which depends upon the respective weight of the main positive and main negative lobes and is particularly sensitive to the density in front of the antenna. Second, the position of the main negative lobe in the spectrum is different for the two launchers. As this lobe drives a counter-current, the resulting driven current profile is also different for the FAM and PAM launchers.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-50 of 50

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view