SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Goodhead R. M.) "

Search: WFRF:(Goodhead R. M.)

  • Result 1-6 of 6
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Gao, Hong, et al. (author)
  • The landscape of tolerated genetic variation in humans and primates
  • 2023
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 380:6648
  • Journal article (peer-reviewed)abstract
    • Personalized genome sequencing has revealed millions of genetic differences between individuals, but our understanding of their clinical relevance remains largely incomplete. To systematically decipher the effects of human genetic variants, we obtained whole-genome sequencing data for 809 individuals from 233 primate species and identified 4.3 million common protein-altering variants with orthologs in humans. We show that these variants can be inferred to have nondeleterious effects in humans based on their presence at high allele frequencies in other primate populations. We use this resource to classify 6% of all possible human protein-altering variants as likely benign and impute the pathogenicity of the remaining 94% of variants with deep learning, achieving state-of-the-art accuracy for diagnosing pathogenic variants in patients with genetic diseases.
  •  
2.
  • Kuderna, Lukas F. K., et al. (author)
  • A global catalog of whole-genome diversity from 233 primate species
  • 2023
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 380:6648, s. 906-913
  • Journal article (peer-reviewed)abstract
    • The rich diversity of morphology and behavior displayed across primate species provides an informative context in which to study the impact of genomic diversity on fundamental biological processes. Analysis of that diversity provides insight into long-standing questions in evolutionary and conservation biology and is urgent given severe threats these species are facing. Here, we present high-coverage wholegenome data from 233 primate species representing 86% of genera and all 16 families. This dataset was used, together with fossil calibration, to create a nuclear DNA phylogeny and to reassess evolutionary divergence times among primate clades. We found within-species genetic diversity across families and geographic regions to be associated with climate and sociality, but not with extinction risk. Furthermore, mutation rates differ across species, potentially influenced by effective population sizes. Lastly, we identified extensive recurrence of missense mutations previously thought to be human specific. This study will open a wide range of research avenues for future primate genomic research.
  •  
3.
  • Kuderna, Lukas F. K., et al. (author)
  • Identification of constrained sequence elements across 239 primate genomes
  • 2024
  • In: Nature. - : Springer Nature. - 0028-0836 .- 1476-4687. ; 625:7996, s. 735-742
  • Journal article (peer-reviewed)abstract
    • Noncoding DNA is central to our understanding of human gene regulation and complex diseases1,2, and measuring the evolutionary sequence constraint can establish the functional relevance of putative regulatory elements in the human genome3,4,5,6,7,8,9. Identifying the genomic elements that have become constrained specifically in primates has been hampered by the faster evolution of noncoding DNA compared to protein-coding DNA10, the relatively short timescales separating primate species11, and the previously limited availability of whole-genome sequences12. Here we construct a whole-genome alignment of 239 species, representing nearly half of all extant species in the primate order. Using this resource, we identified human regulatory elements that are under selective constraint across primates and other mammals at a 5% false discovery rate. We detected 111,318 DNase I hypersensitivity sites and 267,410 transcription factor binding sites that are constrained specifically in primates but not across other placental mammals and validate their cis-regulatory effects on gene expression. These regulatory elements are enriched for human genetic variants that affect gene expression and complex traits and diseases. Our results highlight the important role of recent evolution in regulatory sequence elements differentiating primates, including humans, from other placental mammals.
  •  
4.
  •  
5.
  • Ribeiro, F., et al. (author)
  • Uptake and elimination kinetics of silver nanoparticles and silver nitrate by Raphidocelis subcapitata: The influence of silver behaviour in solution
  • 2015
  • In: Nanotoxicology. - : Informa UK Limited. - 1743-5390 .- 1743-5404. ; 9:6, s. 686-695
  • Journal article (peer-reviewed)abstract
    • Raphidocelis subcapitata is a freshwater algae species that constitutes the basis of many aquatic trophic chains. In this study, R. subcapitata was used as a model species to investigate the kinetics of uptake and elimination of silver nanoparticles (AgNP) in comparison to silver nitrate (AgNO3) with particular focus on the Ag sized-fractions in solution. AgNP used in this study were provided in a suspension of 1mg Ag/l, with an initial size of 3-8nm and coated with an alkane material. Algae was exposed for 48 h to both AgNP and AgNO3 and sampled at different time points to determine their internal Ag concentration over time. Samples were collected and separated into different sized fractions: total (Ag-tot), water column Ag (Ag-water), small particulate Ag (Ag-small.part.) and dissolved Ag (Ag-dis). At AgNO3 exposures algae reached higher bioconcentration factor (BCF) and lower elimination rate constants than at AgNP exposures, meaning that Ag is more readily taken up by algae in its dissolved form than in its small particulate form, however slowly eliminated. When modelling the kinetics based on the Ag-dis fraction, a higher BCF was found. This supports our hypothesis that Ag would be internalised by algae only in its dissolved form. In addition, algae images obtained by Coherent Anti-stokes Raman Scattering (CARS) microscopy demonstrated large aggregates of nanoparticles external to the algae cells with no evidence of its internalisation, thus providing a strong suggestion that these AgNP were not able to penetrate the cells and Ag accumulation happens through the uptake of Ag ions.
  •  
6.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-6 of 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view