SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Gracely R. H.) "

Search: WFRF:(Gracely R. H.)

  • Result 1-7 of 7
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Giesecke, T., et al. (author)
  • Zentrale Schmerzverarbeitung bei chronischem Rückenschmerz : Hinweise auf verminderte Schmerzinhibition : Central pain processing in chronic low back pain : Evidence for reduced pain inhibition
  • 2006
  • In: Schmerz. - : Springer Science and Business Media LLC. - 0932-433X. ; 20:5, s. 411-417
  • Journal article (peer-reviewed)abstract
    • INTRODUCTION: A study of patients with low back pain (LBP) had revealed altered central pain processing. At an equal pain level LBP patients had considerably more neuronal activation in the somatosensory cortices than controls. In a new analysis of this dataset, we further investigated the differences in central pain processing between LBP patients and controls, looking for possible pathogenic mechanisms.METHODS: Central pain processing was studied by functional magnetic resonance imaging (fMRI), using equally painful pressure stimuli in a block paradigm. In this study, we reanalyzed the fMRI data to statistically compare pain-elicited neuronal activation of both groups.RESULTS: Equally painful pressure stimulation resulted in a significantly lower increase of regional cerebral blood flow (rCBF) in the periaqueductal gray (PAG) of the LBP patients. The analysis further revealed a significantly higher increase of rCBF in LBP than in HC in the primary and secondary somatosensory cortex and the lateral orbitofrontal cortex (LOFK), elicited by these same stimuli.CONCLUSIONS: These findings support a dysfunction of the inhibitory systems controlled by the PAG as a possible pathogenic mechanism in chronic low back pain.
  •  
2.
  • Petzke, F, et al. (author)
  • Using fMRI to evaluate the effects of milnacipran on central pain processing in patients with fibromyalgia.
  • 2013
  • In: Scandinavian Journal of Pain. - : Walter de Gruyter GmbH. - 1877-8860 .- 1877-8879. ; 4:2, s. 65-74
  • Journal article (peer-reviewed)abstract
    • Background In recent years, the prescription of serotonin-noradrenalin reuptake inhibitors (SNRIs) for treatment of fibromyalgia (FM) has increased with reports of their efficacy. The SNRI milnacipran is approved by the U.S. Food and Drug Administration (FDA) for treatment of FM, yet, the mechanisms by which milnacipran reduces FM symptoms are unknown. A large number of neuroimaging studies have demonstrated altered brain function in patients with FM but the effect of milnacipran on central pain processing has not been investigated. The primary objective of this study was to assess the effect of milnacipran on sensitivity to pressure-evoked pain in FM. Secondary objectives were to assess the effect of milnacipran on cerebral processing of pressure-evoked pain using fMRI and the tolerability and safety of milnacipran 200 mg/day in FM. Methods 92 patients were randomized to either 13-weeks milnacipran treatment (200 mg/day) or placebo in this double-blind, placebo-controlled multicenter clinical trial. Psychophysical measures and functional MRI (fMRI) assessments were performed before and after treatment using a computer-controlled pressure-pain stimulator. Here, we present the results of several a priori defined statistical analyses. Results Milnacipran-treated patients displayed a trend toward lower pressure-pain sensitivity after treatment, compared to placebo, and the difference was greater at higher pain intensities. A single group fMRI analysis of milnacipran-treated patients indicated increased pain-evoked brain activity in the caudatus nucleus, anterior insula and amygdala after treatment, compared to before treatment; regions implicated in pain inhibitory processes. A 2 × 2 repeated measures fMRI analysis, comparing milnacipran and placebo, before and after treatment, showed that milnacipran-treated patients had greater pain-evoked activity in the precuneus/posterior cingulate cortex after treatment; a region previously implicated in intrinsic brain function and FM pathology. This finding was only significant when uncorrected for multiple comparisons. The safety analysis revealed that patients from both treatment groups had treatment-emergent adverse events where nausea was the most common complaint, reported by 43.5% of placebo patients and 71.7% of milnacipran-treated patients. Patients on milnacipran were more likely to discontinue treatment because of side effects. Conclusions Our results provide preliminary indications of increased pain inhibitory responses in milnacipran-treated FM patients, compared to placebo. The psychophysical assessments did not reach statistical significance but reveal a trend toward higher pressure-pain tolerance after treatment with milnacipran, compared to placebo, especially for higher pain intensities. Our fMRI analyses point toward increased activation of the precuneus/posterior cingulum in patients treated with milnacipran, however results were not corrected for multiple comparisons. The precuneus/posterior cingulum is a key region of the default mode network and has previously been associated with abnormal function in FM. Future studies may further explore activity within the default mode network as a potential biomarker for abnormal central pain processing. Implications The present study provides novel insights for future studies where functional neuroimaging may be used to elucidate the central mechanisms of common pharmacological treatments for chronic pain. Furthermore, our results point toward a potential mechanism for pain normalization in response to milnacipran, involving regions of the default mode network although this finding needs to be replicated in future studies.
  •  
3.
  •  
4.
  • Gerstner, G. E., et al. (author)
  • Posterior Insular Molecular Changes in Myofascial Pain
  • 2012
  • In: Journal of Dental Research. - : SAGE Publications. - 0022-0345 .- 1544-0591. ; 91:5, s. 485-490
  • Journal article (peer-reviewed)abstract
    • Temporomandibular disorders (TMD) include craniocervical pain conditions with unclear etiologies. Central changes are suspected; however, few neuroimaging studies of TMD exist. Single-voxel proton magnetic resonance spectroscopy (H-1-MRS) was used before and after pressure-pain testing to assess glutamate (Glu), glutamine (Gln), N-acetylaspartate (NAA), and choline (Cho) levels in the right and left posterior insulae of 11 individuals with myofascial TMD and 11 matched control individuals. Glu levels were significantly lower in all individuals after pain testing. Among those with TMD, left-insular Gln levels were related to reported pain, left posterior insular NAA and Cho levels were significantly higher at baseline than in control individuals, and NAA levels were significantly correlated with pain-symptom duration, suggesting adaptive changes. The results suggest that significant central cellular and molecular changes can occur in individuals with TMD.
  •  
5.
  • Giesecke, T., et al. (author)
  • Evidence of augmented central pain processing in idiopathic chronic low back pain
  • 2004
  • In: Arthritis Rheum. - : Wiley. - 0004-3591. ; 50:2, s. 613-23
  • Journal article (peer-reviewed)abstract
    • OBJECTIVE: For many individuals with chronic low back pain (CLBP), there is no identifiable cause. In other idiopathic chronic pain conditions, sensory testing and functional magnetic resonance imaging (fMRI) have identified the occurrence of generalized increased pain sensitivity, hyperalgesia, and altered brain processing, suggesting central augmentation of pain processing in such conditions. We compared the results of both of these methods as applied to patients with idiopathic CLBP (n = 11), patients with widespread pain (fibromyalgia; n = 16), and healthy control subjects (n = 11). METHODS: Patients with CLBP had low back pain persisting for at least 12 months that was unexplained by MRI/radiographic changes. Experimental pain testing was performed at a neutral site (thumbnail) to assess the pressure-pain threshold in all subjects. For fMRI studies, stimuli of equal pressure (2 kg) and of equal subjective pain intensity (slightly intense pain) were applied to this same site. RESULTS: Despite low numbers of tender points in the CLBP group, experimental pain testing revealed hyperalgesia in this group as well as in the fibromyalgia group; the pressure required to produce slightly intense pain was significantly higher in the controls (5.6 kg) than in the patients with CLBP (3.9 kg) (P = 0.03) or the patients with fibromyalgia (3.5 kg) (P = 0.006). When equal amounts of pressure were applied to the 3 groups, fMRI detected 5 common regions of neuronal activation in pain-related cortical areas in the CLBP and fibromyalgia groups (in the contralateral primary and secondary [S2] somatosensory cortices, inferior parietal lobule, cerebellum, and ipsilateral S2). This same stimulus resulted in only a single activation in controls (in the contralateral S2 somatosensory cortex). When subjects in the 3 groups received stimuli that evoked subjectively equal pain, fMRI revealed common neuronal activations in all 3 groups. CONCLUSION: At equal levels of pressure, patients with CLBP or fibromyalgia experienced significantly more pain and showed more extensive, common patterns of neuronal activation in pain-related cortical areas. When stimuli that elicited equally painful responses were applied (requiring significantly lower pressure in both patient groups as compared with the control group), neuronal activations were similar among the 3 groups. These findings are consistent with the occurrence of augmented central pain processing in patients with idiopathic CLBP.
  •  
6.
  • Jensen, Karin B, et al. (author)
  • Patients with fibromyalgia display less functional connectivity in the brain's pain inhibitory network.
  • 2012
  • In: Molecular Pain. - : SAGE Publications. - 1744-8069. ; 8
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: There is evidence for augmented processing of pain and impaired endogenous pain inhibition in Fibromyalgia syndrome (FM). In order to fully understand the mechanisms involved in FM pathology, there is a need for closer investigation of endogenous pain modulation. In the present study, we compared the functional connectivity of the descending pain inhibitory network in age-matched FM patients and healthy controls (HC).We performed functional magnetic resonance imaging (fMRI) in 42 subjects; 14 healthy and 28 age-matched FM patients (2 patients per HC), during randomly presented, subjectively calibrated pressure pain stimuli. A seed-based functional connectivity analysis of brain activity was performed. The seed coordinates were based on the findings from our previous study, comparing the fMRI signal during calibrated pressure pain in FM and HC: the rostral anterior cingulate cortex (rACC) and thalamus.RESULTS: FM patients required significantly less pressure (kPa) to reach calibrated pain at 50 mm on a 0-100 visual analogue scale (p < .001, two-tailed). During fMRI scanning, the rACC displayed significantly higher connectivity to the amygdala, hippocampus, and brainstem in healthy controls, compared to FM patients. There were no regions where FM patients showed higher rACC connectivity. Thalamus showed significantly higher connectivity to the orbitofrontal cortex in healthy controls but no regions showed higher thalamic connectivity in FM patients.CONCLUSION: Patients with FM displayed less connectivity within the brain's pain inhibitory network during calibrated pressure pain, compared to healthy controls. The present study provides brain-imaging evidence on how brain regions involved in homeostatic control of pain are less connected in FM patients. It is possible that the dysfunction of the descending pain modulatory network plays an important role in maintenance of FM pain and our results may translate into clinical implications by using the functional connectivity of the pain modulatory network as an objective measure of pain dysregulation.
  •  
7.
  • Jensen, Karin B, et al. (author)
  • Segregating the cerebral mechanisms of antidepressants and placebo in fibromyalgia.
  • 2014
  • In: Journal of Pain. - : Elsevier BV. - 1526-5900 .- 1528-8447. ; 15:12, s. 1328-37
  • Journal article (peer-reviewed)abstract
    • UNLABELLED: Antidepressant drugs are commonly used to treat fibromyalgia, but there is little knowledge about their mechanisms of action. The aim of this study was to compare the cerebral and behavioral response to positive treatment effects of antidepressants or placebo. Ninety-two fibromyalgia patients participated in a 12-week, double-blind, placebo-controlled clinical trial with milnacipran, a serotonin-norepinephrine reuptake inhibitor. Before and after treatment, measures of cerebral pain processing were obtained using functional magnetic resonance imaging. Also, there were stimulus response assessments of pressure pain, measures of weekly pain, and fibromyalgia impact. Following treatment, milnacipran responders exhibited significantly higher activity in the posterior cingulum compared with placebo responders. The mere exposure to milnacipran did not explain our findings because milnacipran responders exhibited increased activity also in comparison to milnacipran nonresponders. Stimulus response assessments revealed specific antihyperalgesic effects in milnacipran responders, which was also correlated with reduced clinical pain and with increased activation of the posterior cingulum. A short history of pain predicted positive treatment response to milnacipran. We report segregated neural mechanisms for positive responses to treatment with milnacipran and placebo, reflected in the posterior cingulum. The increase of pain-evoked activation in the posterior cingulum may reflect a normalization of altered default mode network processing, an alteration implicated in fibromyalgia pathophysiology.PERSPECTIVE: This study presents neural and psychophysical correlates to positive treatment responses in patients with fibromyalgia, treated with either milnacipran or placebo. The comparison between placebo responders and milnacipran responders may shed light on the specific mechanisms involved in antidepressant treatment of chronic pain.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-7 of 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view