SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Green Andrew) "

Search: WFRF:(Green Andrew)

  • Result 1-50 of 108
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Kattge, Jens, et al. (author)
  • TRY plant trait database - enhanced coverage and open access
  • 2020
  • In: Global Change Biology. - : Wiley-Blackwell. - 1354-1013 .- 1365-2486. ; 26:1, s. 119-188
  • Journal article (peer-reviewed)abstract
    • Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.
  •  
2.
  • Manning, Alisa, et al. (author)
  • A Low-Frequency Inactivating AKT2 Variant Enriched in the Finnish Population Is Associated With Fasting Insulin Levels and Type 2 Diabetes Risk
  • 2017
  • In: Diabetes. - : AMER DIABETES ASSOC. - 0012-1797 .- 1939-327X. ; 66:7, s. 2019-2032
  • Journal article (peer-reviewed)abstract
    • To identify novel coding association signals and facilitate characterization of mechanisms influencing glycemic traits and type 2 diabetes risk, we analyzed 109,215 variants derived from exome array genotyping together with an additional 390,225 variants from exome sequence in up to 39,339 normoglycemic individuals from five ancestry groups. We identified a novel association between the coding variant (p.Pro50Thr) in AKT2 and fasting plasma insulin (FI), a gene in which rare fully penetrant mutations are causal for monogenic glycemic disorders. The low-frequency allele is associated with a 12% increase in FI levels. This variant is present at 1.1% frequency in Finns but virtually absent in individuals from other ancestries. Carriers of the FI-increasing allele had increased 2-h insulin values, decreased insulin sensitivity, and increased risk of type 2 diabetes (odds ratio 1.05). In cellular studies, the AKT2-Thr50 protein exhibited a partial loss of function. We extend the allelic spectrum for coding variants in AKT2 associated with disorders of glucose homeostasis and demonstrate bidirectional effects of variants within the pleckstrin homology domain of AKT2.
  •  
3.
  • Palmer, Nicholette D, et al. (author)
  • A genome-wide association search for type 2 diabetes genes in African Americans.
  • 2012
  • In: PloS one. - San Francisco : Public Library of Science (PLoS). - 1932-6203. ; 7:1, s. e29202-
  • Journal article (peer-reviewed)abstract
    • African Americans are disproportionately affected by type 2 diabetes (T2DM) yet few studies have examined T2DM using genome-wide association approaches in this ethnicity. The aim of this study was to identify genes associated with T2DM in the African American population. We performed a Genome Wide Association Study (GWAS) using the Affymetrix 6.0 array in 965 African-American cases with T2DM and end-stage renal disease (T2DM-ESRD) and 1029 population-based controls. The most significant SNPs (n = 550 independent loci) were genotyped in a replication cohort and 122 SNPs (n = 98 independent loci) were further tested through genotyping three additional validation cohorts followed by meta-analysis in all five cohorts totaling 3,132 cases and 3,317 controls. Twelve SNPs had evidence of association in the GWAS (P<0.0071), were directionally consistent in the Replication cohort and were associated with T2DM in subjects without nephropathy (P<0.05). Meta-analysis in all cases and controls revealed a single SNP reaching genome-wide significance (P<2.5×10(-8)). SNP rs7560163 (P = 7.0×10(-9), OR (95% CI) = 0.75 (0.67-0.84)) is located intergenically between RND3 and RBM43. Four additional loci (rs7542900, rs4659485, rs2722769 and rs7107217) were associated with T2DM (P<0.05) and reached more nominal levels of significance (P<2.5×10(-5)) in the overall analysis and may represent novel loci that contribute to T2DM. We have identified novel T2DM-susceptibility variants in the African-American population. Notably, T2DM risk was associated with the major allele and implies an interesting genetic architecture in this population. These results suggest that multiple loci underlie T2DM susceptibility in the African-American population and that these loci are distinct from those identified in other ethnic populations.
  •  
4.
  • Pinto, Dalila, et al. (author)
  • Functional impact of global rare copy number variation in autism spectrum disorders.
  • 2010
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 466:7304, s. 368-372
  • Journal article (peer-reviewed)abstract
    • The autism spectrum disorders (ASDs) are a group of conditions characterized by impairments in reciprocal social interaction and communication, and the presence of restricted and repetitive behaviours. Individuals with an ASD vary greatly in cognitive development, which can range from above average to intellectual disability. Although ASDs are known to be highly heritable ( approximately 90%), the underlying genetic determinants are still largely unknown. Here we analysed the genome-wide characteristics of rare (<1% frequency) copy number variation in ASD using dense genotyping arrays. When comparing 996 ASD individuals of European ancestry to 1,287 matched controls, cases were found to carry a higher global burden of rare, genic copy number variants (CNVs) (1.19 fold, P = 0.012), especially so for loci previously implicated in either ASD and/or intellectual disability (1.69 fold, P = 3.4 x 10(-4)). Among the CNVs there were numerous de novo and inherited events, sometimes in combination in a given family, implicating many novel ASD genes such as SHANK2, SYNGAP1, DLGAP2 and the X-linked DDX53-PTCHD1 locus. We also discovered an enrichment of CNVs disrupting functional gene sets involved in cellular proliferation, projection and motility, and GTPase/Ras signalling. Our results reveal many new genetic and functional targets in ASD that may lead to final connected pathways.
  •  
5.
  • Flannick, Jason, et al. (author)
  • Data Descriptor : Sequence data and association statistics from 12,940 type 2 diabetes cases and controls
  • 2017
  • In: Scientific Data. - : Springer Science and Business Media LLC. - 2052-4463. ; 4
  • Journal article (peer-reviewed)abstract
    • To investigate the genetic basis of type 2 diabetes (T2D) to high resolution, the GoT2D and T2D-GENES consortia catalogued variation from whole-genome sequencing of 2,657 European individuals and exome sequencing of 12,940 individuals of multiple ancestries. Over 27M SNPs, indels, and structural variants were identified, including 99% of low-frequency (minor allele frequency [MAF] 0.1-5%) non-coding variants in the whole-genome sequenced individuals and 99.7% of low-frequency coding variants in the whole-exome sequenced individuals. Each variant was tested for association with T2D in the sequenced individuals, and, to increase power, most were tested in larger numbers of individuals (> 80% of low-frequency coding variants in similar to ~82 K Europeans via the exome chip, and similar to ~90% of low-frequency non-coding variants in similar to ~44 K Europeans via genotype imputation). The variants, genotypes, and association statistics from these analyses provide the largest reference to date of human genetic information relevant to T2D, for use in activities such as T2D-focused genotype imputation, functional characterization of variants or genes, and other novel analyses to detect associations between sequence variation and T2D.
  •  
6.
  • Fuchsberger, Christian, et al. (author)
  • The genetic architecture of type 2 diabetes
  • 2016
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 536:7614, s. 41-47
  • Journal article (peer-reviewed)abstract
    • The genetic architecture of common traits, including the number, frequency, and effect sizes of inherited variants that contribute to individual risk, has been long debated. Genome-wide association studies have identified scores of common variants associated with type 2 diabetes, but in aggregate, these explain only a fraction of the heritability of this disease. Here, to test the hypothesis that lower-frequency variants explain much of the remainder, the GoT2D and T2D-GENES consortia performed whole-genome sequencing in 2,657 European individuals with and without diabetes, and exome sequencing in 12,940 individuals from five ancestry groups. To increase statistical power, we expanded the sample size via genotyping and imputation in a further 111,548 subjects. Variants associated with type 2 diabetes after sequencing were overwhelmingly common and most fell within regions previously identified by genome-wide association studies. Comprehensive enumeration of sequence variation is necessary to identify functional alleles that provide important clues to disease pathophysiology, but large-scale sequencing does not support the idea that lower-frequency variants have a major role in predisposition to type 2 diabetes.
  •  
7.
  • Gaulton, Kyle J, et al. (author)
  • Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci.
  • 2015
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 47:12, s. 1415-1415
  • Journal article (peer-reviewed)abstract
    • We performed fine mapping of 39 established type 2 diabetes (T2D) loci in 27,206 cases and 57,574 controls of European ancestry. We identified 49 distinct association signals at these loci, including five mapping in or near KCNQ1. 'Credible sets' of the variants most likely to drive each distinct signal mapped predominantly to noncoding sequence, implying that association with T2D is mediated through gene regulation. Credible set variants were enriched for overlap with FOXA2 chromatin immunoprecipitation binding sites in human islet and liver cells, including at MTNR1B, where fine mapping implicated rs10830963 as driving T2D association. We confirmed that the T2D risk allele for this SNP increases FOXA2-bound enhancer activity in islet- and liver-derived cells. We observed allele-specific differences in NEUROD1 binding in islet-derived cells, consistent with evidence that the T2D risk allele increases islet MTNR1B expression. Our study demonstrates how integration of genetic and genomic information can define molecular mechanisms through which variants underlying association signals exert their effects on disease.
  •  
8.
  • Hibar, Derrek P., et al. (author)
  • Novel genetic loci associated with hippocampal volume
  • 2017
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 8
  • Journal article (peer-reviewed)abstract
    • The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (r(g) = -0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness.
  •  
9.
  • Satizabal, Claudia L., et al. (author)
  • Genetic architecture of subcortical brain structures in 38,851 individuals
  • 2019
  • In: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 51:11, s. 1624-
  • Journal article (peer-reviewed)abstract
    • Subcortical brain structures are integral to motion, consciousness, emotions and learning. We identified common genetic variation related to the volumes of the nucleus accumbens, amygdala, brainstem, caudate nucleus, globus pallidus, putamen and thalamus, using genome-wide association analyses in almost 40,000 individuals from CHARGE, ENIGMA and UK Biobank. We show that variability in subcortical volumes is heritable, and identify 48 significantly associated loci (40 novel at the time of analysis). Annotation of these loci by utilizing gene expression, methylation and neuropathological data identified 199 genes putatively implicated in neurodevelopment, synaptic signaling, axonal transport, apoptosis, inflammation/infection and susceptibility to neurological disorders. This set of genes is significantly enriched for Drosophila orthologs associated with neurodevelopmental phenotypes, suggesting evolutionarily conserved mechanisms. Our findings uncover novel biology and potential drug targets underlying brain development and disease.
  •  
10.
  • Niemi, MEK, et al. (author)
  • 2021
  • swepub:Mat__t
  •  
11.
  • Anney, Richard, et al. (author)
  • A genome-wide scan for common alleles affecting risk for autism.
  • 2010
  • In: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 19:20, s. 4072-4082
  • Journal article (peer-reviewed)abstract
    • Although autism spectrum disorders (ASDs) have a substantial genetic basis, most of the known genetic risk has been traced to rare variants, principally copy number variants (CNVs). To identify common risk variation, the Autism Genome Project (AGP) Consortium genotyped 1558 rigorously defined ASD families for 1 million single-nucleotide polymorphisms (SNPs) and analyzed these SNP genotypes for association with ASD. In one of four primary association analyses, the association signal for marker rs4141463, located within MACROD2, crossed the genome-wide association significance threshold of P < 5 × 10(-8). When a smaller replication sample was analyzed, the risk allele at rs4141463 was again over-transmitted; yet, consistent with the winner's curse, its effect size in the replication sample was much smaller; and, for the combined samples, the association signal barely fell below the P < 5 × 10(-8) threshold. Exploratory analyses of phenotypic subtypes yielded no significant associations after correction for multiple testing. They did, however, yield strong signals within several genes, KIAA0564, PLD5, POU6F2, ST8SIA2 and TAF1C.
  •  
12.
  • Anney, Richard, et al. (author)
  • Individual common variants exert weak effects on the risk for autism spectrum disorders.
  • 2012
  • In: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 21:21, s. 4781-92
  • Journal article (peer-reviewed)abstract
    • While it is apparent that rare variation can play an important role in the genetic architecture of autism spectrum disorders (ASD), the contribution of common variation to ASD risk is less clear. To produce a more comprehensive picture, we report Stage 2 of the Autism Genome Project genome-wide association study, adding 1301 ASD families and bringing the total to 2705 families analysed (Stages 1 and 2). In addition to evaluating association of individual SNPs, we also sought evidence that common variants, en masse, might affect risk. Despite genotyping over a million SNPs covering the genome, no single SNP shows significant association with ASD or selected phenotypes at a genome-wide level. The SNP that achieves the smallest p-value from secondary analyses is rs1718101. It falls in CNTNAP2, a gene previously implicated in susceptibility for ASD. This SNP also shows modest association with age of word/phrase acquisition in ASD subjects, of interest because features of language development are also associated with other variation in CNTNAP2. By contrast, allele-scores derived from the transmission of common alleles to Stage 1 cases significantly predict case-status in the independent Stage 2 sample. Despite being significant, the variance explained by these allele scores was small (Vm< 1%). Based on results from individual SNPs and their en masse effect on risk, as inferred from the allele-score results, it is reasonable to conclude that common variants affect ASD risk but their individual effects are modest.
  •  
13.
  •  
14.
  • Perry, John R. B., et al. (author)
  • Stratifying Type 2 Diabetes Cases by BMI Identifies Genetic Risk Variants in LAMA1 and Enrichment for Risk Variants in Lean Compared to Obese Cases
  • 2012
  • In: PLoS Genetics. - : Public Library of Science (PLoS). - 1553-7404. ; 8:5
  • Journal article (peer-reviewed)abstract
    • Common diseases such as type 2 diabetes are phenotypically heterogeneous. Obesity is a major risk factor for type 2 diabetes, but patients vary appreciably in body mass index. We hypothesized that the genetic predisposition to the disease may be different in lean (BMI<25 Kg/m(2)) compared to obese cases (BMI >= 30 Kg/m(2)). We performed two case-control genome-wide studies using two accepted cut-offs for defining individuals as overweight or obese. We used 2,112 lean type 2 diabetes cases (BMI<25 kg/m(2)) or 4,123 obese cases (BMI >= 30 kg/m(2)), and 54,412 un-stratified controls. Replication was performed in 2,881 lean cases or 8,702 obese cases, and 18,957 un-stratified controls. To assess the effects of known signals, we tested the individual and combined effects of SNPs representing 36 type 2 diabetes loci. After combining data from discovery and replication datasets, we identified two signals not previously reported in Europeans. A variant (rs8090011) in the LAMA1 gene was associated with type 2 diabetes in lean cases (P = 8.4610 29, OR = 1.13 [95% CI 1.09-1.18]), and this association was stronger than that in obese cases (P = 0.04, OR = 1.03 [95% CI 1.00-1.06]). A variant in HMG20A-previously identified in South Asians but not Europeans-was associated with type 2 diabetes in obese cases (P = 1.3 x 10(-8), OR= 1.11 [95% CI 1.07-1.15]), although this association was not significantly stronger than that in lean cases (P = 0.02, OR = 1.09 [95% CI 1.02-1.17]). For 36 known type 2 diabetes loci, 29 had a larger odds ratio in the lean compared to obese (binomial P = 0.0002). In the lean analysis, we observed a weighted per-risk allele OR = 1.13 [95% CI 1.10-1.17], P = 3.2 x 10(-14). This was larger than the same model fitted in the obese analysis where the OR = 1.06 [95% CI 1.05-1.08], P = 2.2 x 10(-16). This study provides evidence that stratification of type 2 diabetes cases by BMI may help identify additional risk variants and that lean cases may have a stronger genetic predisposition to type 2 diabetes.
  •  
15.
  • 2021
  • swepub:Mat__t
  •  
16.
  • Kanai, M, et al. (author)
  • 2023
  • swepub:Mat__t
  •  
17.
  • Ade, Peter, et al. (author)
  • The Simons Observatory : science goals and forecasts
  • 2019
  • In: Journal of Cosmology and Astroparticle Physics. - : IOP Publishing. - 1475-7516. ; :2
  • Journal article (peer-reviewed)abstract
    • The Simons Observatory (SO) is a new cosmic microwave background experiment being built on Cerro Toco in Chile, due to begin observations in the early 2020s. We describe the scientific goals of the experiment, motivate the design, and forecast its performance. SO will measure the temperature and polarization anisotropy of the cosmic microwave background in six frequency bands centered at: 27, 39, 93, 145, 225 and 280 GHz. The initial con figuration of SO will have three small-aperture 0.5-m telescopes and one large-aperture 6-m telescope, with a total of 60,000 cryogenic bolometers. Our key science goals are to characterize the primordial perturbations, measure the number of relativistic species and the mass of neutrinos, test for deviations from a cosmological constant, improve our understanding of galaxy evolution, and constrain the duration of reionization. The small aperture telescopes will target the largest angular scales observable from Chile, mapping approximate to 10% of the sky to a white noise level of 2 mu K-arcmin in combined 93 and 145 GHz bands, to measure the primordial tensor-to-scalar ratio, r, at a target level of sigma(r) = 0.003. The large aperture telescope will map approximate to 40% of the sky at arcminute angular resolution to an expected white noise level of 6 mu K-arcmin in combined 93 and 145 GHz bands, overlapping with the majority of the Large Synoptic Survey Telescope sky region and partially with the Dark Energy Spectroscopic Instrument. With up to an order of magnitude lower polarization noise than maps from the Planck satellite, the high-resolution sky maps will constrain cosmological parameters derived from the damping tail, gravitational lensing of the microwave background, the primordial bispectrum, and the thermal and kinematic Sunyaev-Zel'dovich effects, and will aid in delensing the large-angle polarization signal to measure the tensor-to-scalar ratio. The survey will also provide a legacy catalog of 16,000 galaxy clusters and more than 20,000 extragalactic sources.
  •  
18.
  • Birney, Ewan, et al. (author)
  • Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project
  • 2007
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 447:7146, s. 799-816
  • Journal article (peer-reviewed)abstract
    • We report the generation and analysis of functional data from multiple, diverse experiments performed on a targeted 1% of the human genome as part of the pilot phase of the ENCODE Project. These data have been further integrated and augmented by a number of evolutionary and computational analyses. Together, our results advance the collective knowledge about human genome function in several major areas. First, our studies provide convincing evidence that the genome is pervasively transcribed, such that the majority of its bases can be found in primary transcripts, including non-protein-coding transcripts, and those that extensively overlap one another. Second, systematic examination of transcriptional regulation has yielded new understanding about transcription start sites, including their relationship to specific regulatory sequences and features of chromatin accessibility and histone modification. Third, a more sophisticated view of chromatin structure has emerged, including its inter-relationship with DNA replication and transcriptional regulation. Finally, integration of these new sources of information, in particular with respect to mammalian evolution based on inter- and intra-species sequence comparisons, has yielded new mechanistic and evolutionary insights concerning the functional landscape of the human genome. Together, these studies are defining a path for pursuit of a more comprehensive characterization of human genome function.
  •  
19.
  • Casey, Jillian P, et al. (author)
  • A novel approach of homozygous haplotype sharing identifies candidate genes in autism spectrum disorder.
  • 2012
  • In: Human Genetics. - : Springer Science and Business Media LLC. - 0340-6717 .- 1432-1203. ; 131:4, s. 565-579
  • Journal article (peer-reviewed)abstract
    • Autism spectrum disorder (ASD) is a highly heritable disorder of complex and heterogeneous aetiology. It is primarily characterized by altered cognitive ability including impaired language and communication skills and fundamental deficits in social reciprocity. Despite some notable successes in neuropsychiatric genetics, overall, the high heritability of ASD (~90%) remains poorly explained by common genetic risk variants. However, recent studies suggest that rare genomic variation, in particular copy number variation, may account for a significant proportion of the genetic basis of ASD. We present a large scale analysis to identify candidate genes which may contain low-frequency recessive variation contributing to ASD while taking into account the potential contribution of population differences to the genetic heterogeneity of ASD. Our strategy, homozygous haplotype (HH) mapping, aims to detect homozygous segments of identical haplotype structure that are shared at a higher frequency amongst ASD patients compared to parental controls. The analysis was performed on 1,402 Autism Genome Project trios genotyped for 1 million single nucleotide polymorphisms (SNPs). We identified 25 known and 1,218 novel ASD candidate genes in the discovery analysis including CADM2, ABHD14A, CHRFAM7A, GRIK2, GRM3, EPHA3, FGF10, KCND2, PDZK1, IMMP2L and FOXP2. Furthermore, 10 of the previously reported ASD genes and 300 of the novel candidates identified in the discovery analysis were replicated in an independent sample of 1,182 trios. Our results demonstrate that regions of HH are significantly enriched for previously reported ASD candidate genes and the observed association is independent of gene size (odds ratio 2.10). Our findings highlight the applicability of HH mapping in complex disorders such as ASD and offer an alternative approach to the analysis of genome-wide association data.
  •  
20.
  • Craddock, Nick, et al. (author)
  • Genome-wide association study of CNVs in 16,000 cases of eight common diseases and 3,000 shared controls
  • 2010
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 464:7289, s. 713-720
  • Journal article (peer-reviewed)abstract
    • Copy number variants (CNVs) account for a major proportion of human genetic polymorphism and have been predicted to have an important role in genetic susceptibility to common disease. To address this we undertook a large, direct genome-wide study of association between CNVs and eight common human diseases. Using a purpose-designed array we typed,19,000 individuals into distinct copy-number classes at 3,432 polymorphic CNVs, including an estimated similar to 50% of all common CNVs larger than 500 base pairs. We identified several biological artefacts that lead to false-positive associations, including systematic CNV differences between DNAs derived from blood and cell lines. Association testing and follow-up replication analyses confirmed three loci where CNVs were associated with disease-IRGM for Crohn's disease, HLA for Crohn's disease, rheumatoid arthritis and type 1 diabetes, and TSPAN8 for type 2 diabetes-although in each case the locus had previously been identified in single nucleotide polymorphism (SNP)-based studies, reflecting our observation that most common CNVs that are well-typed on our array are well tagged by SNPs and so have been indirectly explored through SNP studies. We conclude that common CNVs that can be typed on existing platforms are unlikely to contribute greatly to the genetic basis of common human diseases.
  •  
21.
  • Jallow, Muminatou, et al. (author)
  • Genome-wide and fine-resolution association analysis of malaria in West Africa.
  • 2009
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; , s. 657-665
  • Journal article (peer-reviewed)abstract
    • We report a genome-wide association (GWA) study of severe malaria in The Gambia. The initial GWA scan included 2,500 children genotyped on the Affymetrix 500K GeneChip, and a replication study included 3,400 children. We used this to examine the performance of GWA methods in Africa. We found considerable population stratification, and also that signals of association at known malaria resistance loci were greatly attenuated owing to weak linkage disequilibrium (LD). To investigate possible solutions to the problem of low LD, we focused on the HbS locus, sequencing this region of the genome in 62 Gambian individuals and then using these data to conduct multipoint imputation in the GWA samples. This increased the signal of association, from P = 4 x 10(-7) to P = 4 x 10(-14), with the peak of the signal located precisely at the HbS causal variant. Our findings provide proof of principle that fine-resolution multipoint imputation, based on population-specific sequencing data, can substantially boost authentic GWA signals and enable fine mapping of causal variants in African populations.
  •  
22.
  • Klionsky, Daniel J., et al. (author)
  • Guidelines for the use and interpretation of assays for monitoring autophagy
  • 2012
  • In: Autophagy. - : Informa UK Limited. - 1554-8635 .- 1554-8627. ; 8:4, s. 445-544
  • Research review (peer-reviewed)abstract
    • In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.
  •  
23.
  • Mahajan, Anubha, et al. (author)
  • Multi-ancestry genetic study of type 2 diabetes highlights the power of diverse populations for discovery and translation
  • 2022
  • In: Nature Genetics. - : Springer Nature. - 1061-4036 .- 1546-1718. ; 54:5, s. 560-572
  • Journal article (peer-reviewed)abstract
    • We assembled an ancestrally diverse collection of genome-wide association studies (GWAS) of type 2 diabetes (T2D) in 180,834 affected individuals and 1,159,055 controls (48.9% non-European descent) through the Diabetes Meta-Analysis of Trans-Ethnic association studies (DIAMANTE) Consortium. Multi-ancestry GWAS meta-analysis identified 237 loci attaining stringent genome-wide significance (P < 5 x 10(-9)), which were delineated to 338 distinct association signals. Fine-mapping of these signals was enhanced by the increased sample size and expanded population diversity of the multi-ancestry meta-analysis, which localized 54.4% of T2D associations to a single variant with >50% posterior probability. This improved fine-mapping enabled systematic assessment of candidate causal genes and molecular mechanisms through which T2D associations are mediated, laying the foundations for functional investigations. Multi-ancestry genetic risk scores enhanced transferability of T2D prediction across diverse populations. Our study provides a step toward more effective clinical translation of T2D GWAS to improve global health for all, irrespective of genetic background. Genome-wide association and fine-mapping analyses in ancestrally diverse populations implicate candidate causal genes and mechanisms underlying type 2 diabetes. Trans-ancestry genetic risk scores enhance transferability across populations.
  •  
24.
  • Mullins, Niamh, et al. (author)
  • Dissecting the Shared Genetic Architecture of Suicide Attempt, Psychiatric Disorders, and Known Risk Factors
  • 2022
  • In: Biological Psychiatry. - : Elsevier. - 0006-3223 .- 1873-2402. ; 91:3, s. 313-327
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: Suicide is a leading cause of death worldwide, and nonfatal suicide attempts, which occur far more frequently, are a major source of disability and social and economic burden. Both have substantial genetic etiology, which is partially shared and partially distinct from that of related psychiatric disorders.METHODS: We conducted a genome-wide association study (GWAS) of 29,782 suicide attempt (SA) cases and 519,961 controls in the International Suicide Genetics Consortium (ISGC). The GWAS of SA was conditioned on psychiatric disorders using GWAS summary statistics via multitrait-based conditional and joint analysis, to remove genetic effects on SA mediated by psychiatric disorders. We investigated the shared and divergent genetic architectures of SA, psychiatric disorders, and other known risk factors.RESULTS: Two loci reached genome-wide significance for SA: the major histocompatibility complex and an intergenic locus on chromosome 7, the latter of which remained associated with SA after conditioning on psychiatric disorders and replicated in an independent cohort from the Million Veteran Program. This locus has been implicated in risk-taking behavior, smoking, and insomnia. SA showed strong genetic correlation with psychiatric disorders, particularly major depression, and also with smoking, pain, risk-taking behavior, sleep disturbances, lower educational attainment, reproductive traits, lower socioeconomic status, and poorer general health. After conditioning on psychiatric disorders, the genetic correlations between SA and psychiatric disorders decreased, whereas those with nonpsychiatric traits remained largely unchanged.CONCLUSIONS: Our results identify a risk locus that contributes more strongly to SA than other phenotypes and suggest a shared underlying biology between SA and known risk factors that is not mediated by psychiatric disorders.
  •  
25.
  • Pinto, Dalila, et al. (author)
  • Convergence of Genes and Cellular Pathways Dysregulated in Autism Spectrum Disorders.
  • 2014
  • In: American journal of human genetics. - : Elsevier BV. - 1537-6605 .- 0002-9297. ; 94:5, s. 677-694
  • Journal article (peer-reviewed)abstract
    • Rare copy-number variation (CNV) is an important source of risk for autism spectrum disorders (ASDs). We analyzed 2,446 ASD-affected families and confirmed an excess of genic deletions and duplications in affected versus control groups (1.41-fold, p = 1.0× 10(-5)) and an increase in affected subjects carrying exonic pathogenic CNVs overlapping known loci associated with dominant or X-linked ASD and intellectual disability (odds ratio = 12.62, p = 2.7× 10(-15), ∼3% of ASD subjects). Pathogenic CNVs, often showing variable expressivity, included rare de novo and inherited events at 36 loci, implicating ASD-associated genes (CHD2, HDAC4, and GDI1) previously linked to other neurodevelopmental disorders, as well as other genes such as SETD5, MIR137, and HDAC9. Consistent with hypothesized gender-specific modulators, females with ASD were more likely to have highly penetrant CNVs (p = 0.017) and were also overrepresented among subjects with fragile X syndrome protein targets (p = 0.02). Genes affected by de novo CNVs and/or loss-of-function single-nucleotide variants converged on networks related to neuronal signaling and development, synapse function, and chromatin regulation.
  •  
26.
  • Voight, Benjamin F., et al. (author)
  • Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis
  • 2010
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 42:7, s. 579-589
  • Journal article (peer-reviewed)abstract
    • By combining genome-wide association data from 8,130 individuals with type 2 diabetes (T2D) and 38,987 controls of European descent and following up previously unidentified meta-analysis signals in a further 34,412 cases and 59,925 controls, we identified 12 new T2D association signals with combined P < 5 x 10(-8). These include a second independent signal at the KCNQ1 locus; the first report, to our knowledge, of an X-chromosomal association (near DUSP9); and a further instance of overlap between loci implicated in monogenic and multifactorial forms of diabetes (at HNF1A). The identified loci affect both beta-cell function and insulin action, and, overall, T2D association signals show evidence of enrichment for genes involved in cell cycle regulation. We also show that a high proportion of T2D susceptibility loci harbor independent association signals influencing apparently unrelated complex traits.
  •  
27.
  • Wang, Li-San, et al. (author)
  • Rarity of the Alzheimer Disease-Protective APP A673T Variant in the United States.
  • 2015
  • In: JAMA neurology. - : American Medical Association (AMA). - 2168-6157 .- 2168-6149. ; 72:2
  • Journal article (peer-reviewed)abstract
    • Recently, a rare variant in the amyloid precursor protein gene (APP) was described in a population from Iceland. This variant, in which alanine is replaced by threonine at position 673 (A673T), appears to protect against late-onset Alzheimer disease (AD). We evaluated the frequency of this variant in AD cases and cognitively normal controls to determine whether this variant will significantly contribute to risk assessment in individuals in the United States.
  •  
28.
  •  
29.
  •  
30.
  •  
31.
  • Block, Keith I., et al. (author)
  • Designing a broad-spectrum integrative approach for cancer prevention and treatment
  • 2015
  • In: Seminars in Cancer Biology. - : Academic Press. - 1044-579X .- 1096-3650. ; 35, s. S276-S304
  • Research review (peer-reviewed)abstract
    • Targeted therapies and the consequent adoption of "personalized" oncology have achieved notable successes in some cancers; however, significant problems remain with this approach. Many targeted therapies are highly toxic, costs are extremely high, and most patients experience relapse after a few disease-free months. Relapses arise from genetic heterogeneity in tumors, which harbor therapy-resistant immortalized cells that have adopted alternate and compensatory pathways (i.e., pathways that are not reliant upon the same mechanisms as those which have been targeted). To address these limitations, an international task force of 180 scientists was assembled to explore the concept of a low-toxicity "broadspectrum" therapeutic approach that could simultaneously target many key pathways and mechanisms. Using cancer hallmark phenotypes and the tumor microenvironment to account for the various aspects of relevant cancer biology, interdisciplinary teams reviewed each hallmark area and nominated a wide range of high-priority targets (74 in total) that could be modified to improve patient outcomes. For these targets, corresponding low-toxicity therapeutic approaches were then suggested, many of which were phytochemicals. Proposed actions on each target and all of the approaches were further reviewed for known effects on other hallmark areas and the tumor microenvironment Potential contrary or procarcinogenic effects were found for 3.9% of the relationships between targets and hallmarks, and mixed evidence of complementary and contrary relationships was found for 7.1%. Approximately 67% of the relationships revealed potentially complementary effects, and the remainder had no known relationship. Among the approaches, 1.1% had contrary, 2.8% had mixed and 62.1% had complementary relationships. These results suggest that a broad-spectrum approach should be feasible from a safety standpoint. This novel approach has potential to be relatively inexpensive, it should help us address stages and types of cancer that lack conventional treatment, and it may reduce relapse risks. A proposed agenda for future research is offered. (C) 2015 The Authors. Published by Elsevier Ltd.
  •  
32.
  • Botvinik-Nezer, Rotem, et al. (author)
  • Variability in the analysis of a single neuroimaging dataset by many teams
  • 2020
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 582, s. 84-88
  • Journal article (peer-reviewed)abstract
    • Data analysis workflows in many scientific domains have become increasingly complex and flexible. Here we assess the effect of this flexibility on the results of functional magnetic resonance imaging by asking 70 independent teams to analyse the same dataset, testing the same 9 ex-ante hypotheses(1). The flexibility of analytical approaches is exemplified by the fact that no two teams chose identical workflows to analyse the data. This flexibility resulted in sizeable variation in the results of hypothesis tests, even for teams whose statistical maps were highly correlated at intermediate stages of the analysis pipeline. Variation in reported results was related to several aspects of analysis methodology. Notably, a meta-analytical approach that aggregated information across teams yielded a significant consensus in activated regions. Furthermore, prediction markets of researchers in the field revealed an overestimation of the likelihood of significant findings, even by researchers with direct knowledge of the dataset(2-5). Our findings show that analytical flexibility can have substantial effects on scientific conclusions, and identify factors that may be related to variability in the analysis of functional magnetic resonance imaging. The results emphasize the importance of validating and sharing complex analysis workflows, and demonstrate the need for performing and reporting multiple analyses of the same data. Potential approaches that could be used to mitigate issues related to analytical variability are discussed. The results obtained by seventy different teams analysing the same functional magnetic resonance imaging dataset show substantial variation, highlighting the influence of analytical choices and the importance of sharing workflows publicly and performing multiple analyses.
  •  
33.
  • Docherty, Anna R, et al. (author)
  • GWAS Meta-Analysis of Suicide Attempt: Identification of 12 Genome-Wide Significant Loci and Implication of Genetic Risks for Specific Health Factors.
  • 2023
  • In: The American journal of psychiatry. - : American Psychiatric Association Publishing. - 1535-7228 .- 0002-953X. ; 180:10, s. 723-738
  • Journal article (peer-reviewed)abstract
    • Suicidal behavior is heritable and is a major cause of death worldwide. Two large-scale genome-wide association studies (GWASs) recently discovered and cross-validated genome-wide significant (GWS) loci for suicide attempt (SA). The present study leveraged the genetic cohorts from both studies to conduct the largest GWAS meta-analysis of SA to date. Multi-ancestry and admixture-specific meta-analyses were conducted within groups of significant African, East Asian, and European ancestry admixtures.This study comprised 22 cohorts, including 43,871 SA cases and 915,025 ancestry-matched controls. Analytical methods across multi-ancestry and individual ancestry admixtures included inverse variance-weighted fixed-effects meta-analyses, followed by gene, gene-set, tissue-set, and drug-target enrichment, as well as summary-data-based Mendelian randomization with brain expression quantitative trait loci data, phenome-wide genetic correlation, and genetic causal proportion analyses.Multi-ancestry and European ancestry admixture GWAS meta-analyses identified 12 risk loci at p values <5×10-8. These loci were mostly intergenic and implicated DRD2, SLC6A9, FURIN, NLGN1, SOX5, PDE4B, and CACNG2. The multi-ancestry SNP-based heritability estimate of SA was 5.7% on the liability scale (SE=0.003, p=5.7×10-80). Significant brain tissue gene expression and drug set enrichment were observed. There was shared genetic variation of SA with attention deficit hyperactivity disorder, smoking, and risk tolerance after conditioning SA on both major depressive disorder and posttraumatic stress disorder. Genetic causal proportion analyses implicated shared genetic risk for specific health factors.This multi-ancestry analysis of suicide attempt identified several loci contributing to risk and establishes significant shared genetic covariation with clinical phenotypes. These findings provide insight into genetic factors associated with suicide attempt across ancestry admixture populations, in veteran and civilian populations, and in attempt versus death.
  •  
34.
  • Engert, Andreas, et al. (author)
  • The European Hematology Association Roadmap for European Hematology Research : a consensus document
  • 2016
  • In: Haematologica. - Pavia, Italy : Ferrata Storti Foundation (Haematologica). - 0390-6078 .- 1592-8721. ; 101:2, s. 115-208
  • Journal article (peer-reviewed)abstract
    • The European Hematology Association (EHA) Roadmap for European Hematology Research highlights major achievements in diagnosis and treatment of blood disorders and identifies the greatest unmet clinical and scientific needs in those areas to enable better funded, more focused European hematology research. Initiated by the EHA, around 300 experts contributed to the consensus document, which will help European policy makers, research funders, research organizations, researchers, and patient groups make better informed decisions on hematology research. It also aims to raise public awareness of the burden of blood disorders on European society, which purely in economic terms is estimated at (sic)23 billion per year, a level of cost that is not matched in current European hematology research funding. In recent decades, hematology research has improved our fundamental understanding of the biology of blood disorders, and has improved diagnostics and treatments, sometimes in revolutionary ways. This progress highlights the potential of focused basic research programs such as this EHA Roadmap. The EHA Roadmap identifies nine 'sections' in hematology: normal hematopoiesis, malignant lymphoid and myeloid diseases, anemias and related diseases, platelet disorders, blood coagulation and hemostatic disorders, transfusion medicine, infections in hematology, and hematopoietic stem cell transplantation. These sections span 60 smaller groups of diseases or disorders. The EHA Roadmap identifies priorities and needs across the field of hematology, including those to develop targeted therapies based on genomic profiling and chemical biology, to eradicate minimal residual malignant disease, and to develop cellular immunotherapies, combination treatments, gene therapies, hematopoietic stem cell treatments, and treatments that are better tolerated by elderly patients.
  •  
35.
  •  
36.
  • Hudson, Thomas J., et al. (author)
  • International network of cancer genome projects
  • 2010
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 464:7291, s. 993-998
  • Journal article (peer-reviewed)abstract
    • The International Cancer Genome Consortium (ICGC) was launched to coordinate large-scale cancer genome studies in tumours from 50 different cancer types and/or subtypes that are of clinical and societal importance across the globe. Systematic studies of more than 25,000 cancer genomes at the genomic, epigenomic and transcriptomic levels will reveal the repertoire of oncogenic mutations, uncover traces of the mutagenic influences, define clinically relevant subtypes for prognosis and therapeutic management, and enable the development of new cancer therapies.
  •  
37.
  • Patterson, Nick, et al. (author)
  • Large-scale migration into Britain during the Middle to Late Bronze Age
  • 2022
  • In: Nature. - : Nature Publishing Group. - 0028-0836 .- 1476-4687. ; , s. 588-594
  • Journal article (peer-reviewed)abstract
    • Present-day people from England and Wales harbour more ancestry derived from Early European Farmers (EEF) than people of the Early Bronze Age1. To understand this, we generated genome-wide data from 793 individuals, increasing data from the Middle to Late Bronze and Iron Age in Britain by 12-fold, and Western and Central Europe by 3.5-fold. Between 1000 and 875 BC, EEF ancestry increased in southern Britain (England and Wales) but not northern Britain (Scotland) due to incorporation of migrants who arrived at this time and over previous centuries, and who were genetically most similar to ancient individuals from France. These migrants contributed about half the ancestry of Iron Age people of England and Wales, thereby creating a plausible vector for the spread of early Celtic languages into Britain. These patterns are part of a broader trend of EEF ancestry becoming more similar across central and western Europe in the Middle to Late Bronze Age, coincident with archaeological evidence of intensified cultural exchange2-6. There was comparatively less gene flow from continental Europe during the Iron Age, and Britain's independent genetic trajectory is also reflected in the rise of the allele conferring lactase persistence to ~50% by this time compared to ~7% in central Europe where it rose rapidly in frequency only a millennium later. This suggests that dairy products were used in qualitatively different ways in Britain and in central Europe over this period.
  •  
38.
  • Schijven, Dick, et al. (author)
  • Large-scale analysis of structural brain asymmetries in schizophrenia via the ENIGMA consortium
  • 2023
  • In: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences (PNAS). - 0027-8424 .- 1091-6490. ; 120:14
  • Journal article (peer-reviewed)abstract
    • Left-right asymmetry is an important organizing feature of the healthy brain that may be altered in schizophrenia, but most studies have used relatively small samples and heterogeneous approaches, resulting in equivocal findings. We carried out the largest case-control study of structural brain asymmetries in schizophrenia, with MRI data from 5,080 affected individuals and 6,015 controls across 46 datasets, using a single image analysis protocol. Asymmetry indexes were calculated for global and regional cortical thickness, surface area, and subcortical volume measures. Differences of asymmetry were calculated between affected individuals and controls per dataset, and effect sizes were meta-analyzed across datasets. Small average case-control differences were observed for thickness asymmetries of the rostral anterior cingulate and the middle temporal gyrus, both driven by thinner left-hemispheric cortices in schizophrenia. Analyses of these asymmetries with respect to the use of antipsychotic medication and other clinical variables did not show any significant associations. Assessment of age- and sex-specific effects revealed a stronger average leftward asymmetry of pallidum volume between older cases and controls. Case-control differences in a multivariate context were assessed in a subset of the data (N = 2,029), which revealed that 7% of the variance across all structural asymmetries was explained by case-control status. Subtle case-control differences of brain macrostructural asymmetry may reflect differences at the molecular, cytoarchitectonic, or circuit levels that have functional relevance for the disorder. Reduced left middle temporal cortical thickness is consistent with altered left-hemisphere language network organization in schizophrenia.
  •  
39.
  • Szatmari, Peter, et al. (author)
  • Mapping autism risk loci using genetic linkage and chromosomal rearrangements.
  • 2007
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 39:3, s. 319-328
  • Journal article (peer-reviewed)abstract
    • Autism spectrum disorders (ASDs) are common, heritable neurodevelopmental conditions. The genetic architecture of ASDs is complex, requiring large samples to overcome heterogeneity. Here we broaden coverage and sample size relative to other studies of ASDs by using Affymetrix 10K SNP arrays and 1,168 families with at least two affected individuals, performing the largest linkage scan to date while also analyzing copy number variation in these families. Linkage and copy number variation analyses implicate chromosome 11p12-p13 and neurexins, respectively, among other candidate loci. Neurexins team with previously implicated neuroligins for glutamatergic synaptogenesis, highlighting glutamate-related genes as promising candidates for contributing to ASDs.
  •  
40.
  • Veers, Paul, et al. (author)
  • Grand challenges in the science of wind energy
  • 2019
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 336:6464
  • Journal article (peer-reviewed)abstract
    • Harvested by advanced technical systems honed over decades of research and development, wind energy has become a mainstream energy resource. However, continued innovation is needed to realize the potential of wind to serve the global demand for clean energy. Here, we outline three interdependent, cross-disciplinary grand challenges underpinning this research endeavor. The first is the need for a deeper understanding of the physics of atmospheric flow in the critical zone of plant operation. The second involves science and engineering of the largest dynamic, rotating machines in the world. The third encompasses optimization and control of fleets of wind plants working synergistically within the electricity grid. Addressing these challenges could enable wind power to provide as much as half of our global electricity needs and perhaps beyond.
  •  
41.
  • Abel, I, et al. (author)
  • Overview of the JET results with the ITER-like wall
  • 2013
  • In: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 53:10, s. 104002-
  • Journal article (peer-reviewed)abstract
    • Following the completion in May 2011 of the shutdown for the installation of the beryllium wall and the tungsten divertor, the first set of JET campaigns have addressed the investigation of the retention properties and the development of operational scenarios with the new plasma-facing materials. The large reduction in the carbon content (more than a factor ten) led to a much lower Z(eff) (1.2-1.4) during L- and H-mode plasmas, and radiation during the burn-through phase of the plasma initiation with the consequence that breakdown failures are almost absent. Gas balance experiments have shown that the fuel retention rate with the new wall is substantially reduced with respect to the C wall. The re-establishment of the baseline H-mode and hybrid scenarios compatible with the new wall has required an optimization of the control of metallic impurity sources and heat loads. Stable type-I ELMy H-mode regimes with H-98,H-y2 close to 1 and beta(N) similar to 1.6 have been achieved using gas injection. ELM frequency is a key factor for the control of the metallic impurity accumulation. Pedestal temperatures tend to be lower with the new wall, leading to reduced confinement, but nitrogen seeding restores high pedestal temperatures and confinement. Compared with the carbon wall, major disruptions with the new wall show a lower radiated power and a slower current quench. The higher heat loads on Be wall plasma-facing components due to lower radiation made the routine use of massive gas injection for disruption mitigation essential.
  •  
42.
  • Abolfathi, Bela, et al. (author)
  • The Fourteenth Data Release of the Sloan Digital Sky Survey : First Spectroscopic Data from the Extended Baryon Oscillation Spectroscopic Survey and from the Second Phase of the Apache Point Observatory Galactic Evolution Experiment
  • 2018
  • In: Astrophysical Journal Supplement Series. - : IOP Publishing Ltd. - 0067-0049 .- 1538-4365. ; 235:2
  • Journal article (peer-reviewed)abstract
    • The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) has been in operation since 2014 July. This paper describes the second data release from this phase, and the 14th from SDSS overall (making this Data Release Fourteen or DR14). This release makes the data taken by SDSS-IV in its first two years of operation (2014-2016 July) public. Like all previous SDSS releases, DR14 is cumulative, including the most recent reductions and calibrations of all data taken by SDSS since the first phase began operations in 2000. New in DR14 is the first public release of data from the extended Baryon Oscillation Spectroscopic Survey; the first data from the second phase of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE-2), including stellar parameter estimates from an innovative data-driven machine-learning algorithm known as "The Cannon"; and almost twice as many data cubes from the Mapping Nearby Galaxies at APO (MaNGA) survey as were in the previous release (N = 2812 in total). This paper describes the location and format of the publicly available data from the SDSS-IV surveys. We provide references to the important technical papers describing how these data have been taken (both targeting and observation details) and processed for scientific use. The SDSS web site (www.sdss.org) has been updated for this release and provides links to data downloads, as well as tutorials and examples of data use. SDSS-IV is planning to continue to collect astronomical data until 2020 and will be followed by SDSS-V.
  •  
43.
  •  
44.
  • Aston, Eoghan A., et al. (author)
  • Scale-dependent spatial patterns in benthic communities around a tropical island seascape
  • 2019
  • In: Ecography. - : Wiley. - 0906-7590 .- 1600-0587. ; 42:3, s. 578-590
  • Journal article (peer-reviewed)abstract
    • Understanding and predicting patterns of spatial organization across ecological communities is central to the field of landscape ecology, and a similar line of inquiry has begun to evolve sub-tidally among seascape ecologists. Much of our current understanding of the processes driving marine community patterns, particularly in the tropics, has come from small-scale, spatially-discrete data that are often not representative of the broader seascape. Here we expand the spatial extent of seascape ecology studies and combine spatially-expansive in situ digital imagery, oceanographic measurements, spatial statistics, and predictive modeling to test whether predictable patterns emerge between coral reef benthic competitors across scales in response to intra-island gradients in physical drivers. We do this around the entire circumference of a remote, uninhabited island in the central Pacific (Jarvis Island) that lacks the confounding effects of direct human impacts. We show, for the first time, that competing benthic groups demonstrate predictable scaling patterns of organization, with positive autocorrelation in the cover of each group at scales < similar to 1 km. Moreover, we show how gradients in subsurface temperature and surface wave power drive spatially-abrupt transition points in group dominance, explaining 48-84% of the overall variation in benthic cover around the island. Along the western coast, we documented ten times more sub-surface cooling-hours than any other part of the coastline, with events typically resulting in a drop of 1-4 degrees C over a period of < 5 h. These high frequency temperature fluctuations are indicative of upwelling induced by internal waves and here result in localized nitrogen enrichment (NO2 + NO3) that promotes hard coral dominance around 44% of the island's perimeter. Our findings show that, in the absence of confounding direct human impacts, the spatial organization of coral reef benthic competitors are predictable and somewhat bounded across the seascape by concurrent gradients in physical drivers.
  •  
45.
  • Barrenäs, Fredrik, et al. (author)
  • Macrophage-associated wound healing contributes to African green monkey SIV pathogenesis control
  • 2019
  • In: Nature Communications. - : NATURE PUBLISHING GROUP. - 2041-1723. ; 10
  • Journal article (peer-reviewed)abstract
    • Natural hosts of simian immunodeficiency virus (SIV) avoid AIDS despite lifelong infection. Here, we examined how this outcome is achieved by comparing a natural SIV host, African green monkey (AGM) to an AIDS susceptible species, rhesus macaque (RM). To asses gene expression profiles from acutely SIV infected AGMs and RMs, we developed a systems biology approach termed Conserved Gene Signature Analysis (CGSA), which compared RNA sequencing data from rectal AGM and RM tissues to various other species. We found that AGMs rapidly activate, and then maintain, evolutionarily conserved regenerative wound healing mechanisms in mucosal tissue. The wound healing protein fibronectin shows distinct tissue distribution and abundance kinetics in AGMs. Furthermore, AGM monocytes exhibit an embryonic development and repair/regeneration signature featuring TGF-beta and concomitant reduced expression of inflammatory genes compared to RMs. This regenerative wound healing process likely preserves mucosal integrity and prevents inflammatory insults that underlie immune exhaustion in RMs.
  •  
46.
  •  
47.
  •  
48.
  •  
49.
  • Björkman, Anne, 1981, et al. (author)
  • Plant functional trait change across a warming tundra biome
  • 2018
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 562:7725, s. 57-62
  • Journal article (peer-reviewed)abstract
    • The tundra is warming more rapidly than any other biome on Earth, and the potential ramifications are far-reaching because of global feedback effects between vegetation and climate. A better understanding of how environmental factors shape plant structure and function is crucial for predicting the consequences of environmental change for ecosystem functioning. Here we explore the biome-wide relationships between temperature, moisture and seven key plant functional traits both across space and over three decades of warming at 117 tundra locations. Spatial temperature–trait relationships were generally strong but soil moisture had a marked influence on the strength and direction of these relationships, highlighting the potentially important influence of changes in water availability on future trait shifts in tundra plant communities. Community height increased with warming across all sites over the past three decades, but other traits lagged far behind predicted rates of change. Our findings highlight the challenge of using space-for-time substitution to predict the functional consequences of future warming and suggest that functions that are tied closely to plant height will experience the most rapid change. They also reveal the strength with which environmental factors shape biotic communities at the coldest extremes of the planet and will help to improve projections of functional changes in tundra ecosystems with climate warming.
  •  
50.
  • Björkman, Anne, 1981, et al. (author)
  • Tundra Trait Team: A database of plant traits spanning the tundra biome
  • 2018
  • In: Global Ecology and Biogeography. - : Wiley. - 1466-822X .- 1466-8238. ; 27:12, s. 1402-1411
  • Journal article (peer-reviewed)abstract
    • © 2018 The Authors Global Ecology and Biogeography Published by John Wiley & Sons Ltd Motivation: The Tundra Trait Team (TTT) database includes field-based measurements of key traits related to plant form and function at multiple sites across the tundra biome. This dataset can be used to address theoretical questions about plant strategy and trade-offs, trait–environment relationships and environmental filtering, and trait variation across spatial scales, to validate satellite data, and to inform Earth system model parameters. Main types of variable contained: The database contains 91,970 measurements of 18 plant traits. The most frequently measured traits (>1,000 observations each) include plant height, leaf area, specific leaf area, leaf fresh and dry mass, leaf dry matter content, leaf nitrogen, carbon and phosphorus content, leaf C:N and N:P, seed mass, and stem specific density. Spatial location and grain: Measurements were collected in tundra habitats in both the Northern and Southern Hemispheres, including Arctic sites in Alaska, Canada, Greenland, Fennoscandia and Siberia, alpine sites in the European Alps, Colorado Rockies, Caucasus, Ural Mountains, Pyrenees, Australian Alps, and Central Otago Mountains (New Zealand), and sub-Antarctic Marion Island. More than 99% of observations are georeferenced. Time period and grain: All data were collected between 1964 and 2018. A small number of sites have repeated trait measurements at two or more time periods. Major taxa and level of measurement: Trait measurements were made on 978 terrestrial vascular plant species growing in tundra habitats. Most observations are on individuals (86%), while the remainder represent plot or site means or maximums per species. Software format: csv file and GitHub repository with data cleaning scripts in R; contribution to TRY plant trait database (www.try-db.org) to be included in the next version release.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-50 of 108
Type of publication
journal article (92)
conference paper (6)
research review (5)
reports (1)
book chapter (1)
Type of content
peer-reviewed (99)
other academic/artistic (6)
Author/Editor
Green, Andrew (11)
Boehnke, Michael (10)
Frayling, Timothy M (10)
McCarthy, Mark I (9)
Gieger, Christian (9)
Hattersley, Andrew T (9)
show more...
Scherer, Stephen W (9)
Gupta, A. (8)
Groop, Leif (8)
Wareham, Nicholas J. (8)
Langenberg, Claudia (8)
Mohlke, Karen L (8)
Tuomilehto, Jaakko (8)
Froguel, Philippe (8)
Leboyer, Marion (8)
Daly, Mark J. (8)
Pinto, Dalila (8)
Hakonarson, Hakon (8)
Coon, Hilary (8)
Morris, Andrew D (8)
Zeggini, Eleftheria (8)
Dupuis, Josée (8)
Meigs, James B. (8)
Prokopenko, Inga (8)
Wilson, A. (7)
Martin, D (7)
Johnson, R (7)
Morgan, A (7)
Sun, Y (7)
Jones, C (7)
Kuusisto, Johanna (7)
Laakso, Markku (7)
Grarup, Niels (7)
Pedersen, Oluf (7)
Hansen, Torben (7)
Hu, Frank B. (7)
Qi, Lu (7)
Barroso, Ines (7)
Gloyn, Anna L (7)
Palmer, Colin N. A. (7)
Marshall, Christian ... (7)
Vincent, John B (7)
Wassink, Thomas H (7)
Buxbaum, Joseph D (7)
Geschwind, Daniel H (7)
Haines, Jonathan L (7)
Schellenberg, Gerard ... (7)
Altshuler, David (7)
Thorand, Barbara (7)
Illig, Thomas (7)
show less...
University
Karolinska Institutet (27)
Uppsala University (26)
Lund University (26)
Umeå University (21)
University of Gothenburg (17)
Stockholm University (15)
show more...
Linköping University (14)
Swedish University of Agricultural Sciences (8)
Royal Institute of Technology (6)
Örebro University (5)
Chalmers University of Technology (5)
RISE (3)
Malmö University (2)
The Nordic Africa Institute (1)
Luleå University of Technology (1)
Stockholm School of Economics (1)
University of Borås (1)
Karlstad University (1)
Högskolan Dalarna (1)
Swedish Museum of Natural History (1)
show less...
Language
English (108)
Research subject (UKÄ/SCB)
Medical and Health Sciences (57)
Natural sciences (34)
Engineering and Technology (4)
Humanities (2)
Agricultural Sciences (1)
Social Sciences (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view