SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Groen R) "

Search: WFRF:(Groen R)

  • Result 1-50 of 50
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Bravo, L, et al. (author)
  • 2021
  • swepub:Mat__t
  •  
2.
  • Tabiri, S, et al. (author)
  • 2021
  • swepub:Mat__t
  •  
3.
  • 2019
  • Journal article (peer-reviewed)
  •  
4.
  •  
5.
  • van Rheenen, W, et al. (author)
  • Common and rare variant association analyses in amyotrophic lateral sclerosis identify 15 risk loci with distinct genetic architectures and neuron-specific biology
  • 2021
  • In: Nature genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 53:12, s. 1636-
  • Journal article (peer-reviewed)abstract
    • Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with a lifetime risk of one in 350 people and an unmet need for disease-modifying therapies. We conducted a cross-ancestry genome-wide association study (GWAS) including 29,612 patients with ALS and 122,656 controls, which identified 15 risk loci. When combined with 8,953 individuals with whole-genome sequencing (6,538 patients, 2,415 controls) and a large cortex-derived expression quantitative trait locus (eQTL) dataset (MetaBrain), analyses revealed locus-specific genetic architectures in which we prioritized genes either through rare variants, short tandem repeats or regulatory effects. ALS-associated risk loci were shared with multiple traits within the neurodegenerative spectrum but with distinct enrichment patterns across brain regions and cell types. Of the environmental and lifestyle risk factors obtained from the literature, Mendelian randomization analyses indicated a causal role for high cholesterol levels. The combination of all ALS-associated signals reveals a role for perturbations in vesicle-mediated transport and autophagy and provides evidence for cell-autonomous disease initiation in glutamatergic neurons.
  •  
6.
  •  
7.
  •  
8.
  • Martin-Sanchez, F., et al. (author)
  • Synergy between medical informatics and bioinformatics : Facilitating genomic medicine for future health care
  • 2004
  • In: Journal of Biomedical Informatics. - : Elsevier BV. - 1532-0464 .- 1532-0480. ; 37:1, s. 30-42
  • Journal article (peer-reviewed)abstract
    • In this paper, we review the results of BIOINFOMED, a study funded by the European Commission (EC) with the purpose to analyse the different issues and challenges in the area where Medical Informatics and Bioinformatics meet. Traditionally, Medical Informatics has been focused on the intersection between computer science and clinical medicine, whereas Bioinformatics have been predominantly centered on the intersection between computer science and biological research. Although researchers from both areas have occasionally collaborated, their training, objectives and interests have been quite different. The results of the Human Genome and related projects have attracted the interest of many professionals, and introduced new challenges that will transform biomedical research and health care. A characteristic of the 'post genomic' era will be to correlate essential genotypic information with expressed phenotypic information. In this context, Biomedical Informatics (BMI) has emerged to describe the technology that brings both disciplines (BI and MI) together to support genomic medicine. In recognition of the dynamic nature of BMI, institutions such as the EC have launched several initiatives in support of a research agenda, including the BIOINFOMED study.
  •  
9.
  • Middeldorp, C. M., et al. (author)
  • A Genome-Wide Association Meta-Analysis of Attention-Deficit/Hyperactivity Disorder Symptoms in Population-Based Pediatric Cohorts
  • 2016
  • In: Journal of the American Academy of Child and Adolescent Psychiatry. - : Elsevier BV. - 0890-8567. ; 55:10
  • Journal article (peer-reviewed)abstract
    • Objective The aims of this study were to elucidate the influence of common genetic variants on childhood attention-deficit/hyperactivity disorder (ADHD) symptoms, to identify genetic variants that explain its high heritability, and to investigate the genetic overlap of ADHD symptom scores with ADHD diagnosis. Method Within the EArly Genetics and Lifecourse Epidemiology (EAGLE) consortium, genome-wide single nucleotide polymorphisms (SNPs) and ADHD symptom scores were available for 17,666 children (<13 years of age) from nine population-based cohorts. SNP-based heritability was estimated in data from the three largest cohorts. Meta-analysis based on genome-wide association (GWA) analyses with SNPs was followed by gene-based association tests, and the overlap in results with a meta-analysis in the Psychiatric Genomics Consortium (PGC) case-control ADHD study was investigated. Results SNP-based heritability ranged from 5% to 34%, indicating that variation in common genetic variants influences ADHD symptom scores. The meta-analysis did not detect genome-wide significant SNPs, but three genes, lying close to each other with SNPs in high linkage disequilibrium (LD), showed a gene-wide significant association (p values between 1.46× 10−6 and 2.66× 10−6). One gene, WASL, is involved in neuronal development. Both SNP- and gene-based analyses indicated overlap with the PGC meta-analysis results with the genetic correlation estimated at 0.96. Conclusion The SNP-based heritability for ADHD symptom scores indicates a polygenic architecture, and genes involved in neurite outgrowth are possibly involved. Continuous and dichotomous measures of ADHD appear to assess a genetically common phenotype. A next step is to combine data from population-based and case-control cohorts in genetic association studies to increase sample size and to improve statistical power for identifying genetic variants. © 2016 American Academy of Child and Adolescent Psychiatry
  •  
10.
  • Groen, R. N., et al. (author)
  • Gut microbiota, metabolism and psychopathology: A critical review and novel perspectives
  • 2018
  • In: Critical Reviews in Clinical Laboratory Sciences. - : Informa UK Limited. - 1040-8363 .- 1549-781X. ; 55:4, s. 283-293
  • Research review (peer-reviewed)abstract
    • Psychiatric disorders are often associated with metabolic comorbidities. However, the mechanisms through which metabolic and psychiatric disorders are connected remain unclear. Pre-clinical studies in rodents indicate that the bidirectional signaling between the intestine and the brain, the so-called microbiome-gut-brain axis, plays an important role in the regulation of both metabolism and behavior. The gut microbiome produces a vast number of metabolites that may be transported into the host and play a part in homeostatic control of metabolism as well as brain function. In addition to short chain fatty acids, many of these metabolites have been identified in recent years. To what extent both microbiota and their products control human metabolism and behavior is a subject of intense investigation. In this review, we will discuss the most recent findings concerning alterations in the gut microbiota as a possible pathophysiological factor for the co-occurrence of metabolic comorbidities in psychiatric disorders.
  •  
11.
  •  
12.
  •  
13.
  •  
14.
  •  
15.
  • Evans-Hoeker, E, et al. (author)
  • Dietary and/or physical activity interventions in women with overweight or obesity prior to fertility treatment: protocol for a systematic review and individual participant data meta-analysis
  • 2022
  • In: BMJ open. - : BMJ. - 2044-6055. ; 12:11
  • Journal article (peer-reviewed)abstract
    • Dietary and/or physical activity interventions are often recommended for women with overweight or obesity as the first step prior to fertility treatment. However, randomised controlled trials (RCTs) so far have shown inconsistent results. Therefore, we propose this individual participant data meta-analysis (IPDMA) to evaluate the effectiveness and safety of dietary and/or physical activity interventions in women with infertility and overweight or obesity on reproductive, maternal and perinatal outcomes and to explore if there are subgroup(s) of women who benefit from each specific intervention or their combination (treatment-covariate interactions).We will include RCTs with dietary and/or physical activity interventions as core interventions prior to fertility treatment in women with infertility and overweight or obesity. The primary outcome will be live birth. We will search MEDLINE, Embase, Cochrane Central Register of Controlled Trials and trial registries to identify eligible studies. We will approach authors of eligible trials to contribute individual participant data (IPD). We will perform risk of bias assessments according to the Risk of Bias 2 tool and a random-effects IPDMA. We will then explore treatment-covariate interactions for important participant-level characteristics.Formal ethical approval for the project (Venus-IPD) was exempted by the medical ethics committee of the University Medical Center Groningen (METc code: 2021/563, date: 17 November 2021). Data transfer agreement will be obtained from each participating institute/hospital. Outcomes will be disseminated internationally through the collaborative group, conference presentations and peer-reviewed publication.CRD42021266201.
  •  
16.
  • Hartman, E. A. R., et al. (author)
  • Decisions on antibiotic prescribing for suspected urinary tract infections in frail older adults: a qualitative study in four European countries
  • 2022
  • In: Age and ageing. - : Oxford University Press (OUP). - 0002-0729 .- 1468-2834. ; 51:6
  • Journal article (peer-reviewed)abstract
    • Background a suspected urinary tract infection (UTI) is the most common reason to prescribe antibiotics in a frail older patient. Frequently, antibiotics are prescribed unnecessarily. To increase appropriate antibiotic use for UTIs through antibiotic stewardship interventions, we need to thoroughly understand the factors that contribute to these prescribing decisions. Objectives (1) to obtain insight into factors contributing to antibiotic prescribing for suspected UTIs in frail older adults. (2) To develop an overarching model integrating these factors to guide the development of antibiotic stewardship interventions for UTIs in frail older adults. Methods we conducted an exploratory qualitative study with 61 semi-structured interviews in older adult care settings in Poland, the Netherlands, Norway and Sweden. We interviewed physicians, nursing staff, patients and informal caregivers. Results participants described a chain of decisions by patients, caregivers and/or nursing staff preceding the ultimate decision to prescribe antibiotics by the physician. We identified five themes of influence: (1) the clinical situation and its complexity within the frail older patient, (2) diagnostic factors, such as asymptomatic bacteriuria, (3) knowledge (gaps) and attitude, (4) communication: interprofessional, and with patients and relatives and (5) context and organisation of care, including factors such as availability of antibiotics (over the counter), antibiotic stewardship efforts and factors concerning out-of-hours care. Conclusions decision-making on suspected UTIs in frail older adults is a complex, multifactorial process. Due to the diverse international setting and stakeholder variety, we were able to provide a comprehensive overview of factors to guide the development of antibiotic stewardship interventions.
  •  
17.
  • Hartman, E. A. R., et al. (author)
  • Multifaceted antibiotic stewardship intervention using a participatory-action-research approach to improve antibiotic prescribing for urinary tract infections in frail elderly (ImpresU): study protocol for a European qualitative study followed by a pragmatic cluster randomised controlled trial
  • 2021
  • In: Bmj Open. - : BMJ. - 2044-6055. ; 11:10
  • Journal article (peer-reviewed)abstract
    • Introduction Almost 60% of antibiotics in frail elderly are prescribed for alleged urinary tract infections (UTIs). A substantial part of this comprises prescriptions in case of non-specific symptoms or asymptomatic bacteriuria, for which the latest guidelines promote restrictiveness with antibiotics. We aim to reduce inappropriate antibiotic use for UTIs through an antibiotic stewardship intervention (ASI) that encourages to prescribe according to these guidelines. To develop an effective ASI, we first need a better understanding of the complex decision-making process concerning suspected UTIs in frail elderly. Moreover, the implementation approach requires tailoring to the heterogeneous elderly care setting. Methods and analysis First, we conduct a qualitative study to explore factors contributing to antibiotic prescribing for UTIs in frail elderly, using semi-structured interviews with general practitioners, nursing staff, patients and informal caregivers. Next, we perform a pragmatic cluster randomised controlled trial in elderly care organisations. A multifaceted ASI is implemented in the intervention group; the control group receives care as usual. The ASI is centred around a decision tool that promotes restrictive antibiotic use, supported by a toolbox with educational materials. For the implementation, we use a modified participatory-action-research approach, guided by the results of the qualitative study. The primary outcome is the number of antibiotic prescriptions for suspected UTIs. We aim to recruit 34 clusters with in total 680 frail elderly residents >= 70 years. Data collection takes place during a 5-month baseline period and a 7-month follow-up period. Finally, we perform a process evaluation. The study has been delayed for 6 months due to COVID-19 and is expected to end in July 2021. Ethics and dissemination Ethical approvals and/or waivers were obtained from the ethical committees in Poland, the Netherlands, Norway and Sweden. The results will be disseminated through publication in peer-reviewed journals and conference presentations.
  •  
18.
  •  
19.
  • Ikram, M. Arfan, et al. (author)
  • Common variants at 6q22 and 17q21 are associated with intracranial volume
  • 2012
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 44:5, s. 539-544
  • Journal article (peer-reviewed)abstract
    • During aging, intracranial volume remains unchanged and represents maximally attained brain size, while various interacting biological phenomena lead to brain volume loss. Consequently, intracranial volume and brain volume in late life reflect different genetic influences. Our genome-wide association study (GWAS) in 8,175 community-dwelling elderly persons did not reveal any associations at genome-wide significance (P < 5 x 10(-8)) for brain volume. In contrast, intracranial volume was significantly associated with two loci: rs4273712 (P = 3.4 x 10(-11)), a known height-associated locus on chromosome 6q22, and rs9915547 (P = 1.5 x 10(-12)), localized to the inversion on chromosome 17q21. We replicated the associations of these loci with intracranial volume in a separate sample of 1,752 elderly persons (P = 1.1 x 10(-3) for 6q22 and 1.2 x 10(-3) for 17q21). Furthermore, we also found suggestive associations of the 17q21 locus with head circumference in 10,768 children (mean age of 14.5 months). Our data identify two loci associated with head size, with the inversion at 17q21 also likely to be involved in attaining maximal brain size.
  •  
20.
  •  
21.
  •  
22.
  • Plomgaard, P., et al. (author)
  • Apolipoprotein M predicts pre-beta-HDL formation: studies in type 2 diabetic and nondiabetic subjects
  • 2009
  • In: Journal of Internal Medicine. - : Wiley. - 1365-2796 .- 0954-6820. ; 266:3, s. 258-267
  • Journal article (peer-reviewed)abstract
    • Objective. Studies in mice suggest that plasma apoM is lowered in hyperinsulinaemic diabetes and that apoM stimulates formation of pre-beta-HDL. Pre-beta-HDL is an acceptor of cellular cholesterol and may be critical for reverse cholesterol transport. Herein, we examined whether patients with type 2 diabetes have reduced plasma apoM and whether apoM is associated with pre-beta-HDL formation and cellular cholesterol efflux. Design. In 78 patients with type 2 diabetes and 89 control subjects, we measured plasma apoM with ELISA, pre-beta-HDL and pre-beta-HDL formation, phospholipid transfer protein (PLTP) activity and the ability of plasma to promote cholesterol efflux from cultured fibroblasts. Results. ApoM was similar to 9% lower in patients with type 2 diabetes compared to controls (0.025 +/- 0.006 vs. 0.027 +/- 0.007 g L-1, P = 0.01). The difference in apoM was largely attributable to diabetes-associated obesity. ApoM was positively related to both HDL (r = 0.16; P = 0.04) and LDL cholesterol (r = 0.28; P = 0.0003). Pre-beta-HDL and pre-beta-HDL formation were not different between diabetic and control subjects. ApoM predicted pre-beta-HDL (r = 0.16; P = 0.04) and pre-beta-HDL formation (r = 0.19; P = 0.02), even independently of positive relationships with apoA-I, HDL-cholesterol and PLTP activity. Cellular cholesterol efflux to plasma was positively related to pre-beta-HDL and PLTP activity but not significantly to apoM. Conclusions. Plasma apoM is modestly reduced in type 2 diabetes. Pre-beta-HDL and pre-beta-HDL formation are positively associated with apoM, supporting the hypothesis that apoM plays a role in HDL remodelling in humans. Lower apoM may provide a mechanism to explain why pre-beta-HDL formation is not increased in type 2 diabetes despite elevated PLTP activity.
  •  
23.
  • Taal, H. Rob, et al. (author)
  • Common variants at 12q15 and 12q24 are associated with infant head circumference
  • 2012
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 44:5, s. 532-538
  • Journal article (peer-reviewed)abstract
    • To identify genetic variants associated with head circumference in infancy, we performed a meta-analysis of seven genome-wide association studies (GWAS) (N = 10,768 individuals of European ancestry enrolled in pregnancy and/or birth cohorts) and followed up three lead signals in six replication studies (combined N = 19,089). rs7980687 on chromosome 12q24 (P = 8.1 x 10(-9)) and rs1042725 on chromosome 12q15 (P = 2.8 x 10(-10)) were robustly associated with head circumference in infancy. Although these loci have previously been associated with adult height(1), their effects on infant head circumference were largely independent of height (P = 3.8 x 10(-7) for rs7980687 and P = 1.3 x 10(-7) for rs1042725 after adjustment for infant height). A third signal, rs11655470 on chromosome 17q21, showed suggestive evidence of association with head circumference (P = 3.9 x 10(-6)). SNPs correlated to the 17q21 signal have shown genome-wide association with adult intracranial volume(2), Parkinson's disease and other neurodegenerative diseases(3-5), indicating that a common genetic variant in this region might link early brain growth with neurological disease in later life.
  •  
24.
  • van Es, Michael A, et al. (author)
  • Angiogenin variants in Parkinson disease and amyotrophic lateral sclerosis
  • 2011
  • In: Annals of Neurology. - : Wiley-Blackwell. - 0364-5134 .- 1531-8249. ; 70:6, s. 964-973
  • Journal article (peer-reviewed)abstract
    • OBJECTIVE: Several studies have suggested an increased frequency of variants in the gene encoding angiogenin (ANG) in patients with amyotrophic lateral sclerosis (ALS). Interestingly, a few ALS patients carrying ANG variants also showed signs of Parkinson disease (PD). Furthermore, relatives of ALS patients have an increased risk to develop PD, and the prevalence of concomitant motor neuron disease in PD is higher than expected based on chance occurrence. We therefore investigated whether ANG variants could predispose to both ALS and PD.METHODS: We reviewed all previous studies on ANG in ALS and performed sequence experiments on additional samples, which allowed us to analyze data from 6,471 ALS patients and 7,668 controls from 15 centers (13 from Europe and 2 from the USA). We sequenced DNA samples from 3,146 PD patients from 6 centers (5 from Europe and 1 from the USA). Statistical analysis was performed using the variable threshold test, and the Mantel-Haenszel procedure was used to estimate odds ratios.RESULTS: Analysis of sequence data from 17,258 individuals demonstrated a significantly higher frequency of ANG variants in both ALS and PD patients compared to control subjects (p = 9.3 × 10(-6) for ALS and p = 4.3 × 10(-5) for PD). The odds ratio for any ANG variant in patients versus controls was 9.2 for ALS and 6.7 for PD.INTERPRETATION: The data from this multicenter study demonstrate that there is a strong association between PD, ALS, and ANG variants. ANG is a genetic link between ALS and PD.
  •  
25.
  • Vogelezang, Suzanne, et al. (author)
  • Novel loci for childhood body mass index and shared heritability with adult cardiometabolic traits.
  • 2020
  • In: PLoS genetics. - : Public Library of Science (PLoS). - 1553-7404. ; 16:10
  • Journal article (peer-reviewed)abstract
    • The genetic background of childhood body mass index (BMI), and the extent to which the well-known associations of childhood BMI with adult diseases are explained by shared genetic factors, are largely unknown. We performed a genome-wide association study meta-analysis of BMI in 61,111 children aged between 2 and 10 years. Twenty-five independent loci reached genome-wide significance in the combined discovery and replication analyses. Two of these, located near NEDD4L and SLC45A3, have not previously been reported in relation to either childhood or adult BMI. Positive genetic correlations of childhood BMI with birth weight and adult BMI, waist-to-hip ratio, diastolic blood pressure and type 2 diabetes were detected (Rg ranging from 0.11 to 0.76, P-values <0.002). A negative genetic correlation of childhood BMI with age at menarche was observed. Our results suggest that the biological processes underlying childhood BMI largely, but not completely, overlap with those underlying adult BMI. The well-known observational associations of BMI in childhood with cardio-metabolic diseases in adulthood may reflect partial genetic overlap, but in light of previous evidence, it is also likely that they are explained through phenotypic continuity of BMI from childhood into adulthood.
  •  
26.
  • Warmbrunn, M. V., et al. (author)
  • Metabolite Profile of Treatment-Naive Metabolic Syndrome Subjects in Relation to Cardiovascular Disease Risk
  • 2021
  • In: Metabolites. - : MDPI AG. - 2218-1989. ; 11:4
  • Journal article (peer-reviewed)abstract
    • Metabolic syndrome (MetSyn) is an important risk factor for type 2 diabetes and cardiovascular diseases (CVD). This study aimed to find distinct plasma metabolite profiles between insulin-resistant and non-insulin resistant subjects with MetSyn and evaluate if MetSyn metabolite profiles are related to CVD risk and lipid fluxes. In a cross-sectional study, untargeted metabolomics of treatment-naive males with MetSyn (n = 132) were analyzed together with clinical parameters. In a subset of MetSyn participants, CVD risk was calculated using the Framingham score (n = 111), and lipolysis (n = 39) was measured by a two-step hyperinsulinemic euglycemic clamp using [1,1,2,3,3-(2)H5] glycerol to calculate lipolysis suppression rates. Peripheral insulin resistance was related to fatty acid metabolism and glycerolphosphorylcholine. Interestingly, although insulin resistance is considered to be a risk factor for CVD, we observed that there was little correspondence between metabolites associated with insulin resistance and metabolites associated with CVD risk. The latter mainly belonged to the androgenic steroid, fatty acid, phosphatidylethanolamine, and phophatidylcholine pathways. These data provide new insights into metabolic changes in mild MetSyn pathophysiology and MetSyn CVD risk related to lipid metabolism. Prospective studies may focus on the pathophysiological role of the here-identified biomarkers.
  •  
27.
  •  
28.
  • Bakker, G. J., et al. (author)
  • Oral vancomycin treatment does not alter markers of postprandial inflammation in lean and obese subjects
  • 2019
  • In: Physiological Reports. - : Wiley. - 2051-817X. ; 7:16
  • Journal article (peer-reviewed)abstract
    • Intake of a high-fat meal induces a systemic inflammatory response in the postprandial which is augmented in obese subjects. However, the underlying mechanisms of this response have not been fully elucidated. We aimed to assess the effect of gut microbiota modulation on postprandial inflammatory response in lean and obese subjects. Ten lean and ten obese subjects with metabolic syndrome received oral vancomycin 500 mg four times per day for 7 days. Oral high-fat meal tests (50 g fat/m(2) body surface area) were performed before and after vancomycin intervention. Gut microbiota composition, leukocyte counts, plasma lipopolysaccharides (LPS), LPS-binding protein (LBP), IL-6 and MCP-1 concentrations and monocyte CCR2 and cytokine expression were determined before and after the high-fat meal. Oral vancomycin treatment resulted in profound changes in gut microbiota composition and significantly decreased bacterial diversity in both groups (phylogenetic diversity pre- versus post-intervention: lean, 56.9 +/- 7.8 vs. 21.4 +/- 6.6, P < 0.001; obese, 53.9 +/- 7.8 vs. 21.0 +/- 5.9, P < 0.001). After intervention, fasting plasma LPS significantly increased (lean, median [IQR] 0.81 [0.63-1.45] EU/mL vs. 2.23 [1.33-3.83] EU/mL, P = 0.017; obese, median [IQR] 0.76 [0.45-1.03] EU/mL vs. 1.44 [1.11-4.24], P = 0.014). However, postprandial increases in leukocytes and plasma LPS were unaffected by vancomycin in both groups. Moreover, we found no changes in plasma LBP, IL-6 and MCP-1 or in monocyte CCR2 expression. Despite major vancomycin-induced disruption of the gut microbiota and increased fasting plasma LPS, the postprandial inflammatory phenotype in lean and obese subjects was unaffected in this study.
  •  
29.
  • Bel Lassen, P., et al. (author)
  • Protein intake, metabolic status and the gut microbiota in different ethnicities: Results from two independent cohorts
  • 2021
  • In: Nutrients. - : MDPI AG. - 2072-6643. ; 13:9
  • Journal article (peer-reviewed)abstract
    • Background: Protein intake has been associated with the development of pre-diabetes (pre-T2D) and type 2 diabetes (T2D). The gut microbiota has the capacity to produce harmful metabolites derived from dietary protein. Furthermore, both the gut microbiota composition and metabolic status (e.g., insulin resistance) can be modulated by diet and ethnicity. However, to date most studies have predominantly focused on carbohydrate and fiber intake with regards to metabolic status and gut microbiota composition. Objectives: To determine the associations between dietary protein intake, gut microbiota composition, and metabolic status in different ethnicities. Methods: Separate cross-sectional analysis of two European cohorts (MetaCardis, n = 1759; HELIUS, n = 1528) including controls, patients with pre-T2D, and patients with T2D of Caucasian/non-Caucasian origin with nutritional data obtained from Food Frequency Questionnaires and gut microbiota composition. Results: In both cohorts, animal (but not plant) protein intake was associated with pre-T2D status and T2D status after adjustment for confounders. There was no significant association between protein intake (total, animal, or plant) with either gut microbiota alpha diversity or beta diversity, regardless of ethnicity. At the species level, we identified taxonomical signatures associated with animal protein intake that overlapped in both cohorts with different abundances according to metabolic status and ethnicity. Conclusions: Animal protein intake is associated with pre-T2D and T2D status but not with gut microbiota beta or alpha diversity, regardless of ethnicity. Gut microbial taxonomical signatures were identified, which could function as potential modulators in the association between dietary protein intake and metabolic status. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.
  •  
30.
  •  
31.
  •  
32.
  • Bouter, K. E. C., et al. (author)
  • Differential metabolic effects of oral butyrate treatment in lean versus metabolic syndrome subjects article
  • 2018
  • In: Clinical and Translational Gastroenterology. - : Ovid Technologies (Wolters Kluwer Health). - 2155-384X. ; 9:5
  • Journal article (peer-reviewed)abstract
    • Background: Gut microbiota-derived short-chain fatty acids (SCFAs) have been associated with beneficial metabolic effects. However, the direct effect of oral butyrate on metabolic parameters in humans has never been studied. In this first in men pilot study, we thus treated both lean and metabolic syndrome male subjects with oral sodium butyrate and investigated the effect on metabolism. Methods: Healthy lean males (n = 9) and metabolic syndrome males (n = 10) were treated with oral 4 g of sodium butyrate daily for 4 weeks. Before and after treatment, insulin sensitivity was determined by a two-step hyperinsulinemic euglycemic clamp using [6,6-2H2]-glucose. Brown adipose tissue (BAT) uptake of glucose was visualized using 18F-FDG PET-CT. Fecal SCFA and bile acid concentrations as well as microbiota composition were determined before and after treatment. Results: Oral butyrate had no effect on plasma and fecal butyrate levels after treatment, but did alter other SCFAs in both plasma and feces. Moreover, only in healthy lean subjects a significant improvement was observed in both peripheral (median Rd: from 71 to 82 μmol/kg min, p < 0.05) and hepatic insulin sensitivity (EGP suppression from 75 to 82% p < 0.05). Although BAT activity was significantly higher at baseline in lean (SUVmax: 12.4 ± 1.8) compared with metabolic syndrome subjects (SUVmax: 0.3 ± 0.8, p < 0.01), no significant effect following butyrate treatment on BAT was observed in either group (SUVmax lean to 13.3 ± 2.4 versus metabolic syndrome subjects to 1.2 ± 4.1). Conclusions: Oral butyrate treatment beneficially affects glucose metabolism in lean but not metabolic syndrome subjects, presumably due to an altered SCFA handling in insulin-resistant subjects. Although preliminary, these first in men findings argue against oral butyrate supplementation as treatment for glucose regulation in human subjects with type 2 diabetes mellitus. © 2018 The Author(s).
  •  
33.
  •  
34.
  • Deschasaux, M., et al. (author)
  • Depicting the composition of gut microbiota in a population with varied ethnic origins but shared geography
  • 2018
  • In: Nature Medicine. - : Springer Science and Business Media LLC. - 1078-8956 .- 1546-170X. ; 24:10, s. 1526-31
  • Journal article (peer-reviewed)abstract
    • Trillions of microorganisms inhabit the human gut and are regarded as potential key factors for health(1,2). Characteristics such as diet, lifestyle, or genetics can shape the composition of the gut microbiota(2-6) and are usually shared by individuals from comparable ethnic origin. So far, most studies assessing how ethnicity relates to the intestinal microbiota compared small groups living at separate geographical locations(7-10). Using fecal 16S ribosomal RNA gene sequencing in 2,084 participants of the Healthy Life in an Urban Setting (HELIUS) study(11,12), we show that individuals living in the same city tend to share similar gut microbiota characteristics with others of their ethnic background. Ethnicity contributed to explain the interindividual dissimilarities in gut microbiota composition, with three main poles primarily characterized by operational taxonomic units (OTUs) classified as Prevotella (Moroccans, Turks, Ghanaians), Bacteroides (African Surinamese, South-Asian Surinamese), and Clostridiales (Dutch). The Dutch exhibited the greatest gut microbiota alpha-diversity and the South-Asian Surinamese the smallest, with corresponding enrichment or depletion in numerous OTUs. Ethnic differences in alpha-diversity and interindividual dissimilarities were independent of metabolic health and only partly explained by ethnic-related characteristics including sociodemographic, lifestyle, or diet factors. Hence, the ethnic origin of individuals may be an important factor to consider in microbiome research and its potential future applications in ethnic-diverse societies.
  •  
35.
  • Felix, Janine F, et al. (author)
  • Genome-wide association analysis identifies three new susceptibility loci for childhood body mass index.
  • 2016
  • In: Human molecular genetics. - : Oxford University Press (OUP). - 1460-2083 .- 0964-6906. ; 25:2, s. 389-403
  • Journal article (peer-reviewed)abstract
    • A large number of genetic loci are associated with adult body mass index. However, the genetics of childhood body mass index are largely unknown. We performed a meta-analysis of genome-wide association studies of childhood body mass index, using sex- and age-adjusted standard deviation scores. We included 35 668 children from 20 studies in the discovery phase and 11 873 children from 13 studies in the replication phase. In total, 15 loci reached genome-wide significance (P-value < 5 × 10(-8)) in the joint discovery and replication analysis, of which 12 are previously identified loci in or close to ADCY3, GNPDA2, TMEM18, SEC16B, FAIM2, FTO, TFAP2B, TNNI3K, MC4R, GPR61, LMX1B and OLFM4 associated with adult body mass index or childhood obesity. We identified three novel loci: rs13253111 near ELP3, rs8092503 near RAB27B and rs13387838 near ADAM23. Per additional risk allele, body mass index increased 0.04 Standard Deviation Score (SDS) [Standard Error (SE) 0.007], 0.05 SDS (SE 0.008) and 0.14 SDS (SE 0.025), for rs13253111, rs8092503 and rs13387838, respectively. A genetic risk score combining all 15 SNPs showed that each additional average risk allele was associated with a 0.073 SDS (SE 0.011, P-value = 3.12 × 10(-10)) increase in childhood body mass index in a population of 1955 children. This risk score explained 2% of the variance in childhood body mass index. This study highlights the shared genetic background between childhood and adult body mass index and adds three novel loci. These loci likely represent age-related differences in strength of the associations with body mass index.
  •  
36.
  • Hartman, Esther A R, et al. (author)
  • Effect of a multifaceted antibiotic stewardship intervention to improve antibiotic prescribing for suspected urinary tract infections in frail older adults (ImpresU): pragmatic cluster randomised controlled trial in four European countries.
  • 2023
  • In: BMJ (Clinical research ed.). - : BMJ. - 0959-535X .- 1756-1833. ; 380
  • Journal article (peer-reviewed)abstract
    • To evaluate whether antibiotic prescribing for suspected urinary tract infections in frail older adults can be reduced through a multifaceted antibiotic stewardship intervention.Pragmatic, parallel, cluster randomised controlled trial, with a five month baseline period and a seven month follow-up period.38 clusters consisting of one or more general practices (n=43) and older adult care organisations (n=43) in Poland, the Netherlands, Norway, and Sweden, from September 2019 to June 2021.1041 frail older adults aged 70 or older (Poland 325, the Netherlands 233, Norway 276, Sweden 207), contributing 411 person years to the follow-up period.Healthcare professionals received a multifaceted antibiotic stewardship intervention consisting of a decision tool for appropriate antibiotic use, supported by a toolbox with educational materials. A participatory-action-research approach was used for implementation, with sessions for education, evaluation, and local tailoring of the intervention. The control group provided care as usual.The primary outcome was the number of antibiotic prescriptions for suspected urinary tract infections per person year. Secondary outcomes included the incidence of complications, all cause hospital referrals, all cause hospital admissions, all cause mortality within 21 days after suspected urinary tract infections, and all cause mortality.The numbers of antibiotic prescriptions for suspected urinary tract infections in the follow-up period were 54 prescriptions in 202 person years (0.27 per person year) in the intervention group and 121 prescriptions in 209 person years (0.58 per person year) in the usual care group. Participants in the intervention group had a lower rate of receiving an antibiotic prescription for a suspected urinary tract infection compared with participants in the usual care group, with a rate ratio of 0.42 (95% confidence interval 0.26 to 0.68). No differences between intervention and control group were observed in the incidence of complications (<0.01 v 0.05 per person year), hospital referrals (<0.01 v 0.05), admissions to hospital (0.01 v 0.05), and mortality (0 v 0.01) within 21 days after suspected urinary tract infections, nor in all cause mortality (0.26 v 0.26).Implementation of a multifaceted antibiotic stewardship intervention safely reduced antibiotic prescribing for suspected urinary tract infections in frail older adults.ClinicalTrials.gov NCT03970356.
  •  
37.
  •  
38.
  •  
39.
  •  
40.
  • Koopen, A. M., et al. (author)
  • Plasma Metabolites Related to Peripheral and Hepatic Insulin Sensitivity Are Not Directly Linked to Gut Microbiota Composition
  • 2020
  • In: Nutrients. - : MDPI AG. - 2072-6643. ; 12:8
  • Journal article (peer-reviewed)abstract
    • Plasma metabolites affect a range of metabolic functions in humans, including insulin sensitivity (IS). A subset of these plasma metabolites is modified by the gut microbiota. To identify potential microbial-metabolite pathways involved in IS, we investigated the link between plasma metabolites, gut microbiota composition, and IS, using the gold-standard for peripheral and hepatic IS measurement in a group of participants with metabolic syndrome (MetSyn). In a cross-sectional study with 115 MetSyn participants, fasting plasma samples were collected for untargeted metabolomics analysis and fecal samples for 16S rRNA gene amplicon sequencing. A two-step hyperinsulinemic euglycemic clamp was performed to assess peripheral and hepatic IS. Collected data were integrated and potential interdependence between metabolites, gut microbiota, and IS was analyzed using machine learning prediction models. Plasma metabolites explained 13.2% and 16.7% of variance in peripheral and hepatic IS, respectively. Fecal microbiota composition explained 4.2% of variance in peripheral IS and was not related to hepatic IS. Although metabolites could partially explain the variances in IS, the top metabolites related to peripheral and hepatic IS did not significantly correlate with gut microbiota composition (both on taxonomical level and alpha-diversity). However, all plasma metabolites could explain 18.5% of the variance in microbial alpha-diversity (Shannon); the top 20 metabolites could even explain 44.5% of gut microbial alpha-diversity. In conclusion, plasma metabolites could partially explain the variance in peripheral and hepatic IS; however, these metabolites were not directly linked to the gut microbiota composition, underscoring the intricate relation between plasma metabolites, the gut microbiota, and IS in MetSyn
  •  
41.
  • Kootte, R. S., et al. (author)
  • Improvement of Insulin Sensitivity after Lean Donor Feces in Metabolic Syndrome Is Driven by Baseline Intestinal Microbiota Composition
  • 2017
  • In: Cell Metabolism. - : Elsevier BV. - 1550-4131. ; 26:4, s. 611-619
  • Journal article (peer-reviewed)abstract
    • The intestinal microbiota has been implicated in insulin resistance, although evidence regarding causality in humans is scarce. We therefore studied the effect of lean donor (allogenic) versus own (autologous) fecal microbiota transplantation (FMT) to male recipients with the metabolic syndrome. Whereas we did not observe metabolic changes at 18 weeks after FMT, insulin sensitivity at 6 weeks after allogenic FMT was significantly improved, accompanied by altered microbiota composition. We also observed changes in plasma metabolites such as gamma-aminobutyric acid and show that metabolic response upon allogenic FMT (defined as improved insulin sensitivity 6 weeks after FMT) is dependent on decreased fecal microbial diversity at baseline. In conclusion, the beneficial effects of lean donor FMT on glucose metabolism are associated with changes in intestinal microbiota and plasma metabolites and can be predicted based on baseline fecal microbiota composition.
  •  
42.
  • Pappa, Irene, et al. (author)
  • A genome-wide approach to children's aggressive behavior : The EAGLE consortium.
  • 2016
  • In: American Journal of Medical Genetics Part B. - : Wiley. - 1552-4841 .- 1552-485X. ; 171:5, s. 562-572
  • Journal article (peer-reviewed)abstract
    • Individual differences in aggressive behavior emerge in early childhood and predict persisting behavioral problems and disorders. Studies of antisocial and severe aggression in adulthood indicate substantial underlying biology. However, little attention has been given to genome-wide approaches of aggressive behavior in children. We analyzed data from nine population-based studies and assessed aggressive behavior using well-validated parent-reported questionnaires. This is the largest sample exploring children's aggressive behavior to date (N = 18,988), with measures in two developmental stages (N = 15,668 early childhood and N = 16,311 middle childhood/early adolescence). First, we estimated the additive genetic variance of children's aggressive behavior based on genome-wide SNP information, using genome-wide complex trait analysis (GCTA). Second, genetic associations within each study were assessed using a quasi-Poisson regression approach, capturing the highly right-skewed distribution of aggressive behavior. Third, we performed meta-analyses of genome-wide associations for both the total age-mixed sample and the two developmental stages. Finally, we performed a gene-based test using the summary statistics of the total sample. GCTA quantified variance tagged by common SNPs (10-54%). The meta-analysis of the total sample identified one region in chromosome 2 (2p12) at near genome-wide significance (top SNP rs11126630, P = 5.30 × 10(-8) ). The separate meta-analyses of the two developmental stages revealed suggestive evidence of association at the same locus. The gene-based analysis indicated association of variation within AVPR1A with aggressive behavior. We conclude that common variants at 2p12 show suggestive evidence for association with childhood aggression. Replication of these initial findings is needed, and further studies should clarify its biological meaning. © 2015 Wiley Periodicals, Inc.
  •  
43.
  •  
44.
  •  
45.
  • Smits, L. P., et al. (author)
  • Effect of Vegan Fecal Microbiota Transplantation on Carnitine- and Choline-Derived Trimethylamine-N-Oxide Production and Vascular Inflammation in Patients With Metabolic Syndrome
  • 2018
  • In: Journal of the American Heart Association. - : Ovid Technologies (Wolters Kluwer Health). - 2047-9980. ; 7:7
  • Journal article (peer-reviewed)abstract
    • BackgroundIntestinal microbiota have been found to be linked to cardiovascular disease via conversion of the dietary compounds choline and carnitine to the atherogenic metabolite TMAO (trimethylamine-N-oxide). Specifically, a vegan diet was associated with decreased plasma TMAO levels and nearly absent TMAO production on carnitine challenge. Methods and ResultsWe performed a double-blind randomized controlled pilot study in which 20 male metabolic syndrome patients were randomized to single lean vegan-donor or autologous fecal microbiota transplantation. At baseline and 2weeks thereafter, we determined the ability to produce TMAO from d(6)-choline and d(3)-carnitine (eg, labeled and unlabeled TMAO in plasma and 24-hour urine after oral ingestion of 250mg of both isotope-labeled precursor nutrients), and fecal samples were collected for analysis of microbiota composition. F-18-fluorodeoxyglucose positron emission tomography/computed tomography scans of the abdominal aorta, as well as exvivo peripheral blood mononuclear cell cytokine production assays, were performed. At baseline, fecal microbiota composition differed significantly between vegans and metabolic syndrome patients. With vegan-donor fecal microbiota transplantation, intestinal microbiota composition in metabolic syndrome patients, as monitored by global fecal microbial community structure, changed toward a vegan profile in some of the patients; however, no functional effects from vegan-donor fecal microbiota transplantation were seen on TMAO production, abdominal aortic F-18-fluorodeoxyglucose uptake, or exvivo cytokine production from peripheral blood mononuclear cells. ConclusionsSingle lean vegan-donor fecal microbiota transplantation in metabolic syndrome patients resulted in detectable changes in intestinal microbiota composition but failed to elicit changes in TMAO production capacity or parameters related to vascular inflammation.
  •  
46.
  • Udayappan, S. D., et al. (author)
  • Intestinal Ralstonia pickettii augments glucose intolerance in obesity
  • 2017
  • In: Plos One. - : Public Library of Science (PLoS). - 1932-6203. ; 12:11
  • Journal article (peer-reviewed)abstract
    • An altered intestinal microbiota composition has been implicated in the pathogenesis of metabolic disease including obesity and type 2 diabetes mellitus (T2DM). Low grade inflammation, potentially initiated by the intestinal microbiota, has been suggested to be a driving force in the development of insulin resistance in obesity. Here, we report that bacterial DNA is present in mesenteric adipose tissue of obese but otherwise healthy human subjects. Pyrosequencing of bacterial 16S rRNA genes revealed that DNA from the Gram-negative species Ralstonia was most prevalent. Interestingly, fecal abundance of Ralstonia pickettii was increased in obese subjects with pre-diabetes and T2DM. To assess if R. pickettii was causally involved in development of obesity and T2DM, we performed a proof-of-concept study in diet-induced obese (DIO) mice. Compared to vehicle-treated control mice, R. pickettii-treated DIO mice had reduced glucose tolerance. In addition, circulating levels of endotoxin were increased in R. pickettii-treated mice. In conclusion, this study suggests that intestinal Ralstonia is increased in obese human subjects with T2DM and reciprocally worsens glucose tolerance in DIO mice.
  •  
47.
  •  
48.
  • van der Valk, Ralf J P, et al. (author)
  • A novel common variant in DCST2 is associated with length in early life and height in adulthood.
  • 2015
  • In: Human molecular genetics. - : Oxford University Press (OUP). - 1460-2083 .- 0964-6906. ; 24:4, s. 1155-68
  • Journal article (peer-reviewed)abstract
    • Common genetic variants have been identified for adult height, but not much is known about the genetics of skeletal growth in early life. To identify common genetic variants that influence fetal skeletal growth, we meta-analyzed 22 genome-wide association studies (Stage 1; N = 28 459). We identified seven independent top single nucleotide polymorphisms (SNPs) (P < 1 × 10(-6)) for birth length, of which three were novel and four were in or near loci known to be associated with adult height (LCORL, PTCH1, GPR126 and HMGA2). The three novel SNPs were followed-up in nine replication studies (Stage 2; N = 11 995), with rs905938 in DC-STAMP domain containing 2 (DCST2) genome-wide significantly associated with birth length in a joint analysis (Stages 1 + 2; β = 0.046, SE = 0.008, P = 2.46 × 10(-8), explained variance = 0.05%). Rs905938 was also associated with infant length (N = 28 228; P = 5.54 × 10(-4)) and adult height (N = 127 513; P = 1.45 × 10(-5)). DCST2 is a DC-STAMP-like protein family member and DC-STAMP is an osteoclast cell-fusion regulator. Polygenic scores based on 180 SNPs previously associated with human adult stature explained 0.13% of variance in birth length. The same SNPs explained 2.95% of the variance of infant length. Of the 180 known adult height loci, 11 were genome-wide significantly associated with infant length (SF3B4, LCORL, SPAG17, C6orf173, PTCH1, GDF5, ZNFX1, HHIP, ACAN, HLA locus and HMGA2). This study highlights that common variation in DCST2 influences variation in early growth and adult height.
  •  
49.
  • van Es, Michael A, et al. (author)
  • Genome-wide association study identifies 19p13.3 (UNC13A) and 9p21.2 as susceptibility loci for sporadic amyotrophic lateral sclerosis
  • 2009
  • In: Nature genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 41:10, s. 1083-1087
  • Journal article (peer-reviewed)abstract
    • We conducted a genome-wide association study among 2,323 individuals with sporadic amyotrophic lateral sclerosis (ALS) and 9,013 control subjects and evaluated all SNPs with P < 1.0 x 10(-4) in a second, independent cohort of 2,532 affected individuals and 5,940 controls. Analysis of the genome-wide data revealed genome-wide significance for one SNP, rs12608932, with P = 1.30 x 10(-9). This SNP showed robust replication in the second cohort (P = 1.86 x 10(-6)), and a combined analysis over the two stages yielded P = 2.53 x 10(-14). The rs12608932 SNP is located at 19p13.3 and maps to a haplotype block within the boundaries of UNC13A, which regulates the release of neurotransmitters such as glutamate at neuromuscular synapses. Follow-up of additional SNPs showed genome-wide significance for two further SNPs (rs2814707, with P = 7.45 x 10(-9), and rs3849942, with P = 1.01 x 10(-8)) in the combined analysis of both stages. These SNPs are located at chromosome 9p21.2, in a linkage region for familial ALS with frontotemporal dementia found previously in several large pedigrees.
  •  
50.
  • Van Olden, C. C., et al. (author)
  • A systems biology approach to understand gut microbiota and host metabolism in morbid obesity: design of the BARIA Longitudinal Cohort Study
  • 2021
  • In: Journal of Internal Medicine. - : Wiley. - 0954-6820 .- 1365-2796. ; 289:3, s. 340-354
  • Journal article (peer-reviewed)abstract
    • Introduction Prevalence of obesity and associated diseases, including type 2 diabetes mellitus, dyslipidaemia and non-alcoholic fatty liver disease (NAFLD), are increasing. Underlying mechanisms, especially in humans, are unclear. Bariatric surgery provides the unique opportunity to obtain biopsies and portal vein blood-samples. Methods The BARIA Study aims to assess how microbiota and their metabolites affect transcription in key tissues and clinical outcome in obese subjects and how baseline anthropometric and metabolic characteristics determine weight loss and glucose homeostasis after bariatric surgery. We phenotype patients undergoing bariatric surgery (predominantly laparoscopic Roux-en-Y gastric bypass), before weight loss, with biometrics, dietary and psychological questionnaires, mixed meal test (MMT) and collect fecal-samples and intra-operative biopsies from liver, adipose tissues and jejunum. We aim to include 1500 patients. A subset (approximately 25%) will undergo intra-operative portal vein blood-sampling. Fecal-samples are analyzed with shotgun metagenomics and targeted metabolomics, fasted and postprandial plasma-samples are subjected to metabolomics, and RNA is extracted from the tissues for RNAseq-analyses. Data will be integrated using state-of-the-art neuronal networks and metabolic modeling. Patient follow-up will be ten years. Results Preoperative MMT of 170 patients were analysed and clear differences were observed in glucose homeostasis between individuals. Repeated MMT in 10 patients showed satisfactory intra-individual reproducibility, with differences in plasma glucose, insulin and triglycerides within 20% of the mean difference. Conclusion The BARIA study can add more understanding in how gut-microbiota affect metabolism, especially with regard to obesity, glucose metabolism and NAFLD. Identification of key factors may provide diagnostic and therapeutic leads to control the obesity-associated disease epidemic.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-50 of 50
Type of publication
journal article (45)
conference paper (2)
research review (1)
Type of content
peer-reviewed (43)
other academic/artistic (5)
Author/Editor
Groen, A. K. (13)
Nieuwdorp, Max (8)
Rivadeneira, Fernand ... (7)
Jacobsson, Bo, 1960 (6)
Boomsma, Dorret I. (6)
Uitterlinden, André ... (6)
show more...
Pennell, Craig E (6)
Herrema, H. (6)
Timpson, Nicholas J. (6)
Raitakari, Olli T (5)
Heinrich, Joachim (5)
Franke, A (5)
Smith, GD (5)
McCarthy, Mark I (5)
Hakonarson, Hakon (5)
Hofman, Albert (5)
Zeggini, Eleftheria (5)
Dallinga-Thie, G. M. (5)
Ntalla, Ioanna (5)
Horikoshi, Momoko (5)
Sebert, Sylvain (5)
Heinrich, J. (4)
Bäckhed, Fredrik, 19 ... (4)
Koppelman, Gerard H. (4)
Sunyer, Jordi (4)
Melbye, Mads (4)
Alameer, E (4)
Hofman, A (4)
Uitterlinden, AG (4)
Standl, M (4)
Thiering, E. (4)
Rodriguez, Alina (4)
Levin, E (4)
Ring, Susan M (4)
Smith, George Davey (4)
Hartikainen, Anna-Li ... (4)
Hirschhorn, Joel N. (4)
Hottenga, Jouke-Jan (4)
Myhre, R. (4)
Bakker, G. J. (4)
van Raalte, D. H. (4)
Koopen, A. M. (4)
Hartstra, A. V. (4)
St Pourcain, Beate (4)
Dedoussis, George V. (4)
Geller, Frank (4)
Bradfield, Jonathan ... (4)
Huikari, Ville (4)
Ang, Wei (4)
Bisgaard, Hans (4)
show less...
University
Karolinska Institutet (25)
University of Gothenburg (22)
Mid Sweden University (4)
Umeå University (3)
Lund University (3)
Chalmers University of Technology (2)
show more...
Uppsala University (1)
Halmstad University (1)
Stockholm University (1)
Linköping University (1)
show less...
Language
English (50)
Research subject (UKÄ/SCB)
Medical and Health Sciences (30)
Natural sciences (2)
Social Sciences (2)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view