SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Grunler J) "

Search: WFRF:(Grunler J)

  • Result 1-46 of 46
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  •  
11.
  •  
12.
  •  
13.
  • Botusan, I. R., et al. (author)
  • Deficiency of liver-derived insulin-like growth factor-I (IGF-I) does not interfere with the skin wound healing rate
  • 2018
  • In: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 13:3
  • Journal article (peer-reviewed)abstract
    • Objective: IGF-I is a growth factor, which is expressed in virtually all tissues. The circulating IGF-I is however derived mainly from the liver. IGF-I promotes wound healing and its levels are decreased in wounds with low regenerative potential such as diabetic wounds. However, the contribution of circulating IGF-I to wound healing is unknown. Here we investigated the role of systemic IGF-I on wound healing rate in mice with deficiency of liver-derived IGF-I (LI-IGF-I-/- mice) during normal (normoglycemic) and impaired wound healing (diabetes). Methods: LI-IGF-I-/- mice with complete inactivation of the IGF-I gene in the hepatocytes were generated using the Cre/loxP recombination system. This resulted in a 75% reduction of circulating IGF-I. Diabetes was induced with streptozocin in both LI-IGF-I-/- and control mice. Wounds were made on the dorsum of the mice, and the wound healing rate and histology were evaluated. Serum IGF-I and GH were measured by RIA and ELISA respectively. The expression of IGF-I, IGF-II and the IGF-I receptor in the skin were evaluated by qRT-PCR. The local IGF-I protein expression in different cell types of the wounds during wound healing process was analyzed using immunohistochemistry. Results: The wound healing rate was similar in LI-IGF-I-/- mice to that in controls. Diabetes significantly delayed the wound healing rate in both LI-IGF-I-/- and control mice. However, no significant difference was observed between diabetic animals with normal or reduced hepatic IGF-I production. The gene expression of IGF-I, IGF-II and IGF-I receptor in skin was not different between any group of animals tested. Local IGF-I levels in the wounds were similar between of LI-IGF-I-/- and WT mice although a transient reduction of IGF-I expression in leukocytes in the wounds of LI-IGF-I-/- was observed seven days post wounding. Conclusion: Deficiency in the liver-derived IGF-I does not affect wound healing in mice, neither in normo-glycemic conditions nor in diabetes.
  •  
14.
  •  
15.
  •  
16.
  •  
17.
  •  
18.
  •  
19.
  •  
20.
  •  
21.
  •  
22.
  •  
23.
  •  
24.
  •  
25.
  • Grünler, J, et al. (author)
  • Subcellular distribution of farnesyl protein transferase in rat liver
  • 1999
  • In: FEBS Letters. - 0014-5793 .- 1873-3468. ; 455:3, s. 233-237
  • Journal article (peer-reviewed)abstract
    • Farnesyl protein transferase (FPT) activity was measured in rat liver subcellular fractions by using an unspecific acceptor for the farnesyl groups. The highest specific activity was found in mitochondria and it exceeded that of the microsomes three-fold. Considerably lower specific activities were found in the nuclei and cytosol. Further subfractionation revealed that the mitochondrial FPT activity is located in the matrix. The beta-subunit of the mitochondrial enzyme has an apparent molecular mass of 46 kDa, which is similar to its cytosolic counterpart. The results suggest that protein farnesylation can take place in a number of subcellular organelles.
  •  
26.
  •  
27.
  •  
28.
  •  
29.
  •  
30.
  • Narayanan, S, et al. (author)
  • HypoxamiR-210 accelerates wound healing in diabetic mice by improving cellular metabolism
  • 2020
  • In: Communications biology. - : Springer Science and Business Media LLC. - 2399-3642. ; 3:1, s. 768-
  • Journal article (peer-reviewed)abstract
    • Wound healing is a high energy demanding process that needs a good coordination of the mitochondria with glycolysis in the characteristic highly hypoxic environment. In diabetes, hyperglycemia impairs the adaptive responses to hypoxia with profound negative effects on different cellular compartments of wound healing. miR-210 is a hypoxia-induced microRNA that regulates cellular metabolism and processes important for wound healing. Here, we show that hyperglycemia blunted the hypoxia-dependent induction of miR-210 both in vitro and in human and mouse diabetic wounds. The impaired regulation of miR-210 in diabetic wounds is pathogenic, since local miR-210 administration accelerated wound healing specifically in diabetic but not in non-diabetic mice. miR-210 reconstitution restores the metabolic balance in diabetic wounds by reducing oxygen consumption rate and ROS production and by activating glycolysis with positive consequences on cellular migration. In conclusion, miR-210 accelerates wound healing specifically in diabetes through improvement of the cellular metabolism.
  •  
31.
  •  
32.
  •  
33.
  •  
34.
  •  
35.
  •  
36.
  •  
37.
  •  
38.
  •  
39.
  •  
40.
  •  
41.
  •  
42.
  •  
43.
  •  
44.
  •  
45.
  •  
46.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-46 of 46

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view