SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Guidetti Roberto) "

Search: WFRF:(Guidetti Roberto)

  • Result 1-13 of 13
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Bertolani, Roberto, et al. (author)
  • Experiences with dormancy in tardigrades
  • 2004
  • In: Journal of limnology. - 1129-5767 .- 1723-8633. ; 63:Suppl. 1, s. 16-25
  • Journal article (peer-reviewed)abstract
    • Tardigrades often colonise extreme habitats, in which they survive using both types of dormancy: quiescence and diapause. Together with nematodes and bdelloid rotifers, tardigrades are known to enter quiescence (with several forms of cryptobiosis: anhydrobiosis, cryobiosis, anoxybiosis, osmobiosis) at any stage of their life cycle, from egg to adult. Entering anhydrobiosis, tardigrades contract their body into a so-called tun, loosing most of their free and bound water (>95%), synthesizing cell protectants (e.g., trehalose, glycerol, heat shock proteins) and strongly reducing or suspending their metabolism. Our research on cryptobiosis focused on some ecological and evolutionary aspects. We evaluated: i) the long-term anhydrobiotic survival by comparing quantitative data on recovery from naturally induced desiccation in several species of tardigrades; ii) differences in survival patterns between species and populations by experimentally inducing anhydrobiosis and cryobiosis; iii) phenotypic factors affecting anhydrobiotic survival. As regards diapause, we considered encystment and eggs. Encystment involves at least the synthesis of new cuticular structures. Morphological changes during cyst formation are more complex than those involved in tun formation. We analyzed more in detail encystment processes, comparing a semiterrestrial with a limnic species. Several inter-specific differences have been identified, other than the production of two types of cysts in the semiterrestrial species. Our analysis of life history traits of a laboratory reared strain of a soil tardigrade revealed a particular hatching phenology that involved the production of both subitaneous and resting eggs. The latter need a cue to hatch (dehydration followed by re-hydration). In addition, the evolutionary meaning of dormancy in tardigrades is discussed
  •  
2.
  • Guidetti, Roberto, et al. (author)
  • Morphological and molecular analyses on Richtersius (Eutardigrada) diversity reveal its new systematic position and lead to the establishment of a new genus and a new family within Macrobiotoidea
  • 2016
  • In: Zoological Journal of the Linnean Society. - 0024-4082 .- 1096-3642. ; 178:4, s. 834-845
  • Journal article (peer-reviewed)abstract
    • Important contributions have been made to the systematics of Eutardigrada in recent years, but these have also revealed that several taxa are polyphyletic and that cryptic species are present. To shed light on the taxonomy and systematic position of the genus Richtersius (Eutardigrada, Macrobiotoidea), six populations attributed to Richtersius coronifer were collected and analysed from morphological (light and scanning electron microscopy) and molecular (mitochondrial cytochrome oxidase subunit 1, 18S, 28S) points of view. In particular, a new morphometric index (claw common tract: length of the common tract of the claw/total claw length × 100) and a new morphological character (stalk system) were introduced. Our integrative study was able to unveil the ‘cryptic’ species diversity within Richtersius, showing that the genus contains more than one evolutionary lineage. A morphological peculiarity in the animals of all lineages is the dimorphism in the morphology of the cuticle. Cuticular pores are present in the newborns and are lost with the first moult; this morphological change represents a novelty in the life cycle of eutardigrades. The phylogenetic analyses carried out on Richtersius populations and other Macrobiotoidea show that Richtersius is closely related to Macrobiotus islandicus, whereas Adorybiotus granulatus is more related to Richtersius and M. islandicus than to other members of the genus Macrobiotus (type genus of Macrobiotidae); therefore, the genus Macrobiotus and the family Macrobiotidae are not monophyletic. Based on these results, the new genus Diaforobiotus (for M. islandicus) and the new family Richtersiidae (composed of Richtersius, Diaforobiotus gen. nov., and Adorybiotus) are established.
  •  
3.
  • Guidetti, Roberto, et al. (author)
  • Morphological and molecular analyses on Richtersius (Eutardigrada) diversity reveal its new systematic position and lead to the establishment of a new genus and a new family within Macrobiotoidea
  • 2016
  • In: Zoological Journal of the Linnean Society. - : Oxford University Press. - 0024-4082 .- 1096-3642. ; 178:4, s. 834-845
  • Journal article (peer-reviewed)abstract
    • Important contributions have been made to the systematics of Eutardigrada in recent years, but these have also revealed that several taxa are polyphyletic and that cryptic species are present. To shed light on the taxonomy and systematic position of the genus Richtersius (Eutardigrada, Macrobiotoidea), six populations attributed to Richtersius coronifer were collected and analysed from morphological (light and scanning electron microscopy) and molecular (mitochondrial cytochrome oxidase subunit 1, 18S, 28S) points of view. In particular, a new morphometric index (claw common tract: length of the common tract of the claw/total claw length × 100) and a new morphological character (stalk system) were introduced. Our integrative study was able to unveil the ‘cryptic’ species diversity within Richtersius, showing that the genus contains more than one evolutionary lineage. A morphological peculiarity in the animals of all lineages is the dimorphism in the morphology of the cuticle. Cuticular pores are present in the newborns and are lost with the first moult; this morphological change represents a novelty in the life cycle of eutardigrades. The phylogenetic analyses carried out on Richtersius populations and other Macrobiotoidea show that Richtersius is closely related to Macrobiotus islandicus, whereas Adorybiotus granulatus is more related to Richtersius and M. islandicus than to other members of the genus Macrobiotus (type genus of Macrobiotidae); therefore, the genus Macrobiotus and the family Macrobiotidae are not monophyletic. Based on these results, the new genus Diaforobiotus (for M. islandicus) and the new family Richtersiidae (composed of Richtersius, Diaforobiotus gen. nov., and Adorybiotus) are established.
  •  
4.
  • Vecchi, Matteo, et al. (author)
  • Integrative systematic studies on tardigrades from Antarctica identify new genera and new species within Macrobiotoidea and Echiniscoidea
  • 2016
  • In: Invertebrate systematics. - 1445-5226 .- 1447-2600. ; 30:4, s. 303-322
  • Journal article (peer-reviewed)abstract
    • Tardigrades represent one of the most abundant groups of Antarctic metazoans in terms of abundance and diversity, thanks to their ability to withstand desiccation and freezing; however, their biodiversity is underestimated. Antarctic tardigrades from Dronning Maud Land and Victoria Land were analysed from a morphological point of view with light microscopy and scanning electron microscopy, and from a molecular point of view using two genes (18S, 28S) analysed in Bayesian inference and maximum-likelihood frameworks. In addition, indel-coding datasets were used for the first time to infer tardigrade phylogenies. We also compared Antarctic specimens with those from Italy and Greenland. A combined morphological and molecular analysis led to the identification of two new evolutionary lineages, for which we here erect the new genera Acanthechiniscus, gen. nov. (Echiniscidae, Echiniscoidea) and Mesobiotus, gen. nov. (Macrobiotidae, Macrobiotoidea). Moreover, two species new to science were discovered: Pseudechiniscus titianae,sp. nov. (Echiniscidae : Echiniscoidea) and Mesobiotus hilariae, sp. nov. (Macrobiotidae : Macrobiotoidea). This study highlights the high tardigrade diversity in Antarctica and the importance of an integrated approach in faunal and taxonomic studies.
  •  
5.
  • Vecchi, Matteo, et al. (author)
  • Integrative systematic studies on tardigrades from Antarctica identify new genera and new species within Macrobiotoidea and Echiniscoidea
  • 2016
  • In: Invertebrate Systematics. - : CSIRO. - 1445-5226 .- 1447-2600. ; 30:4, s. 303-322
  • Journal article (peer-reviewed)abstract
    • Tardigrades represent one of the most abundant groups of Antarctic metazoans in terms of abundance and diversity, thanks to their ability to withstand desiccation and freezing; however, their biodiversity is underestimated. Antarctic tardigrades from Dronning Maud Land and Victoria Land were analysed from a morphological point of view with light microscopy and scanning electron microscopy, and from a molecular point of view using two genes (18S, 28S) analysed in Bayesian inference and maximum-likelihood frameworks. In addition, indel-coding datasets were used for the first time to infer tardigrade phylogenies. We also compared Antarctic specimens with those from Italy and Greenland. A combined morphological and molecular analysis led to the identification of two new evolutionary lineages, for which we here erect the new genera Acanthechiniscus, gen. nov. (Echiniscidae, Echiniscoidea) and Mesobiotus, gen. nov. (Macrobiotidae, Macrobiotoidea). Moreover, two species new to science were discovered: Pseudechiniscus titianae,sp. nov. (Echiniscidae : Echiniscoidea) and Mesobiotus hilariae, sp. nov. (Macrobiotidae : Macrobiotoidea). This study highlights the high tardigrade diversity in Antarctica and the importance of an integrated approach in faunal and taxonomic studies.
  •  
6.
  • Guidetti, Roberto, et al. (author)
  • Diversity of the tardigrade communities in the Norwegian forests
  • 2022
  • Conference paper (peer-reviewed)abstract
    • Background: Tardigrades are common in most habitats, however few studies have focused on large faunistic survey, specifically on tardigrade diversity in forests. Up to now, only 61 species have been recorded in different types of forest in Norway with an additional 25 found in limnic environments in forests. Although little is known about the ecological preferences of many species, previous studies have found that tardigrade diversity and community composition are significantly affected by ecological variables. In this study we associate georeferenced tardigrade species records with forest type, substrate type and substrate composition in order to see if tardigrade diversity and species communities can be associated with ecological characteristics of Norwegian forests. Methods: In total 390 moss, lichen and litter samples were collected from 12 forests in central and southern Norway in the summers of 2017 and 2018 and later stored in paper envelopes. For the identification modern literature and keys forspecific genera and groups of species were used. For statistical analyses, moss and lichen substrate of each sample was classified according to the main species, life form, growth forms and habitat of substrate and associated with each tardigrade identification and sample metadata. Results: A total of 17 407 specimens were identified, encompassing in total 132 species (including some new species). Species richness increases with precipitation, but does not change with temperature or precipitation seasonality. The distribution of species richness between life forms and forest types showed considerable variation within and among the variables. Disregarding variables with low sample numbers, among life forms only acrocarpous moss samples appeared to deviate with respect to species richness, containing less species than substrates with other life forms. Conclusions: Tardigrades in Norwegian forest are extremely abundant, frequent and diverse. Moreover, it appears that that certain species and/or entirecommunities prefer specific microhabitats.
  •  
7.
  • Guidetti, Roberto, et al. (author)
  • Tardigrade diversity and community composition across Norwegian boreal forests
  • 2023
  • In: Zoological Journal of the Linnean Society. - : Oxford University Press. - 0024-4082 .- 1096-3642.
  • Journal article (peer-reviewed)abstract
    • Tardigrades are common in many terrestrial environments and habitats. Although little is known on their ecological preferences, previous studies found diversity and community composition significantly affected by various variables. This study associated tardigrade species’ records with climatic variables, forest type, and substrate categories exploring tardigrade diversity and species communities to find associations with ecological characteristics of Norwegian forests. A total of 17 473 specimens were identified, encompassing 131 species (including putatively new species) from 305 samples of different substrates (leaf litter, bryophytes, and lichens). Bryophytes and lichens of samples were classified according to the main species, and growth form, and associated with tardigrade species and sample metadata. Tardigrade species’ richness was related to climatic variables and forest type, increased with precipitation, decreased with summer temperature, and not varied with precipitation seasonality. Although there was an unbalanced representation of substrate categories in the different forest types, some tendencies were detectable. Mixed oak and birch forests reached the highest species’ richness. Tardigrade community composition varied between substrate categories and, to a lesser degree, between forest types, but not with climatic variables. Our study highlights the importance of large-scale variables on tardigrade diversity, and substrate categories for tardigrade community composition.
  •  
8.
  • Guidetti, Roberto, et al. (author)
  • Tardigrades of Sweden : an updated check-list
  • 2015
  • In: Zootaxa. - 1175-5326 .- 1175-5334. ; 3981:4, s. 491-507
  • Journal article (peer-reviewed)abstract
    • Tardigrades occur worldwide and in a variety of ecosystems and habitats representing an important component of the micrometazoan biodiversity. Several studies documenting the occurrence of tardigrades in Sweden have been published since the first reports in early 1900, but no comprehensive summary of these studies have been published. We compiled the available information on recorded tardigrades from Sweden, using material from published studies and museum and university collections. In total, our review document 101 species of tardigrades that have been recorded from Sweden (an updated checklist of tardigrades from Sweden will be available online), of which 14 species are new records for the country. The highest number of species was recorded in the northernmost province of Lappland and the more southern provinces of Uppland and Skåne, while much lower species numbers are reported from the middle part of Sweden. This pattern probably represents biased sampling activities of biologists rather than real differences in biodiversity of tardigrades. In view of the few studies that have been made on tardigrade biodiversity in Sweden, the relatively high number of tardigrade species recorded, representing almost a tenth of the species recorded worldwide, indicates that many more species remain to be found. In this respect, more studies of the marine ecosystems along the Swedish west coast and the long Baltic Sea coastline would be of particular interest.
  •  
9.
  • Guidetti, Roberto, et al. (author)
  • Tardigrades of Sweden : an updated check-list
  • 2015
  • In: Zootaxa. - : Magnolia Press. - 1175-5326 .- 1175-5334. ; 3981:4, s. 491-507
  • Journal article (peer-reviewed)abstract
    • Tardigrades occur worldwide and in a variety of ecosystems and habitats representing an important component of the micrometazoan biodiversity. Several studies documenting the occurrence of tardigrades in Sweden have been published since the first reports in early 1900, but no comprehensive summary of these studies have been published. We compiled the available information on recorded tardigrades from Sweden, using material from published studies and museum and university collections. In total, our review document 101 species of tardigrades that have been recorded from Sweden (an updated checklist of tardigrades from Sweden will be available online), of which 14 species are new records for the country. The highest number of species was recorded in the northernmost province of Lappland and the more southern provinces of Uppland and Skåne, while much lower species numbers are reported from the middle part of Sweden. This pattern probably represents biased sampling activities of biologists rather than real differences in biodiversity of tardigrades. In view of the few studies that have been made on tardigrade biodiversity in Sweden, the relatively high number of tardigrade species recorded, representing almost a tenth of the species recorded worldwide, indicates that many more species remain to be found. In this respect, more studies of the marine ecosystems along the Swedish west coast and the long Baltic Sea coastline would be of particular interest.
  •  
10.
  •  
11.
  •  
12.
  • Massa, Edoardo, et al. (author)
  • Tardigrades of Kristianstads Vattenrike biosphere reserve with description of four new species from Sweden
  • 2021
  • In: Scientific Reports. - 2045-2322. ; 11:1, s. 1-19
  • Journal article (peer-reviewed)abstract
    • Kristianstads Vattenrike Biosphere Reserve [KVBR] is a UNESCO designated area of Sweden possessing high biological value. Although several studies on tardigrades inhabiting Sweden havebeen performed, the KVBR area has been neglected. The current study investigates the tardigrade fauna of five areas of the biosphere reserve and includes 34 samples of different substrates analysed quantitatively and qualitatively. In total, 33 species of tardigrades were found in the samples, including 22 new records for the Skåne region, 15 new records for Sweden, and four species new to science. Mesobiotus emiliae sp. nov., Xerobiotus gretae sp. nov., Itaquascon magnussoni sp. nov., and Thulinius gustavi sp. nov. were described with an integrative approach (when possible) using morphological characters (light, electron scanning, and confocal laser scanning microscopies) and molecular markers (ITS2, 18S, 28S, cox1). A new protocol to increase morphological data was developed recovering mounted specimens within old slides for SEM analysis. Emended diagnoses for the genus Itaquascon and the transfer of Platicrista itaquasconoide to the genus Meplitumen are proposed. This study enriches the knowledge of the tardigrade biodiversity both within the KVBR and in Sweden and contributes to the rapidly increasing number of tardigrade species reported worldwide. The 33 species identified in the KVBR area represents 28% of all water bear species found in Sweden so far. The restricted study areas and limited number of samples collected suggests that the KVBR is very rich of tardigrades.
  •  
13.
  • Massa, Edoardo, et al. (author)
  • Tardigrades of Kristianstads Vattenrike biosphere reserve with description of four new species from Sweden
  • 2021
  • In: Scientific Reports. - : Nature Publishing Group. - 2045-2322. ; 11:1, s. 18
  • Journal article (peer-reviewed)abstract
    • Kristianstads Vattenrike Biosphere Reserve [KVBR] is a UNESCO designated area of Sweden possessing high biological value. Although several studies on tardigrades inhabiting Sweden havebeen performed, the KVBR area has been neglected. The current study investigates the tardigrade fauna of five areas of the biosphere reserve and includes 34 samples of different substrates analysed quantitatively and qualitatively. In total, 33 species of tardigrades were found in the samples, including 22 new records for the Skåne region, 15 new records for Sweden, and four species new to science. Mesobiotus emiliae sp. nov., Xerobiotus gretae sp. nov., Itaquascon magnussoni sp. nov., and Thulinius gustavi sp. nov. were described with an integrative approach (when possible) using morphological characters (light, electron scanning, and confocal laser scanning microscopies) and molecular markers (ITS2, 18S, 28S, cox1). A new protocol to increase morphological data was developed recovering mounted specimens within old slides for SEM analysis. Emended diagnoses for the genus Itaquascon and the transfer of Platicrista itaquasconoide to the genus Meplitumen are proposed. This study enriches the knowledge of the tardigrade biodiversity both within the KVBR and in Sweden and contributes to the rapidly increasing number of tardigrade species reported worldwide. The 33 species identified in the KVBR area represents 28% of all water bear species found in Sweden so far. The restricted study areas and limited number of samples collected suggests that the KVBR is very rich of tardigrades.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-13 of 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view