SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Gurtner V) "

Search: WFRF:(Gurtner V)

  • Result 1-32 of 32
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Abbasi, R., et al. (author)
  • Search for point sources of high energy neutrinos with final data from AMANDA-II
  • 2009
  • In: Physical Review D. - 1550-7998 .- 1550-2368. ; 79, s. 062001-
  • Journal article (peer-reviewed)abstract
    • We present a search for point sources of high energy neutrinos using 3.8 yr of data recorded by AMANDA-II during 2000-2006. After reconstructing muon tracks and applying selection criteria designed to optimally retain neutrino-induced events originating in the northern sky, we arrive at a sample of 6595 candidate events, predominantly from atmospheric neutrinos with primary energy 100 GeV to 8 TeV. Our search of this sample reveals no indications of a neutrino point source. We place the most stringent limits to date on E(-2) neutrino fluxes from points in the northern sky, with an average upper limit of E(2)Phi(nu mu)+nu(tau)<= 5.2x10(-11) TeV cm(-2) s(-1) on the sum of nu(mu) and nu(tau) fluxes, assumed equal, over the energy range from 1.9 TeV to 2.5 PeV.
  •  
3.
  • Abbasi, R., et al. (author)
  • Solar energetic particle spectrum on 2006 December 13 determined by IceTop
  • 2008
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 689:1, s. L65-L68
  • Journal article (peer-reviewed)abstract
    • On 2006 December 13 the IceTop air shower array at the South Pole detected a major solar particle event. By numerically simulating the response of the IceTop tanks, which are thick Cerenkov detectors with multiple thresholds deployed at high altitude with no geomagnetic cutoff, we determined the particle energy spectrum in the energy range 0.6-7.6 GeV. This is the first such spectral measurement using a single instrument with a well-defined viewing direction. We compare the IceTop spectrum and its time evolution with previously published results and outline plans for improved resolution of future solar particle spectra.
  •  
4.
  • Abbasi, R., et al. (author)
  • The IceCube data acquisition system : Signal capture, digitization, and timestamping
  • 2009
  • In: Nuclear Instruments and Methods in Physics Research Section A. - : Elsevier BV. - 0168-9002 .- 1872-9576. ; 601:3, s. 294-316
  • Journal article (peer-reviewed)abstract
    • IceCube is a km-scale neutrino observatory under construction at the South Pole with sensors both in the deep ice (InIce) and on the surface (IceTop). The sensors, called Digital Optical Modules (DOMs). detect, digitize and timestamp the signals from optical Cherenkov-radiation photons. The DOM Main Board (MB) data acquisition subsystem is connected to the central DAQ in the IceCube Laboratory (ICL) by a single twisted copper wire-pair and transmits packetized data on demand. Time calibration is maintained throughout the array by regular transmission to the DOMs of precisely timed analog signals, synchronized to a central GPS-disciplined clock. The design goals and consequent features, functional capabilities, and initial performance of the DOM MB, and the operation of a combined array of DOMs as a system, are described here. Experience with the first InIce strings and the IceTop stations indicates that the system design and performance goals have been achieved. (c) 2009 Elsevier B.V. All rights reserved.
  •  
5.
  • Achterberg, A., et al. (author)
  • Detection of atmospheric muon neutrinos with the IceCube 9-string detector
  • 2007
  • In: Physical Review D - Particles, Fields, Gravitation and Cosmology. - 1550-7998. ; 76:2, s. 027101-
  • Journal article (peer-reviewed)abstract
    • The IceCube neutrino detector is a cubic kilometer TeV to PeV neutrino detector under construction at the geographic South Pole. The dominant population of neutrinos detected in IceCube is due to meson decay in cosmic-ray air showers. These atmospheric neutrinos are relatively well understood and serve as a calibration and verification tool for the new detector. In 2006, the detector was approximately 10% completed, and we report on data acquired from the detector in this configuration. We observe an atmospheric neutrino signal consistent with expectations, demonstrating that the IceCube detector is capable of identifying neutrino events. In the first 137.4 days of live time, 234 neutrino candidates were selected with an expectation of 211 +/- 76.1(syst)+/- 14.5(stat) events from atmospheric neutrinos.
  •  
6.
  • Achterberg, A., et al. (author)
  • Multiyear search for a diffuse flux of muon neutrinos with AMANDA-II
  • 2007
  • In: Physical Review D - Particles, Fields, Gravitation and Cosmology. - 1550-7998. ; 76:4, s. 042008-
  • Journal article (peer-reviewed)abstract
    • A search for TeV-PeV muon neutrinos from unresolved sources was performed on AMANDA-II data collected between 2000 and 2003 with an equivalent live time of 807 days. This diffuse analysis sought to find an extraterrestrial neutrino flux from sources with nonthermal components. The signal is expected to have a harder spectrum than the atmospheric muon and neutrino backgrounds. Since no excess of events was seen in the data over the expected background, an upper limit of E-2 Phi(90%C.L.)< 7.4x10(-8) GeV cm(-2) s(-1) sr(-1) is placed on the diffuse flux of muon neutrinos with a Phi proportional to E-2 spectrum in the energy range 16 TeV to 2.5 PeV. This is currently the most sensitive Phi proportional to E-2 diffuse astrophysical neutrino limit. We also set upper limits for astrophysical and prompt neutrino models, all of which have spectra different from Phi proportional to E-2.
  •  
7.
  • Achterberg, A., et al. (author)
  • The search for muon neutrinos from northern hemisphere gamma-ray bursts with AMANDA
  • 2008
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 674:1, s. 357-370
  • Journal article (peer-reviewed)abstract
    • We present the results of the analysis of neutrino observations by the Antarctic Muon and Neutrino Detector Array (AMANDA) correlated with photon observations of more than 400 gamma-ray bursts (GRBs) in the northern hemisphere from 1997 to 2003. During this time period, AMANDA's effective collection area for muon neutrinos was larger than that of any other existing detector. After the application of various selection criteria to our data, we expect similar to 1 neutrino event and <2 background events. Based on our observations of zero events during and immediately prior to the GRBs in the data set, we set the most stringent upper limit on muon neutrino emission correlated with GRBs. Assuming a Waxman-Bahcall spectrum and incorporating all systematic uncertainties, our flux upper limit has a normalization at 1 PeV of E-2 Phi(nu) <= 6.3 x 10(-9) GeV cm(-2) s(-1) sr(-1), with 90% of the events expected within the energy range of similar to 10 TeV to similar to 3 PeV. The impact of this limit on several theoretical models of GRBs is discussed, as well as the future potential for detection of GRBs by next-generation neutrino telescopes. Finally, we briefly describe several modifications to this analysis in order to apply it to other types of transient point sources.
  •  
8.
  • Ackermann, M., et al. (author)
  • Search for ultra-high-energy neutrinos with amanda-II
  • 2008
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 675:2, s. 1014-1024
  • Journal article (peer-reviewed)abstract
    • A search for diffuse neutrinos with energies in excess of 10(5) GeV is conducted with AMANDA-II data recorded between 2000 and 2002. Above 10(7) GeV, the Earth is essentially opaque to neutrinos. This fact, combined with the limited overburden of the AMANDA-II detector ( roughly 1.5 km), concentrates these ultra-high-energy neutrinos at the horizon. The primary background for this analysis is bundles of downgoing, high-energy muons from the interaction of cosmic rays in the atmosphere. No statistically significant excess above the expected background is seen in the data, and an upper limit is set on the diffuse all-flavor neutrino flux of E-2 Phi(90%CL) < 2.7x10(-7) GeV cm(-2) s(-1) sr(-1) valid over the energy range of 2x10(5) to 10(9) GeV. A number of models that predict neutrino fluxes from active galactic nuclei are excluded at the 90% confidence level.
  •  
9.
  • Aartsen, M. G., et al. (author)
  • First Observation of PeV-Energy Neutrinos with IceCube
  • 2013
  • In: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 111:2, s. 021103-
  • Journal article (peer-reviewed)abstract
    • We report on the observation of two neutrino-induced events which have an estimated deposited energy in the IceCube detector of 1.04 +/- 0.16 and 1.14 +/- 0.17 PeV, respectively, the highest neutrino energies observed so far. These events are consistent with fully contained particle showers induced by neutral-current nu(e,mu,tau) ((nu) over bar (e,mu,tau)) or charged-current nu(e) ((nu) over bar (e)) interactions within the IceCube detector. The events were discovered in a search for ultrahigh energy neutrinos using data corresponding to 615.9 days effective live time. The expected number of atmospheric background is 0.082 +/- 0.004(stat)(-0.057)(+0.041)(syst). The probability of observing two or more candidate events under the atmospheric background-only hypothesis is 2.9 x 10(-3) (2.8 sigma) taking into account the uncertainty on the expected number of background events. These two events could be a first indication of an astrophysical neutrino flux; the moderate significance, however, does not permit a definitive conclusion at this time.
  •  
10.
  • Aartsen, M. G., et al. (author)
  • Measurement of South Pole ice transparency with the IceCube LED calibration system
  • 2013
  • In: Nuclear Instruments and Methods in Physics Research Section A. - : Elsevier BV. - 0168-9002 .- 1872-9576. ; 711, s. 73-89
  • Journal article (peer-reviewed)abstract
    • The IceCube Neutrino Observatory, approximately 1 km(3) in size, is now complete with 86 strings deployed in the Antarctic ice. IceCube detects the Cherenkov radiation emitted by charged particles passing through or created in the ice. To realize the full potential of the detector, the properties of light propagation in the ice in and around the detector must be well understood. This report presents a new method of fitting the model of light propagation in the ice to a data set of in situ light source events collected with IceCube. The resulting set of derived parameters, namely the measured values of scattering and absorption coefficients vs. depth, is presented and a comparison of IceCube data with simulations based on the new model is shown.
  •  
11.
  • Aartsen, M. G., et al. (author)
  • Measurement of the Atmospheric nu(e) Flux in IceCube
  • 2013
  • In: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 110:15, s. 151105-
  • Journal article (peer-reviewed)abstract
    • We report the first measurement of the atmospheric electron neutrino flux in the energy range between approximately 80 GeV and 6 TeV, using data recorded during the first year of operation of IceCube's DeepCore low-energy extension. Techniques to identify neutrinos interacting within the DeepCore volume and veto muons originating outside the detector are demonstrated. A sample of 1029 events is observed in 281 days of data, of which 496 +/- 66(stat) +/- 88(syst) are estimated to be cascade events, including both electron neutrino and neutral current events. The rest of the sample includes residual backgrounds due to atmospheric muons and charged current interactions of atmospheric muon neutrinos. The flux of the atmospheric electron neutrinos is consistent with models of atmospheric neutrinos in this energy range. This constitutes the first observation of electron neutrinos and neutral current interactions in a very large volume neutrino telescope optimized for the TeV energy range.
  •  
12.
  • Aartsen, M. G., et al. (author)
  • Observation of Cosmic-Ray Anisotropy with the Icetop Air Shower Array
  • 2013
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 765:1, s. 55-
  • Journal article (peer-reviewed)abstract
    • We report on the observation of anisotropy in the arrival direction distribution of cosmic rays at PeV energies. The analysis is based on data taken between 2009 and 2012 with the IceTop air shower array at the south pole. IceTop, an integral part of the IceCube detector, is sensitive to cosmic rays between 100 TeV and 1 EeV. With the current size of the IceTop data set, searches for anisotropy at the 10(-3) level can, for the first time, be extended to PeV energies. We divide the data set into two parts with median energies of 400 TeV and 2 PeV, respectively. In the low energy band, we observe a strong deficit with an angular size of about 30 degrees and an amplitude of (-1.58 +/- 0.46(stat) +/- 0.52(sys)) x 10(-3) at a location consistent with previous observations of cosmic rays with the IceCube neutrino detector. The study of the high energy band shows that the anisotropy persists to PeV energies and increases in amplitude to (-3.11 +/- 0.38(stat) +/- 0.96(sys)) x 10(-3).
  •  
13.
  • Aartsen, M. G., et al. (author)
  • Search for Dark Matter Annihilations in the Sun with the 79-String IceCube Detector
  • 2013
  • In: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 110:13, s. 131302-
  • Journal article (peer-reviewed)abstract
    • We have performed a search for muon neutrinos from dark matter annihilation in the center of the Sun with the 79-string configuration of the IceCube neutrino telescope. For the first time, the DeepCore subarray is included in the analysis, lowering the energy threshold and extending the search to the austral summer. The 317 days of data collected between June 2010 and May 2011 are consistent with the expected background from atmospheric muons and neutrinos. Upper limits are set on the dark matter annihilation rate, with conversions to limits on spin-dependent and spin-independent scattering cross sections of weakly interacting massive particles (WIMPs) on protons, for WIMP masses in the range 20-5000 GeV=c(2). These are the most stringent spin-dependent WIMP-proton cross section limits to date above 35 GeV=c(2) for most WIMP models. 
  •  
14.
  • Aartsen, M. G., et al. (author)
  • Search for Galactic PeV gamma rays with the IceCube Neutrino Observatory
  • 2013
  • In: Physical Review D. - 1550-7998 .- 1550-2368. ; 87:6, s. 062002-
  • Journal article (peer-reviewed)abstract
    • Gamma-ray induced air showers are notable for their lack of muons, compared to hadronic showers. Hence, air shower arrays with large underground muon detectors can select a sample greatly enriched in photon showers by rejecting showers containing muons. IceCube is sensitive to muons with energies above similar to 500 GeV at the surface, which provides an efficient veto system for hadronic air showers with energies above 1 PeV. One year of data from the 40-string IceCube configuration was used to perform a search for point sources and a Galactic diffuse signal. No sources were found, resulting in a 90% C.L. upper limit on the ratio of gamma rays to cosmic rays of 1.2 x 10(-3) for the flux coming from the Galactic plane region (-80 degrees less than or similar to l less than or similar to -30 degrees; -10 degrees less than or similar to b less than or similar to 5 degrees) in the energy range 1.2-6.0 PeV. In the same energy range, point source fluxes with E-2 spectra have been excluded at a level of (E/TeV)(2)d Phi/dE similar to 10(-12)-10(-11) cm(-2) s(-1) TeV-1 depending on source declination. The complete IceCube detector will have a better sensitivity (due to the larger detector size), improved reconstruction, and vetoing techniques. Preliminary data from the nearly final IceCube detector configuration have been used to estimate the 5-yr sensitivity of the full detector. It is found to be more than an order of magnitude better, allowing the search for PeV extensions of known TeV gamma-ray emitters.
  •  
15.
  • Aartsen, M. G., et al. (author)
  • South Pole glacial climate reconstruction from multi-borehole laser particulate stratigraphy
  • 2013
  • In: Journal of Glaciology. - 0022-1430 .- 1727-5652. ; 59:218, s. 1117-1128
  • Journal article (peer-reviewed)abstract
    • The IceCube Neutrino Observatory and its prototype, AMANDA, were built in South Pole ice, using powerful hot-water drills to cleanly bore >100 holes to depths up to 2500 m. The construction of these particle physics detectors provided a unique opportunity to examine the deep ice sheet using a variety of novel techniques. We made high-resolution particulate profiles with a laser dust logger in eight of the boreholes during detector commissioning between 2004 and 2010. The South Pole laser logs are among the most clearly resolved measurements of Antarctic dust strata during the last glacial period and can be used to reconstruct paleoclimate records in exceptional detail. Here we use manual and algorithmic matching to synthesize our South Pole measurements with ice-core and logging data from Dome C, East Antarctica. We derive impurity concentration, precision chronology, annual-layer thickness, local spatial variability, and identify several widespread volcanic ash depositions useful for dating. We also examine the interval around similar to 74 ka recently isolated with radiometric dating to bracket the Toba (Sumatra) supereruption.
  •  
16.
  • Abbasi, R., et al. (author)
  • All-particle cosmic ray energy spectrum measured with 26 IceTop stations
  • 2013
  • In: Astroparticle physics. - : Elsevier BV. - 0927-6505 .- 1873-2852. ; 44, s. 40-58
  • Journal article (peer-reviewed)abstract
    • We report on a measurement of the cosmic ray energy spectrum with the IceTop air shower array, the surface component of the IceCube Neutrino Observatory at the South Pole. The data used in this analysis were taken between June and October, 2007, with 26 surface stations operational at that time, corresponding to about one third of the final array. The fiducial area used in this analysis was 0.122 km(2). The analysis investigated the energy spectrum from 1 to 100 PeV measured for three different zenith angle ranges between 0 degrees and 46 degrees. Because of the isotropy of cosmic rays in this energy range the spectra from all zenith angle intervals have to agree. The cosmic-ray energy spectrum was determined under different assumptions on the primary mass composition. Good agreement of spectra in the three zenith angle ranges was found for the assumption of pure proton and a simple two-component model. For zenith angles theta < 30 degrees, where the mass dependence is smallest, the knee in the cosmic ray energy spectrum was observed at about 4 PeV, with a spectral index above the knee of about -3.1. Moreover, an indication of a flattening of the spectrum above 22 PeV was observed. 
  •  
17.
  • Abbasi, R., et al. (author)
  • An improved method for measuring muon energy using the truncated mean of dE/dx
  • 2013
  • In: Nuclear Instruments and Methods in Physics Research Section A. - : Elsevier BV. - 0168-9002 .- 1872-9576. ; 703, s. 190-198
  • Journal article (peer-reviewed)abstract
    • The measurement of muon energy is critical for many analyses in large Cherenkov detectors, particularly those that involve separating extraterrestrial neutrinos from the atmospheric neutrino background. Muon energy has traditionally been determined by measuring the specific energy loss (dE/dx) along the muon's path and relating the dE/dx to the muon energy. Because high-energy muons (Eμ>1TeV) lose energy randomly, the spread in dE/dx values is quite large, leading to a typical energy resolution of 0.29 in log10(Eμ) for a muon observed over a 1 km path length in the IceCube detector. In this paper, we present an improved method that uses a truncated mean and other techniques to determine the muon energy. The muon track is divided into separate segments with individual dE/dx values. The elimination of segments with the highest dE/dx results in an overall dE/dx that is more closely correlated to the muon energy. This method results in an energy resolution of 0.22 in log10(Eμ), which gives a 26% improvement. This technique is applicable to any large water or ice detector and potentially to large scintillator or liquid argon detectors.
  •  
18.
  • Abbasi, R., et al. (author)
  • Cosmic ray composition and energy spectrum from 1-30 PeV using the 40-string configuration of IceTop and IceCube
  • 2013
  • In: Astroparticle physics. - : Elsevier BV. - 0927-6505 .- 1873-2852. ; 42, s. 15-32
  • Journal article (peer-reviewed)abstract
    • The mass composition of high energy cosmic rays depends on their production, acceleration, and propagation. The study of cosmic ray composition can therefore reveal hints of the origin of these particles. At the South Pole, the IceCube Neutrino Observatory is capable of measuring two components of cosmic ray air showers in coincidence: the electromagnetic component at high altitude (2835 m) using the IceTop surface array, and the muonic component above ∼1 TeV using the IceCube array. This unique detector arrangement provides an opportunity for precision measurements of the cosmic ray energy spectrum and composition in the region of the knee and beyond. We present the results of a neural network analysis technique to study the cosmic ray composition and the energy spectrum from 1 PeV to 30 PeV using data recorded using the 40-string/40-station configuration of the IceCube Neutrino Observatory.
  •  
19.
  • Abbasi, R, et al. (author)
  • Determination of the atmospheric neutrino flux and searches for new physics with AMANDA-II
  • 2009
  • In: Physical Review D. - 1550-7998 .- 1550-2368. ; 79, s. 102005-
  • Journal article (peer-reviewed)abstract
    • The AMANDA-II detector, operating since 2000 in the deep ice at the geographic South Pole, has accumulated a large sample of atmospheric muon neutrinos in the 100 GeV to 10 TeV energy range. The zenith angle and energy distribution of these events can be used to search for various phenomenological signatures of quantum gravity in the neutrino sector, such as violation of Lorentz invariance or quantum decoherence. Analyzing a set of 5511 candidate neutrino events collected during 1387 days of livetime from 2000 to 2006, we find no evidence for such effects and set upper limits on violation of Lorentz invariance and quantum decoherence parameters using a maximum likelihood method. Given the absence of evidence for new flavor-changing physics, we use the same methodology to determine the conventional atmospheric muon neutrino flux above 100 GeV.
  •  
20.
  • Abbasi, R, et al. (author)
  • Extending the Search for Neutrino Point Sources with IceCube above the Horizon
  • 2009
  • In: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 103:22, s. 221102-
  • Journal article (peer-reviewed)abstract
    • Point source searches with the IceCube neutrino telescope have been restricted to one hemisphere, due to the exclusive selection of upward going events as a way of rejecting the atmospheric muon background. We show that the region above the horizon can be included by suppressing the background through energy-sensitive cuts. This improves the sensitivity above PeV energies, previously not accessible for declinations of more than a few degrees below the horizon due to the absorption of neutrinos in Earth. We present results based on data collected with 22 strings of IceCube, extending its field of view and energy reach for point source searches. No significant excess above the atmospheric background is observed in a sky scan and in tests of source candidates. Upper limits are reported, which for the first time cover point sources in the southern sky up to EeV energies.
  •  
21.
  • Abbasi, R, et al. (author)
  • FIRST NEUTRINO POINT-SOURCE RESULTS FROM THE 22 STRING ICECUBE DETECTOR
  • 2009
  • In: Astrophysical Journal Letters. - 2041-8205. ; 701, s. L47-L51
  • Journal article (peer-reviewed)abstract
    • We present new results of searches for neutrino point sources in the northern sky, using data recorded in 2007-2008 with 22 strings of the IceCube detector (approximately one-fourth of the planned total) and 275.7 days of live time. The final sample of 5114 neutrino candidate events agrees well with the expected background of atmospheric muon neutrinos and a small component of atmospheric muons. No evidence of a point source is found, with the most significant excess of events in the sky at 2.2 sigma after accounting for all trials. The average upper limit over the northern sky for point sources of muon-neutrinos with E-2 spectrum is E-2 Phi(v mu) < 1.4 x 10(-11) TeV cm(-2) s(-1), in the energy range from 3 TeV to 3 PeV, improving the previous best average upper limit by the AMANDA-II detector by a factor of 2.
  •  
22.
  • Abbasi, R., et al. (author)
  • IceCube sensitivity for low-energy neutrinos from nearby supernovae
  • 2011
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 535, s. A109-
  • Journal article (peer-reviewed)abstract
    • This paper describes the response of the IceCube neutrino telescope located at the geographic south pole to outbursts of MeV neutrinos from the core collapse of nearby massive stars. IceCube was completed in December 2010 forming a lattice of 5160 photomultiplier tubes that monitor a volume of similar to 1 km(3) in the deep Antarctic ice for particle induced photons. The telescope was designed to detect neutrinos with energies greater than 100 GeV. Owing to subfreezing ice temperatures, the photomultiplier dark noise rates are particularly low. Hence IceCube can also detect large numbers of MeV neutrinos by observing a collective rise in all photomultiplier rates on top of the dark noise. With 2 ms timing resolution, IceCube can detect subtle features in the temporal development of the supernova neutrino burst. For a supernova at the galactic center, its sensitivity matches that of a background-free megaton-scale supernova search experiment. The sensitivity decreases to 20 standard deviations at the galactic edge (30 kpc) and 6 standard deviations at the Large Magellanic Cloud (50 kpc). IceCube is sending triggers from potential supernovae to the Supernova Early Warning System. The sensitivity to neutrino properties such as the neutrino hierarchy is discussed, as well as the possibility to detect the neutronization burst, a short outbreak of nu(e)'s released by electron capture on protons soon after collapse. Tantalizing signatures, such as the formation of a quark star or a black hole as well as the characteristics of shock waves, are investigated to illustrate IceCube's capability for supernova detection.
  •  
23.
  • Abbasi, R., et al. (author)
  • IceTop : The surface component of IceCube
  • 2013
  • In: Nuclear Instruments and Methods in Physics Research Section A. - : Elsevier BV. - 0168-9002 .- 1872-9576. ; 700, s. 188-220
  • Journal article (peer-reviewed)abstract
    • IceTop, the surface component of the IceCube Neutrino Observatory at the South Pole, is an air shower array with an area of 1 km(2). The detector allows a detailed exploration of the mass composition of primary cosmic rays in the energy range from about 100 TeV to 1 EeV by exploiting the correlation between the shower energy measured in IceTop and the energy deposited by muons in the deep ice. In this paper we report on the technical design, construction and installation, the trigger and data acquisition systems as well as the software framework for calibration, reconstruction and simulation. Finally the first experience from commissioning and operating the detector and the performance as an air shower detector will be discussed.
  •  
24.
  • Abbasi, R., et al. (author)
  • Lateral distribution of muons in IceCube cosmic ray events
  • 2013
  • In: Physical Review D. - 1550-7998 .- 1550-2368. ; 87:1, s. 012005-
  • Journal article (peer-reviewed)abstract
    • In cosmic ray air showers, the muon lateral separation from the center of the shower is a measure of the transverse momentum that the muon parent acquired in the cosmic ray interaction. IceCube has observed cosmic ray interactions that produce muons laterally separated by up to 400 m from the shower core, a factor of 6 larger distance than previous measurements. These muons originate in high p(T) (> 2 GeV/c) interactions from the incident cosmic ray, or high-energy secondary interactions. The separation distribution shows a transition to a power law at large values, indicating the presence of a hard p(T) component that can be described by perturbative quantum chromodynamics. However, the rates and the zenith angle distributions of these events are not well reproduced with the cosmic ray models tested here, even those that include charm interactions. This discrepancy may be explained by a larger fraction of kaons and charmed particles than is currently incorporated in the simulations. DOI: 10.1103/PhysRevD.87.012005
  •  
25.
  • Abbasi, R, et al. (author)
  • Limits on a Muon Flux from Neutralino Annihilations in the Sun with the IceCube 22-String Detector
  • 2009
  • In: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 102:20, s. 201302-
  • Journal article (peer-reviewed)abstract
    • A search for muon neutrinos from neutralino annihilations in the Sun has been performed with the IceCube 22-string neutrino detector using data collected in 104.3 days of live time in 2007. No excess over the expected atmospheric background has been observed. Upper limits have been obtained on the annihilation rate of captured neutralinos in the Sun and converted to limits on the weakly interacting massive particle (WIMP) proton cross sections for WIMP masses in the range 250-5000 GeV. These results are the most stringent limits to date on neutralino annihilation in the Sun.
  •  
26.
  • Abbasi, R., et al. (author)
  • SEARCH FOR HIGH-ENERGY MUON NEUTRINOS FROM THE "NAKED-EYE" GRB 080319B WITH THE IceCube NEUTRINO TELESCOPE
  • 2009
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 701:2, s. 1721-1731
  • Journal article (peer-reviewed)abstract
    • We report on a search with the IceCube detector for high-energy muon neutrinos from GRB 080319B, one of the brightest gamma-ray bursts (GRBs) ever observed. The fireball model predicts that a mean of 0.1 events should be detected by IceCube for a bulk Lorentz boost of the jet of 300. In both the direct on-time window of 66 s and an extended window of about 300 s around the GRB, no excess was found above background. The 90% CL upper limit on the number of track-like events from the GRB is 2.7, corresponding to a muon neutrino fluence limit of 9.5 x 10(-3) erg cm(-2) in the energy range between 120 TeV and 2.2 PeV, which contains 90% of the expected events.
  •  
27.
  • Abbasi, R., et al. (author)
  • Search for muon neutrinos from gamma-ray bursts with the IceCube neutrino telescope
  • 2010
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 710:1, s. 346-359
  • Journal article (peer-reviewed)abstract
    • We present the results of searches for high-energy muon neutrinos from 41 gamma-ray bursts (GRBs) in the northern sky with the IceCube detector in its 22 string configuration active in 2007/2008. The searches cover both the prompt and a possible precursor emission as well as a model-independent, wide time window of -1 hr to + 3 hr around each GRB. In contrast to previous searches with a large GRB population, we do not utilize a standard Waxman-Bahcall GRB flux for the prompt emission but calculate individual neutrino spectra for all 41 GRBs from the burst parameters measured by satellites. For all of the three time windows, the best estimate for the number of signal events is zero. Therefore, we place 90% CL upper limits on the fluence from the prompt phase of 3.7 x 10(-3) erg cm(-2) (72 TeV-6.5 PeV) and on the fluence from the precursor phase of 2.3 x 10(-3) erg cm(-2) (2.2-55 TeV), where the quoted energy ranges contain 90% of the expected signal events in the detector. The 90% CL upper limit for the wide time window is 2.7 x 10(-3) erg cm(-2) (3 TeV-2.8 PeV) assuming an E-2 flux.
  •  
28.
  • Abbasi, R., et al. (author)
  • Search for relativistic magnetic monopoles with IceCube
  • 2013
  • In: Physical Review D. - 1550-7998 .- 1550-2368. ; 87:2, s. 022001-
  • Journal article (peer-reviewed)abstract
    • We present the first results in the search for relativistic magnetic monopoles with the IceCube detector, a subsurface neutrino telescope located in the South Polar ice cap containing a volume of 1 km(3). This analysis searches data taken on the partially completed detector during 2007 when roughly 0.2 km(3) of ice was instrumented. The lack of candidate events leads to an upper limit on the flux of relativistic magnetic monopoles of Phi(90%C.L.) similar to 3 x 10(-18) cm(-2) sr(-1) s(-1) for beta >= 0.8. This is a factor of 4 improvement over the previous best experimental flux limits up to a Lorentz boost gamma below 10(7). This result is then interpreted for a wide range of mass and kinetic energy values.
  •  
29.
  • Abbasi, R., et al. (author)
  • Search for ultrahigh-energy tau neutrinos with IceCube
  • 2012
  • In: Physical Review D. - 1550-7998 .- 1550-2368. ; 86:2, s. 022005-
  • Journal article (peer-reviewed)abstract
    • The first dedicated search for ultrahigh-energy (UHE) tau neutrinos of astrophysical origin was performed using the IceCube detector in its 22-string configuration with an instrumented volume of roughly 0: 25 km(3). The search also had sensitivity to UHE electron and muon neutrinos. After application of all selection criteria to approximately 200 live-days of data, we expect a background of 0.60 +/- 0.19(stat)(-0.58)(+0.56)(syst) events and observe three events, which after inspection, emerge as being compatible with background but are kept in the final sample. Therefore, we set an upper limit on neutrinos of all flavors from UHE astrophysical sources at 90% C.L. of E-v(2)Phi(90)(v(x)) < 16.3 x 10(-8) GeV cm(-2) sr(-1) s(-1) over an estimated primary neutrino energy range of 340 TeV to 200 PeV.
  •  
30.
  • Abbasi, R., et al. (author)
  • Searches for high-energy neutrino emission in the galaxy with the combined icecube-amanda detector
  • 2013
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 763:1, s. 33-
  • Journal article (peer-reviewed)abstract
    • We report on searches for neutrino sources at energies above 200 GeV in the Northern sky of the Galactic plane, using the data collected by the South Pole neutrino telescope, IceCube, and AMANDA. The Galactic region considered in this work includes the local arm toward the Cygnus region and our closest approach to the Perseus Arm. The searches are based on the data collected between 2007 and 2009. During this time AMANDA was an integrated part of IceCube, which was still under construction and operated with 22 strings (2007-2008) and 40 strings (2008-2009) of optical modules deployed in the ice. By combining the advantages of the larger IceCube detector with the lower energy threshold of the more compact AMANDA detector, we obtain an improved sensitivity at energies below ∼10 TeV with respect to previous searches. The analyses presented here are a scan for point sources within the Galactic plane, a search optimized for multiple and extended sources in the Cygnus region, which might be below the sensitivity of the point source scan, and studies of seven pre-selected neutrino source candidates. For one of them, Cygnus X-3, a time-dependent search for neutrino emission in coincidence with observed radio and X-ray flares has been performed. No evidence of a signal is found, and upper limits are reported for each of the searches. We investigate neutrino spectra proportional to E -2 and E -3 in order to cover the entire range of possible neutrino spectra. The steeply falling E -3 neutrino spectrum can also be used to approximate neutrino energy spectra with energy cutoffs below 50 TeV since these result in a similar energy distribution of events in the detector. For the region of the Galactic plane visible in the Northern sky, the 90% confidence level muon neutrino flux upper limits are in the range E 3 dN/dE ∼ 5.4-19.5 × 10-11 TeV2 cm-2 s-1 for point-like neutrino sources in the energy region [180.0 GeV-20.5 TeV]. These represent the most stringent upper limits for soft-spectra neutrino sources within the Galaxy reported to date.
  •  
31.
  •  
32.
  • Scott, P., et al. (author)
  • Use of event-level neutrino telescope data in global fits for theories of new physics
  • 2012
  • In: Journal of Cosmology and Astroparticle Physics. - : IOP Publishing. - 1475-7516. ; :11, s. 057-
  • Journal article (peer-reviewed)abstract
    • We present a fast likelihood method for including event-level neutrino telescope data in parameter explorations of theories for new physics, and announce its public release as part of DarkSUSY 5.0.6. Our construction includes both angular and spectral information about neutrino events, as well as their total number. We also present a corresponding measure for simple model exclusion, which can be used for single models without reference to the rest of a parameter space. We perform a number of supersymmetric parameter scans with IceCube data to illustrate the utility of the method: example global fits and a signal recovery in the constrained minimal supersymmetric standard model (CMSSM), and a model exclusion exercise in a 7-parameter phenomenological version of the MSSM. The final IceCube detector con figuration will probe almost the entire focus-point region of the CMSSM, as well as a number of MSSM-7 models that will not otherwise be accessible to e. g. direct detection. Our method accurately recovers the mock signal, and provides tight constraints on model parameters and derived quantities. We show that the inclusion of spectral information significantly improves the accuracy of the recovery, providing motivation for its use in future IceCube analyses.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-32 of 32

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view