SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Hamed A.) "

Search: WFRF:(Hamed A.)

  • Result 1-50 of 102
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Bravo, L, et al. (author)
  • 2021
  • swepub:Mat__t
  •  
2.
  • Thomas, HS, et al. (author)
  • 2019
  • swepub:Mat__t
  •  
3.
  • Tabiri, S, et al. (author)
  • 2021
  • swepub:Mat__t
  •  
4.
  •  
5.
  • Drake, TM, et al. (author)
  • Surgical site infection after gastrointestinal surgery in children: an international, multicentre, prospective cohort study
  • 2020
  • In: BMJ global health. - : BMJ. - 2059-7908. ; 5:12
  • Journal article (peer-reviewed)abstract
    • Surgical site infection (SSI) is one of the most common healthcare-associated infections (HAIs). However, there is a lack of data available about SSI in children worldwide, especially from low-income and middle-income countries. This study aimed to estimate the incidence of SSI in children and associations between SSI and morbidity across human development settings.MethodsA multicentre, international, prospective, validated cohort study of children aged under 16 years undergoing clean-contaminated, contaminated or dirty gastrointestinal surgery. Any hospital in the world providing paediatric surgery was eligible to contribute data between January and July 2016. The primary outcome was the incidence of SSI by 30 days. Relationships between explanatory variables and SSI were examined using multilevel logistic regression. Countries were stratified into high development, middle development and low development groups using the United Nations Human Development Index (HDI).ResultsOf 1159 children across 181 hospitals in 51 countries, 523 (45·1%) children were from high HDI, 397 (34·2%) from middle HDI and 239 (20·6%) from low HDI countries. The 30-day SSI rate was 6.3% (33/523) in high HDI, 12·8% (51/397) in middle HDI and 24·7% (59/239) in low HDI countries. SSI was associated with higher incidence of 30-day mortality, intervention, organ-space infection and other HAIs, with the highest rates seen in low HDI countries. Median length of stay in patients who had an SSI was longer (7.0 days), compared with 3.0 days in patients who did not have an SSI. Use of laparoscopy was associated with significantly lower SSI rates, even after accounting for HDI.ConclusionThe odds of SSI in children is nearly four times greater in low HDI compared with high HDI countries. Policies to reduce SSI should be prioritised as part of the wider global agenda.
  •  
6.
  • Murari, A., et al. (author)
  • A control oriented strategy of disruption prediction to avoid the configuration collapse of tokamak reactors
  • 2024
  • In: Nature Communications. - 2041-1723 .- 2041-1723. ; 15:1
  • Journal article (peer-reviewed)abstract
    • The objective of thermonuclear fusion consists of producing electricity from the coalescence of light nuclei in high temperature plasmas. The most promising route to fusion envisages the confinement of such plasmas with magnetic fields, whose most studied configuration is the tokamak. Disruptions are catastrophic collapses affecting all tokamak devices and one of the main potential showstoppers on the route to a commercial reactor. In this work we report how, deploying innovative analysis methods on thousands of JET experiments covering the isotopic compositions from hydrogen to full tritium and including the major D-T campaign, the nature of the various forms of collapse is investigated in all phases of the discharges. An original approach to proximity detection has been developed, which allows determining both the probability of and the time interval remaining before an incoming disruption, with adaptive, from scratch, real time compatible techniques. The results indicate that physics based prediction and control tools can be developed, to deploy realistic strategies of disruption avoidance and prevention, meeting the requirements of the next generation of devices.
  •  
7.
  • Joffrin, E., et al. (author)
  • Overview of the JET preparation for deuterium-tritium operation with the ITER like-wall
  • 2019
  • In: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 59:11
  • Research review (peer-reviewed)abstract
    • For the past several years, the JET scientific programme (Pamela et al 2007 Fusion Eng. Des. 82 590) has been engaged in a multi-campaign effort, including experiments in D, H and T, leading up to 2020 and the first experiments with 50%/50% D-T mixtures since 1997 and the first ever D-T plasmas with the ITER mix of plasma-facing component materials. For this purpose, a concerted physics and technology programme was launched with a view to prepare the D-T campaign (DTE2). This paper addresses the key elements developed by the JET programme directly contributing to the D-T preparation. This intense preparation includes the review of the physics basis for the D-T operational scenarios, including the fusion power predictions through first principle and integrated modelling, and the impact of isotopes in the operation and physics of D-T plasmas (thermal and particle transport, high confinement mode (H-mode) access, Be and W erosion, fuel recovery, etc). This effort also requires improving several aspects of plasma operation for DTE2, such as real time control schemes, heat load control, disruption avoidance and a mitigation system (including the installation of a new shattered pellet injector), novel ion cyclotron resonance heating schemes (such as the three-ions scheme), new diagnostics (neutron camera and spectrometer, active Alfven eigenmode antennas, neutral gauges, radiation hard imaging systems...) and the calibration of the JET neutron diagnostics at 14 MeV for accurate fusion power measurement. The active preparation of JET for the 2020 D-T campaign provides an incomparable source of information and a basis for the future D-T operation of ITER, and it is also foreseen that a large number of key physics issues will be addressed in support of burning plasmas.
  •  
8.
  •  
9.
  •  
10.
  •  
11.
  •  
12.
  • Sbarra, AN, et al. (author)
  • Mapping routine measles vaccination in low- and middle-income countries
  • 2021
  • In: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 589:7842, s. 415-
  • Journal article (peer-reviewed)abstract
    • The safe, highly effective measles vaccine has been recommended globally since 1974, yet in 2017 there were more than 17 million cases of measles and 83,400 deaths in children under 5 years old, and more than 99% of both occurred in low- and middle-income countries (LMICs)1–4. Globally comparable, annual, local estimates of routine first-dose measles-containing vaccine (MCV1) coverage are critical for understanding geographically precise immunity patterns, progress towards the targets of the Global Vaccine Action Plan (GVAP), and high-risk areas amid disruptions to vaccination programmes caused by coronavirus disease 2019 (COVID-19)5–8. Here we generated annual estimates of routine childhood MCV1 coverage at 5 × 5-km2pixel and second administrative levels from 2000 to 2019 in 101 LMICs, quantified geographical inequality and assessed vaccination status by geographical remoteness. After widespread MCV1 gains from 2000 to 2010, coverage regressed in more than half of the districts between 2010 and 2019, leaving many LMICs far from the GVAP goal of 80% coverage in all districts by 2019. MCV1 coverage was lower in rural than in urban locations, although a larger proportion of unvaccinated children overall lived in urban locations; strategies to provide essential vaccination services should address both geographical contexts. These results provide a tool for decision-makers to strengthen routine MCV1 immunization programmes and provide equitable disease protection for all children.
  •  
13.
  • Lozano, Rafael, et al. (author)
  • Measuring progress from 1990 to 2017 and projecting attainment to 2030 of the health-related Sustainable Development Goals for 195 countries and territories: a systematic analysis for the Global Burden of Disease Study 2017
  • 2018
  • In: The Lancet. - : Elsevier. - 1474-547X .- 0140-6736. ; 392:10159, s. 2091-2138
  • Journal article (peer-reviewed)abstract
    • Background: Efforts to establish the 2015 baseline and monitor early implementation of the UN Sustainable Development Goals (SDGs) highlight both great potential for and threats to improving health by 2030. To fully deliver on the SDG aim of “leaving no one behind”, it is increasingly important to examine the health-related SDGs beyond national-level estimates. As part of the Global Burden of Diseases, Injuries, and Risk Factors Study 2017 (GBD 2017), we measured progress on 41 of 52 health-related SDG indicators and estimated the health-related SDG index for 195 countries and territories for the period 1990–2017, projected indicators to 2030, and analysed global attainment. Methods: We measured progress on 41 health-related SDG indicators from 1990 to 2017, an increase of four indicators since GBD 2016 (new indicators were health worker density, sexual violence by non-intimate partners, population census status, and prevalence of physical and sexual violence [reported separately]). We also improved the measurement of several previously reported indicators. We constructed national-level estimates and, for a subset of health-related SDGs, examined indicator-level differences by sex and Socio-demographic Index (SDI) quintile. We also did subnational assessments of performance for selected countries. To construct the health-related SDG index, we transformed the value for each indicator on a scale of 0–100, with 0 as the 2·5th percentile and 100 as the 97·5th percentile of 1000 draws calculated from 1990 to 2030, and took the geometric mean of the scaled indicators by target. To generate projections through 2030, we used a forecasting framework that drew estimates from the broader GBD study and used weighted averages of indicator-specific and country-specific annualised rates of change from 1990 to 2017 to inform future estimates. We assessed attainment of indicators with defined targets in two ways: first, using mean values projected for 2030, and then using the probability of attainment in 2030 calculated from 1000 draws. We also did a global attainment analysis of the feasibility of attaining SDG targets on the basis of past trends. Using 2015 global averages of indicators with defined SDG targets, we calculated the global annualised rates of change required from 2015 to 2030 to meet these targets, and then identified in what percentiles the required global annualised rates of change fell in the distribution of country-level rates of change from 1990 to 2015. We took the mean of these global percentile values across indicators and applied the past rate of change at this mean global percentile to all health-related SDG indicators, irrespective of target definition, to estimate the equivalent 2030 global average value and percentage change from 2015 to 2030 for each indicator. Findings: The global median health-related SDG index in 2017 was 59·4 (IQR 35·4–67·3), ranging from a low of 11·6 (95% uncertainty interval 9·6–14·0) to a high of 84·9 (83·1–86·7). SDG index values in countries assessed at the subnational level varied substantially, particularly in China and India, although scores in Japan and the UK were more homogeneous. Indicators also varied by SDI quintile and sex, with males having worse outcomes than females for non-communicable disease (NCD) mortality, alcohol use, and smoking, among others. Most countries were projected to have a higher health-related SDG index in 2030 than in 2017, while country-level probabilities of attainment by 2030 varied widely by indicator. Under-5 mortality, neonatal mortality, maternal mortality ratio, and malaria indicators had the most countries with at least 95% probability of target attainment. Other indicators, including NCD mortality and suicide mortality, had no countries projected to meet corresponding SDG targets on the basis of projected mean values for 2030 but showed some probability of attainment by 2030. For some indicators, including child malnutrition, several infectious diseases, and most violence measures, the annualised rates of change required to meet SDG targets far exceeded the pace of progress achieved by any country in the recent past. We found that applying the mean global annualised rate of change to indicators without defined targets would equate to about 19% and 22% reductions in global smoking and alcohol consumption, respectively; a 47% decline in adolescent birth rates; and a more than 85% increase in health worker density per 1000 population by 2030. Interpretation: The GBD study offers a unique, robust platform for monitoring the health-related SDGs across demographic and geographic dimensions. Our findings underscore the importance of increased collection and analysis of disaggregated data and highlight where more deliberate design or targeting of interventions could accelerate progress in attaining the SDGs. Current projections show that many health-related SDG indicators, NCDs, NCD-related risks, and violence-related indicators will require a concerted shift away from what might have driven past gains—curative interventions in the case of NCDs—towards multisectoral, prevention-oriented policy action and investments to achieve SDG aims. Notably, several targets, if they are to be met by 2030, demand a pace of progress that no country has achieved in the recent past. The future is fundamentally uncertain, and no model can fully predict what breakthroughs or events might alter the course of the SDGs. What is clear is that our actions—or inaction—today will ultimately dictate how close the world, collectively, can get to leaving no one behind by 2030.
  •  
14.
  • Stanaway, Jeffrey D., et al. (author)
  • Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990-2017: A systematic analysis for the Global Burden of Disease Study 2017
  • 2018
  • In: The Lancet. - 1474-547X .- 0140-6736. ; 392:10159, s. 1923-1994
  • Journal article (peer-reviewed)abstract
    • Background The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 comparative risk assessment (CRA) is a comprehensive approach to risk factor quantification that offers a useful tool for synthesising evidence on risks and risk-outcome associations. With each annual GBD study, we update the GBD CRA to incorporate improved methods, new risks and risk-outcome pairs, and new data on risk exposure levels and risk- outcome associations. Methods We used the CRA framework developed for previous iterations of GBD to estimate levels and trends in exposure, attributable deaths, and attributable disability-adjusted life-years (DALYs), by age group, sex, year, and location for 84 behavioural, environmental and occupational, and metabolic risks or groups of risks from 1990 to 2017. This study included 476 risk-outcome pairs that met the GBD study criteria for convincing or probable evidence of causation. We extracted relative risk and exposure estimates from 46 749 randomised controlled trials, cohort studies, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. Using the counterfactual scenario of theoretical minimum risk exposure level (TMREL), we estimated the portion of deaths and DALYs that could be attributed to a given risk. We explored the relationship between development and risk exposure by modelling the relationship between the Socio-demographic Index (SDI) and risk-weighted exposure prevalence and estimated expected levels of exposure and risk-attributable burden by SDI. Finally, we explored temporal changes in risk-attributable DALYs by decomposing those changes into six main component drivers of change as follows: (1) population growth; (2) changes in population age structures; (3) changes in exposure to environmental and occupational risks; (4) changes in exposure to behavioural risks; (5) changes in exposure to metabolic risks; and (6) changes due to all other factors, approximated as the risk-deleted death and DALY rates, where the risk-deleted rate is the rate that would be observed had we reduced the exposure levels to the TMREL for all risk factors included in GBD 2017.
  •  
15.
  • Murray, Christopher J. L., et al. (author)
  • Population and fertility by age and sex for 195 countries and territories, 1950–2017: a systematic analysis for the Global Burden of Disease Study 2017
  • 2018
  • In: The Lancet. - 1474-547X .- 0140-6736. ; 392:10159, s. 1995-2051
  • Journal article (peer-reviewed)abstract
    • Background: Population estimates underpin demographic and epidemiological research and are used to track progress on numerous international indicators of health and development. To date, internationally available estimates of population and fertility, although useful, have not been produced with transparent and replicable methods and do not use standardised estimates of mortality. We present single-calendar year and single-year of age estimates of fertility and population by sex with standardised and replicable methods. Methods: We estimated population in 195 locations by single year of age and single calendar year from 1950 to 2017 with standardised and replicable methods. We based the estimates on the demographic balancing equation, with inputs of fertility, mortality, population, and migration data. Fertility data came from 7817 location-years of vital registration data, 429 surveys reporting complete birth histories, and 977 surveys and censuses reporting summary birth histories. We estimated age-specific fertility rates (ASFRs; the annual number of livebirths to women of a specified age group per 1000 women in that age group) by use of spatiotemporal Gaussian process regression and used the ASFRs to estimate total fertility rates (TFRs; the average number of children a woman would bear if she survived through the end of the reproductive age span [age 10–54 years] and experienced at each age a particular set of ASFRs observed in the year of interest). Because of sparse data, fertility at ages 10–14 years and 50–54 years was estimated from data on fertility in women aged 15–19 years and 45–49 years, through use of linear regression. Age-specific mortality data came from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 estimates. Data on population came from 1257 censuses and 761 population registry location-years and were adjusted for underenumeration and age misreporting with standard demographic methods. Migration was estimated with the GBD Bayesian demographic balancing model, after incorporating information about refugee migration into the model prior. Final population estimates used the cohort-component method of population projection, with inputs of fertility, mortality, and migration data. Population uncertainty was estimated by use of out-of-sample predictive validity testing. With these data, we estimated the trends in population by age and sex and in fertility by age between 1950 and 2017 in 195 countries and territories. Findings: From 1950 to 2017, TFRs decreased by 49·4% (95% uncertainty interval [UI] 46·4–52·0). The TFR decreased from 4·7 livebirths (4·5–4·9) to 2·4 livebirths (2·2–2·5), and the ASFR of mothers aged 10–19 years decreased from 37 livebirths (34–40) to 22 livebirths (19–24) per 1000 women. Despite reductions in the TFR, the global population has been increasing by an average of 83·8 million people per year since 1985. The global population increased by 197·2% (193·3–200·8) since 1950, from 2·6 billion (2·5–2·6) to 7·6 billion (7·4–7·9) people in 2017; much of this increase was in the proportion of the global population in south Asia and sub-Saharan Africa. The global annual rate of population growth increased between 1950 and 1964, when it peaked at 2·0%; this rate then remained nearly constant until 1970 and then decreased to 1·1% in 2017. Population growth rates in the southeast Asia, east Asia, and Oceania GBD super-region decreased from 2·5% in 1963 to 0·7% in 2017, whereas in sub-Saharan Africa, population growth rates were almost at the highest reported levels ever in 2017, when they were at 2·7%. The global average age increased from 26·6 years in 1950 to 32·1 years in 2017, and the proportion of the population that is of working age (age 15–64 years) increased from 59·9% to 65·3%. At the national level, the TFR decreased in all countries and territories between 1950 and 2017; in 2017, TFRs ranged from a low of 1·0 livebirths (95% UI 0·9–1·2) in Cyprus to a high of 7·1 livebirths (6·8–7·4) in Niger. The TFR under age 25 years (TFU25; number of livebirths expected by age 25 years for a hypothetical woman who survived the age group and was exposed to current ASFRs) in 2017 ranged from 0·08 livebirths (0·07–0·09) in South Korea to 2·4 livebirths (2·2–2·6) in Niger, and the TFR over age 30 years (TFO30; number of livebirths expected for a hypothetical woman ageing from 30 to 54 years who survived the age group and was exposed to current ASFRs) ranged from a low of 0·3 livebirths (0·3–0·4) in Puerto Rico to a high of 3·1 livebirths (3·0–3·2) in Niger. TFO30 was higher than TFU25 in 145 countries and territories in 2017. 33 countries had a negative population growth rate from 2010 to 2017, most of which were located in central, eastern, and western Europe, whereas population growth rates of more than 2·0% were seen in 33 of 46 countries in sub-Saharan Africa. In 2017, less than 65% of the national population was of working age in 12 of 34 high-income countries, and less than 50% of the national population was of working age in Mali, Chad, and Niger. Interpretation: Population trends create demographic dividends and headwinds (ie, economic benefits and detriments) that affect national economies and determine national planning needs. Although TFRs are decreasing, the global population continues to grow as mortality declines, with diverse patterns at the national level and across age groups. To our knowledge, this is the first study to provide transparent and replicable estimates of population and fertility, which can be used to inform decision making and to monitor progress. Funding: Bill & Melinda Gates Foundation.
  •  
16.
  • Abbafati, Cristiana, et al. (author)
  • 2020
  • Journal article (peer-reviewed)
  •  
17.
  • Feigin, Valery L., et al. (author)
  • Global, regional, and national burden of neurological disorders, 1990–2016 : a systematic analysis for the Global Burden of Disease Study 2016
  • 2019
  • In: Lancet Neurology. - : Elsevier. - 1474-4422 .- 1474-4465. ; 18:5, s. 459-480
  • Journal article (peer-reviewed)abstract
    • Background: Neurological disorders are increasingly recognised as major causes of death and disability worldwide. The aim of this analysis from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2016 is to provide the most comprehensive and up-to-date estimates of the global, regional, and national burden from neurological disorders.Methods: We estimated prevalence, incidence, deaths, and disability-adjusted life-years (DALYs; the sum of years of life lost [YLLs] and years lived with disability [YLDs]) by age and sex for 15 neurological disorder categories (tetanus, meningitis, encephalitis, stroke, brain and other CNS cancers, traumatic brain injury, spinal cord injury, Alzheimer's disease and other dementias, Parkinson's disease, multiple sclerosis, motor neuron diseases, idiopathic epilepsy, migraine, tension-type headache, and a residual category for other less common neurological disorders) in 195 countries from 1990 to 2016. DisMod-MR 2.1, a Bayesian meta-regression tool, was the main method of estimation of prevalence and incidence, and the Cause of Death Ensemble model (CODEm) was used for mortality estimation. We quantified the contribution of 84 risks and combinations of risk to the disease estimates for the 15 neurological disorder categories using the GBD comparative risk assessment approach.Findings: Globally, in 2016, neurological disorders were the leading cause of DALYs (276 million [95% UI 247–308]) and second leading cause of deaths (9·0 million [8·8–9·4]). The absolute number of deaths and DALYs from all neurological disorders combined increased (deaths by 39% [34–44] and DALYs by 15% [9–21]) whereas their age-standardised rates decreased (deaths by 28% [26–30] and DALYs by 27% [24–31]) between 1990 and 2016. The only neurological disorders that had a decrease in rates and absolute numbers of deaths and DALYs were tetanus, meningitis, and encephalitis. The four largest contributors of neurological DALYs were stroke (42·2% [38·6–46·1]), migraine (16·3% [11·7–20·8]), Alzheimer's and other dementias (10·4% [9·0–12·1]), and meningitis (7·9% [6·6–10·4]). For the combined neurological disorders, age-standardised DALY rates were significantly higher in males than in females (male-to-female ratio 1·12 [1·05–1·20]), but migraine, multiple sclerosis, and tension-type headache were more common and caused more burden in females, with male-to-female ratios of less than 0·7. The 84 risks quantified in GBD explain less than 10% of neurological disorder DALY burdens, except stroke, for which 88·8% (86·5–90·9) of DALYs are attributable to risk factors, and to a lesser extent Alzheimer's disease and other dementias (22·3% [11·8–35·1] of DALYs are risk attributable) and idiopathic epilepsy (14·1% [10·8–17·5] of DALYs are risk attributable).Interpretation: Globally, the burden of neurological disorders, as measured by the absolute number of DALYs, continues to increase. As populations are growing and ageing, and the prevalence of major disabling neurological disorders steeply increases with age, governments will face increasing demand for treatment, rehabilitation, and support services for neurological disorders. The scarcity of established modifiable risks for most of the neurological burden demonstrates that new knowledge is required to develop effective prevention and treatment strategies.Funding: Bill & Melinda Gates Foundation.
  •  
18.
  • Wiessner, M., et al. (author)
  • Biallelic variants in HPDL cause pure and complicated hereditary spastic paraplegia
  • 2021
  • In: Brain : a journal of neurology. - : Oxford University Press (OUP). - 0006-8950 .- 1460-2156. ; 144:5, s. 1422-1434
  • Journal article (peer-reviewed)abstract
    • Human 4-hydroxyphenylpyruvate dioxygenase-like (HPDL) is a putative iron-containing non-heme oxygenase of unknown specificity and biological significance. We report 25 families containing 34 individuals with neurological disease associated with biallelic HPDL variants. Phenotypes ranged from juvenile-onset pure hereditary spastic paraplegia to infantile-onset spasticity and global developmental delays, sometimes complicated by episodes of neurological and respiratory decompensation. Variants included bona fide pathogenic truncating changes, although most were missense substitutions. Functionality of variants could not be determined directly as the enzymatic specificity of HPDL is unknown; however, when HPDL missense substitutions were introduced into 4-hydroxyphenylpyruvate dioxygenase (HPPD, an HPDL orthologue), they impaired the ability of HPPD to convert 4-hydroxyphenylpyruvate into homogentisate. Moreover, three additional sets of experiments provided evidence for a role of HPDL in the nervous system and further supported its link to neurological disease: (i) HPDL was expressed in the nervous system and expression increased during neural differentiation; (ii) knockdown of zebrafish hpdl led to abnormal motor behaviour, replicating aspects of the human disease; and (iii) HPDL localized to mitochondria, consistent with mitochondrial disease that is often associated with neurological manifestations. Our findings suggest that biallelic HPDL variants cause a syndrome varying from juvenile-onset pure hereditary spastic paraplegia to infantile-onset spastic tetraplegia associated with global developmental delays. © 2021 The Author(s).
  •  
19.
  •  
20.
  •  
21.
  •  
22.
  • Micah, Angela E., et al. (author)
  • Tracking development assistance for health and for COVID-19 : a review of development assistance, government, out-of-pocket, and other private spending on health for 204 countries and territories, 1990-2050
  • 2021
  • In: The Lancet. - : Elsevier. - 0140-6736 .- 1474-547X. ; 398:10308, s. 1317-1343
  • Research review (peer-reviewed)abstract
    • Background The rapid spread of COVID-19 renewed the focus on how health systems across the globe are financed, especially during public health emergencies. Development assistance is an important source of health financing in many low-income countries, yet little is known about how much of this funding was disbursed for COVID-19. We aimed to put development assistance for health for COVID-19 in the context of broader trends in global health financing, and to estimate total health spending from 1995 to 2050 and development assistance for COVID-19 in 2020. Methods We estimated domestic health spending and development assistance for health to generate total health-sector spending estimates for 204 countries and territories. We leveraged data from the WHO Global Health Expenditure Database to produce estimates of domestic health spending. To generate estimates for development assistance for health, we relied on project-level disbursement data from the major international development agencies' online databases and annual financial statements and reports for information on income sources. To adjust our estimates for 2020 to include disbursements related to COVID-19, we extracted project data on commitments and disbursements from a broader set of databases (because not all of the data sources used to estimate the historical series extend to 2020), including the UN Office of Humanitarian Assistance Financial Tracking Service and the International Aid Transparency Initiative. We reported all the historic and future spending estimates in inflation-adjusted 2020 US$, 2020 US$ per capita, purchasing-power parity-adjusted US$ per capita, and as a proportion of gross domestic product. We used various models to generate future health spending to 2050. Findings In 2019, health spending globally reached $8. 8 trillion (95% uncertainty interval [UI] 8.7-8.8) or $1132 (1119-1143) per person. Spending on health varied within and across income groups and geographical regions. Of this total, $40.4 billion (0.5%, 95% UI 0.5-0.5) was development assistance for health provided to low-income and middle-income countries, which made up 24.6% (UI 24.0-25.1) of total spending in low-income countries. We estimate that $54.8 billion in development assistance for health was disbursed in 2020. Of this, $13.7 billion was targeted toward the COVID-19 health response. $12.3 billion was newly committed and $1.4 billion was repurposed from existing health projects. $3.1 billion (22.4%) of the funds focused on country-level coordination and $2.4 billion (17.9%) was for supply chain and logistics. Only $714.4 million (7.7%) of COVID-19 development assistance for health went to Latin America, despite this region reporting 34.3% of total recorded COVID-19 deaths in low-income or middle-income countries in 2020. Spending on health is expected to rise to $1519 (1448-1591) per person in 2050, although spending across countries is expected to remain varied. Interpretation Global health spending is expected to continue to grow, but remain unequally distributed between countries. We estimate that development organisations substantially increased the amount of development assistance for health provided in 2020. Continued efforts are needed to raise sufficient resources to mitigate the pandemic for the most vulnerable, and to help curtail the pandemic for all. Copyright (C) 2021 The Author(s). Published by Elsevier Ltd.
  •  
23.
  • Abdulla, Salim, et al. (author)
  • Baseline data of parasite clearance in patients with falciparum malaria treated with an artemisinin derivative : an individual patient data meta-analysis
  • 2015
  • In: Malaria Journal. - : Springer Science and Business Media LLC. - 1475-2875. ; 14
  • Journal article (peer-reviewed)abstract
    • Background: Artemisinin resistance in Plasmodium falciparum manifests as slow parasite clearance but this measure is also influenced by host immunity, initial parasite biomass and partner drug efficacy. This study collated data from clinical trials of artemisinin derivatives in falciparum malaria with frequent parasite counts to provide reference parasite clearance estimates stratified by location, treatment and time, to examine host factors affecting parasite clearance, and to assess the relationships between parasite clearance and risk of recrudescence during follow-up. Methods: Data from 24 studies, conducted from 1996 to 2013, with frequent parasite counts were pooled. Parasite clearance half-life (PC1/2) was estimated using the WWARN Parasite Clearance Estimator. Random effects regression models accounting for study and site heterogeneity were used to explore factors affecting PC1/2 and risk of recrudescence within areas with reported delayed parasite clearance (western Cambodia, western Thailand after 2000, southern Vietnam, southern Myanmar) and in all other areas where parasite populations are artemisinin sensitive. Results: PC1/2 was estimated in 6975 patients, 3288 of whom also had treatment outcomes evaluate d during 28-63 days follow-up, with 93 (2.8 %) PCR-confirmed recrudescences. In areas with artemisinin-sensitive parasites, the median PC1/2 following three-day artesunate treatment (4 mg/kg/day) ranged from 1.8 to 3.0 h and the proportion of patients with PC1/2 > 5 h from 0 to 10 %. Artesunate doses of 4 mg/kg/day decreased PC1/2 by 8.1 % (95 % CI 3.2-12.6) compared to 2 mg/kg/day, except in populations with delayed parasite clearance. PC1/2 was longer in children and in patients with fever or anaemia at enrolment. Long PC1/2 (HR = 2.91, 95 % CI 1.95-4.34 for twofold increase, p < 0.001) and high initial parasitaemia (HR = 2.23, 95 % CI 1.44-3.45 for tenfold increase, p < 0.001) were associated independently with an increased risk of recrudescence. In western Cambodia, the region with the highest prevalence of artemisinin resistance, there was no evidence for increasing PC1/2 since 2007. Conclusions: Several factors affect PC1/2. As substantial heterogeneity in parasite clearance exists between locations, early detection of artemisinin resistance requires reference PC1/2 data. Studies with frequent parasite count measurements to characterize PC1/2 should be encouraged. In western Cambodia, where PC1/2 values are longest, there is no evidence for recent emergence of higher levels of artemisinin resistance.
  •  
24.
  •  
25.
  • Asmi, A., et al. (author)
  • Aerosol decadal trends - Part 2: In-situ aerosol particle number concentrations at GAW and ACTRIS stations
  • 2013
  • In: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7324. ; 13:2, s. 895-916
  • Journal article (peer-reviewed)abstract
    • We have analysed the trends of total aerosol particle number concentrations (N) measured at long-term measurement stations involved either in the Global Atmosphere Watch (GAW) and/or EU infrastructure project ACTRIS. The sites are located in Europe, North America, Antarctica, and on Pacific Ocean islands. The majority of the sites showed clear decreasing trends both in the full-length time series, and in the intra-site comparison period of 2001-2010, especially during the winter months. Several potential driving processes for the observed trends were studied, and even though there are some similarities between N trends and air temperature changes, the most likely cause of many northern hemisphere trends was found to be decreases in the anthropogenic emissions of primary particles, SO2 or some co-emitted species. We could not find a consistent agreement between the trends of N and particle optical properties in the few stations with long time series of all of these properties. The trends of N and the proxies for cloud condensation nuclei (CCN) were generally consistent in the few European stations where the measurements were available. This work provides a useful comparison analysis for modelling studies of trends in aerosol number concentrations.
  •  
26.
  • El-Saadony, Mohamed T., et al. (author)
  • Impacts of turmeric and its principal bioactive curcumin on human health: pharmaceutical, medicinal, and food applications : a comprehensive review
  • 2023
  • In: Frontiers in Nutrition. - : Frontiers Media S.A.. - 2296-861X. ; 9
  • Research review (peer-reviewed)abstract
    • The yellow polyphenolic pigment known as curcumin, originating from the rhizome of the turmeric plant Curcuma longa L., has been utilized for ages in ancient medicine, as well as in cooking and food coloring. Recently, the biological activities of turmeric and curcumin have been thoroughly investigated. The studies mainly focused on their antioxidant, antitumor, anti-inflammatory, neuroprotective, hepatoprotective, and cardioprotective impacts. This review seeks to provide an in-depth, detailed discussion of curcumin usage within the food processing industries and its effect on health support and disease prevention. Curcumin’s bioavailability, bio-efficacy, and bio-safety characteristics, as well as its side effects and quality standards, are also discussed. Finally, curcumin’s multifaceted uses, food appeal enhancement, agro-industrial techniques counteracting its instability and low bioavailability, nanotechnology and focused drug delivery systems to increase its bioavailability, and prospective clinical use tactics are all discussed.
  •  
27.
  • Manninen, H. E., et al. (author)
  • EUCAARI ion spectrometer measurements at 12 European sites - analysis of new particle formation events
  • 2010
  • In: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 10:16, s. 7907-7927
  • Journal article (peer-reviewed)abstract
    • We present comprehensive results on continuous atmospheric cluster and particle measurements in the size range similar to 1-42 nm within the European Integrated project on Aerosol Cloud Climate and Air Quality interactions (EUCAARI) project. We focused on characterizing the spatial and temporal variation of new particle formation events and relevant particle formation parameters across Europe. Different types of air ion and cluster mobility spectrometers were deployed at 12 field sites across Europe from March 2008 to May 2009. The measurements were conducted in a wide variety of environments, including coastal and continental locations as well as sites at different altitudes (both in the boundary layer and the free troposphere). New particle formation events were detected at all of the 12 field sites during the year-long measurement period. From the data, nucleation and growth rates of newly formed particles were determined for each environment. In a case of parallel ion and neutral cluster measurements, we could also estimate the relative contribution of ion-induced and neutral nucleation to the total particle formation. The formation rates of charged particles at 2 nm accounted for 1-30% of the corresponding total particle formation rates. As a significant new result, we found out that the total particle formation rate varied much more between the different sites than the formation rate of charged particles. This work presents, so far, the most comprehensive effort to experimentally characterize nucleation and growth of atmospheric molecular clusters and nanoparticles at ground-based observation sites on a continental scale.
  •  
28.
  • Mohamed, Tarik A., et al. (author)
  • Plant cell cultures : An enzymatic tool for polyphenolic and flavonoid transformations
  • 2022
  • In: Phytomedicine. - : Elsevier BV. - 0944-7113 .- 1618-095X. ; 100
  • Journal article (peer-reviewed)abstract
    • Background: In the pharmaceutical sector, tissue culture techniques for large-scale production of natural chemicals can be a less expensive alternative to large-scale synthesis. Although recent biotransformation research have used plant cell cultures to target a wide range of bioactive compounds, more compiled information and synopses are needed to better understand metabolic pathways and improve biotransformation efficiencies.Purpose: This report reviews the biochemical transformation of phenolic natural products by plant cell cultures in order to identify potential novel biotechnological approaches for ensuring more homogeneous and stable phenolic production year-round under controlled environmental conditions.Methods: Articles on the use of plant cell culture for polyphenolic and flavonoid transformations (1988 - 2021) were retrieved from SciFinder, PubMed, Scopus, and Web of Science through electronic and manual search in English. Following that, the authors chose the required papers based on the criteria they defined. The following keywords were used for the online search: biotransformation, Plant cell cultures, flavonoids, phenolics, and pharmaceutical products.Results: The initial search found a total of 96 articles. However, only 70 of them were selected as they met the inclusion criteria defined by the authors. The analysis of these studies revealed that plant tissue culture is applicable for the large-scale production of plant secondary metabolites including the phenolics, which have high therapeutic value.Conclusion: Plant tissue cultures could be employed as an efficient technique for producing secondary metabolites including phenolics. Phenolics possess a wide range of therapeutic benefits, as anti-oxidant, anti-cancer, and antiinflammatory properties. Callus culture, suspension cultures, transformation, and other procedures have been used to improve the synthesis of phenolics. Their production on a large scale is now achievable. More breakthroughs will lead to newer insights and, without a doubt, to a new era of phenolics-based pharmacological agents for the treatment of a variety of infectious and degenerative disorders.
  •  
29.
  • Lederman, J. S., et al. (author)
  • International collaborative follow-up investigation of graduating high school students' understandings of the nature of scientific inquiry : is progress Being made?
  • 2021
  • In: International Journal of Science Education. - : Informa UK Limited. - 0950-0693 .- 1464-5289. ; 43:7, s. 991-1016
  • Journal article (peer-reviewed)abstract
    • Understandings of the nature of scientific inquiry (NOSI), as opposed to engaging students in inquiry learning experiences, are included in science education reform documents around the world. However, little is known about what students have learned about NOSI during their pre-college school years. The purpose of this large-scale follow-up international project (i.e. 32 countries and regions, spanning six continents and including 3917 students for the high school sample) was to collect data on what exiting high school students have learned about NOSI. Additionally, the study investigated changes in 12th grade students' NOSI understandings compared to seventh grade (i.e. 20 countries and regions) students' understandings from a prior investigation [Lederman et al. (2019). An international collaborative investigation of beginning seventh grade students' understandings of scientific inquiry: Establishing a baseline. Journal of Research in Science Teaching, 56(4), 486-515. ]. This study documents and discusses graduating high school students' understandings and compares their understandings to seventh grade students' understandings of the same aspects of scientific inquiry for each country. It is important to note that collecting data from each of the 130+ countries globally was not feasible. Similarly, it was not possible to collect data from every region of each country. A concerted effort was made, however, to provide a relatively representative picture of each country and the world.
  •  
30.
  • Lloyd-Price, Jason, et al. (author)
  • Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases
  • 2019
  • In: Nature. - : Nature Publishing Group. - 0028-0836 .- 1476-4687. ; 569:7758, s. 655-661
  • Journal article (peer-reviewed)abstract
    • Inflammatory bowel diseases, which include Crohn's disease and ulcerative colitis, affect several million individuals worldwide. Crohn's disease and ulcerative colitis are complex diseases that are heterogeneous at the clinical, immunological, molecular, genetic, and microbial levels. Individual contributing factors have been the focus of extensive research. As part of the Integrative Human Microbiome Project (HMP2 or iHMP), we followed 132 subjects for one year each to generate integrated longitudinal molecular profiles of host and microbial activity during disease (up to 24 time points each; in total 2,965 stool, biopsy, and blood specimens). Here we present the results, which provide a comprehensive view of functional dysbiosis in the gut microbiome during inflammatory bowel disease activity. We demonstrate a characteristic increase in facultative anaerobes at the expense of obligate anaerobes, as well as molecular disruptions in microbial transcription (for example, among clostridia), metabolite pools (acylcarnitines, bile acids, and short-chain fatty acids), and levels of antibodies in host serum. Periods of disease activity were also marked by increases in temporal variability, with characteristic taxonomic, functional, and biochemical shifts. Finally, integrative analysis identified microbial, biochemical, and host factors central to this dysregulation. The study's infrastructure resources, results, and data, which are available through the Inflammatory Bowel Disease Multi'omics Database (http://ibdmdb.org), provide the most comprehensive description to date of host and microbial activities in inflammatory bowel diseases.
  •  
31.
  • Sepanlou, Sadaf G., et al. (author)
  • The global, regional, and national burden of cirrhosis by cause in 195 countries and territories, 1990-2017 : a systematic analysis for the Global Burden of Disease Study 2017
  • 2020
  • In: The Lancet Gastroenterology & Hepatology. - 2468-1253. ; 5:3, s. 245-266
  • Journal article (peer-reviewed)abstract
    • Background Cirrhosis and other chronic liver diseases (collectively referred to as cirrhosis in this paper) are a major cause of morbidity and mortality globally, although the burden and underlying causes differ across locations and demographic groups. We report on results from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 on the burden of cirrhosis and its trends since 1990, by cause, sex, and age, for 195 countries and territories. Methods We used data from vital registrations, vital registration samples, and verbal autopsies to estimate mortality. We modelled prevalence of total, compensated, and decompensated cirrhosis on the basis of hospital and claims data. Disability-adjusted life-years (DALYs) were calculated as the sum of years of life lost due to premature death and years lived with disability. Estimates are presented as numbers and age-standardised or age-specific rates per 100 000 population, with 95% uncertainty intervals (UIs). All estimates are presented for five causes of cirrhosis: hepatitis B, hepatitis C, alcohol-related liver disease, non-alcoholic steatohepatitis (NASH), and other causes. We compared mortality, prevalence, and DALY estimates with those expected according to the Socio-demographic Index (SDI) as a proxy for the development status of regions and countries. Findings In 2017, cirrhosis caused more than 1.32 million (95% UI 1.27-1.45) deaths (440000 [416 000-518 000; 33.3%] in females and 883 000 [838 000-967 000; 66.7%] in males) globally, compared with less than 899 000 (829 000-948 000) deaths in 1990. Deaths due to cirrhosis constituted 2.4% (2.3-2.6) of total deaths globally in 2017 compared with 1.9% (1.8-2.0) in 1990. Despite an increase in the number of deaths, the age-standardised death rate decreased from 21.0 (19.2-22.3) per 100 000 population in 1990 to 16.5 (15.8-18-1) per 100 000 population in 2017. Sub-Saharan Africa had the highest age-standardised death rate among GBD super-regions for all years of the study period (32.2 [25.8-38.6] deaths per 100 000 population in 2017), and the high-income super-region had the lowest (10.1 [9.8-10-5] deaths per 100 000 population in 2017). The age-standardised death rate decreased or remained constant from 1990 to 2017 in all GBD regions except eastern Europe and central Asia, where the age-standardised death rate increased, primarily due to increases in alcohol-related liver disease prevalence. At the national level, the age-standardised death rate of cirrhosis was lowest in Singapore in 2017 (3.7 [3.3-4.0] per 100 000 in 2017) and highest in Egypt in all years since 1990 (103.3 [64.4-133.4] per 100 000 in 2017). There were 10.6 million (10.3-10.9) prevalent cases of decompensated cirrhosis and 112 million (107-119) prevalent cases of compensated cirrhosis globally in 2017. There was a significant increase in age-standardised prevalence rate of decompensated cirrhosis between 1990 and 2017. Cirrhosis caused by NASH had a steady age-standardised death rate throughout the study period, whereas the other four causes showed declines in age-standardised death rate. The age-standardised prevalence of compensated and decompensated cirrhosis due to NASH increased more than for any other cause of cirrhosis (by 33.2% for compensated cirrhosis and 54.8% for decompensated cirrhosis) over the study period. From 1990 to 2017, the number of prevalent cases snore than doubled for compensated cirrhosis due to NASH and more than tripled for decompensated cirrhosis due to NASH. In 2017, age-standardised death and DALY rates were lower among countries and territories with higher SDI. Interpretation Cirrhosis imposes a substantial health burden on many countries and this burden has increased at the global level since 1990, partly due to population growth and ageing. Although the age-standardised death and DALY rates of cirrhosis decreased from 1990 to 2017, numbers of deaths and DALYs and the proportion of all global deaths due to cirrhosis increased. Despite the availability of effective interventions for the prevention and treatment of hepatitis B and C, they were still the main causes of cirrhosis burden worldwide, particularly in low-income countries. The impact of hepatitis B and C is expected to be attenuated and overtaken by that of NASH in the near future. Cost-effective interventions are required to continue the prevention and treatment of viral hepatitis, and to achieve early diagnosis and prevention of cirrhosis due to alcohol-related liver disease and NASH.
  •  
32.
  • Spracklen, D. V., et al. (author)
  • Explaining global surface aerosol number concentrations in terms of primary emissions and particle formation
  • 2010
  • In: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 10:10, s. 4775-4793
  • Journal article (peer-reviewed)abstract
    • We synthesised observations of total particle number (CN) concentration from 36 sites around the world. We found that annual mean CN concentrations are typically 300-2000 cm(-3) in the marine boundary layer and free troposphere (FT) and 1000-10 000 cm(-3) in the continental boundary layer (BL). Many sites exhibit pronounced seasonality with summer time concentrations a factor of 2-10 greater than wintertime concentrations. We used these CN observations to evaluate primary and secondary sources of particle number in a global aerosol microphysics model. We found that emissions of primary particles can reasonably reproduce the spatial pattern of observed CN concentration (R-2=0.46) but fail to explain the observed seasonal cycle (R-2=0.1). The modeled CN concentration in the FT was biased low (normalised mean bias, NMB=-88%) unless a secondary source of particles was included, for example from binary homogeneous nucleation of sulfuric acid and water (NMB=-25%). Simulated CN concentrations in the continental BL were also biased low (NMB=-74%) unless the number emission of anthropogenic primary particles was increased or a mechanism that results in particle formation in the BL was included. We ran a number of simulations where we included an empirical BL nucleation mechanism either using the activation-type mechanism (nucleation rate, J, proportional to gas-phase sulfuric acid concentration to the power one) or kinetic-type mechanism (J proportional to sulfuric acid to the power two) with a range of nucleation coefficients. We found that the seasonal CN cycle observed at continental BL sites was better simulated by BL particle formation (R-2=0.3) than by increasing the number emission from primary anthropogenic sources (R-2=0.18). The nucleation constants that resulted in best overall match between model and observed CN concentrations were consistent with values derived in previous studies from detailed case studies at individual sites. In our model, kinetic and activation-type nucleation parameterizations gave similar agreement with observed monthly mean CN concentrations.
  •  
33.
  •  
34.
  •  
35.
  • Milham, Michael P., et al. (author)
  • An Open Resource for Non-human Primate Imaging
  • 2018
  • In: Neuron. - : Elsevier BV. - 0896-6273 .- 1097-4199. ; 100:1, s. 61-74
  • Journal article (peer-reviewed)abstract
    • Non-human primate neuroimaging is a rapidly growing area of research that promises to transform and scale translational and cross-species comparative neuroscience. Unfortunately, the technological and methodological advances of the past two decades have outpaced the accrual of data, which is particularly challenging given the relatively few centers that have the necessary facilities and capabilities. The PRIMatE Data Exchange (PRIME-DE) addresses this challenge by aggregating independently acquired non-human primate magnetic resonance imaging (MRI) datasets and openly sharing them via the International Neuroimaging Data-sharing Initiative (INDI). Here, we present the rationale, design, and procedures for the PRIME-DE consortium, as well as the initial release, consisting of 25 independent data collections aggregated across 22 sites (total = 217 non-human primates). We also outline the unique pitfalls and challenges that should be considered in the analysis of non-human primate MRI datasets, including providing automated quality assessment of the contributed datasets.
  •  
36.
  • Paasonen, P., et al. (author)
  • On the roles of sulphuric acid and low-volatility organic vapours in the initial steps of atmospheric new particle formation
  • 2010
  • In: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 10:22, s. 11223-11242
  • Journal article (peer-reviewed)abstract
    • Sulphuric acid and organic vapours have been identified as the key components in the ubiquitous secondary new particle formation in the atmosphere. In order to assess their relative contribution and spatial variability, we analysed altogether 36 new particle formation events observed at four European measurement sites during EUCAARI campaigns in 2007-2009. We tested models of several different nucleation mechanisms coupling the formation rate of neutral particles (J) with the concentration of sulphuric acid ([H2SO4]) or low-volatility organic vapours ([org]) condensing on sub-4 nm particles, or with a combination of both concentrations. Furthermore, we determined the related nucleation coefficients connecting the neutral nucleation rate J with the vapour concentrations in each mechanism. The main goal of the study was to identify the mechanism of new particle formation and subsequent growth that minimizes the difference between the modelled and measured nucleation rates. At three out of four measurement sites - Hyytiala (Finland), Melpitz (Germany) and San Pietro Capofiume (Italy) - the nucleation rate was closely connected to squared sulphuric acid concentration, whereas in Hohenpeissenberg (Germany) the low-volatility organic vapours were observed to be dominant. However, the nucleation rate at the sulphuric acid dominant sites could not be described with sulphuric acid concentration and a single value of the nucleation coefficient, as K in J=K [H2SO4](2), but the median coefficients for different sites varied over an order of magnitude. This inter-site variation was substantially smaller when the heteromolecular homogenous nucleation between H2SO4 and organic vapours was assumed to take place in addition to homogenous nucleation of H2SO4 alone, i.e., J=K-SA1[H2SO4](2)+K-SA2[H2SO4][org]. By adding in this equation a term describing homomolecular organic vapour nucleation, K-s3[org](2), equally good results were achieved. In general, our results suggest that organic vapours do play a role, not only in the condensational growth of the particles, but also in the nucleation process, with a site-specific degree.
  •  
37.
  • Sangchooli, Arshiya, et al. (author)
  • Parameter Space and Potential for Biomarker Development in 25 Years of fMRI Drug Cue Reactivity
  • 2024
  • In: JAMA psychiatry. - : AMER MEDICAL ASSOC. - 2168-6238 .- 2168-622X.
  • Research review (peer-reviewed)abstract
    • Importance In the last 25 years, functional magnetic resonance imaging drug cue reactivity (FDCR) studies have characterized some core aspects in the neurobiology of drug addiction. However, no FDCR-derived biomarkers have been approved for treatment development or clinical adoption. Traversing this translational gap requires a systematic assessment of the FDCR literature evidence, its heterogeneity, and an evaluation of possible clinical uses of FDCR-derived biomarkers. Objective To summarize the state of the field of FDCR, assess their potential for biomarker development, and outline a clear process for biomarker qualification to guide future research and validation efforts. Evidence Review The PubMed and Medline databases were searched for every original FDCR investigation published from database inception until December 2022. Collected data covered study design, participant characteristics, FDCR task design, and whether each study provided evidence that might potentially help develop susceptibility, diagnostic, response, prognostic, predictive, or severity biomarkers for 1 or more addictive disorders. Findings There were 415 FDCR studies published between 1998 and 2022. Most focused on nicotine (122 [29.6%]), alcohol (120 [29.2%]), or cocaine (46 [11.1%]), and most used visual cues (354 [85.3%]). Together, these studies recruited 19 311 participants, including 13 812 individuals with past or current substance use disorders. Most studies could potentially support biomarker development, including diagnostic (143 [32.7%]), treatment response (141 [32.3%]), severity (84 [19.2%]), prognostic (30 [6.9%]), predictive (25 [5.7%]), monitoring (12 [2.7%]), and susceptibility (2 [0.5%]) biomarkers. A total of 155 interventional studies used FDCR, mostly to investigate pharmacological (67 [43.2%]) or cognitive/behavioral (51 [32.9%]) interventions; 141 studies used FDCR as a response measure, of which 125 (88.7%) reported significant interventional FDCR alterations; and 25 studies used FDCR as an intervention outcome predictor, with 24 (96%) finding significant associations between FDCR markers and treatment outcomes. Conclusions and Relevance Based on this systematic review and the proposed biomarker development framework, there is a pathway for the development and regulatory qualification of FDCR-based biomarkers of addiction and recovery. Further validation could support the use of FDCR-derived measures, potentially accelerating treatment development and improving diagnostic, prognostic, and predictive clinical judgments.
  •  
38.
  • Cinner, Joshua E., et al. (author)
  • Comanagement of coral reef social ecological systems
  • 2012
  • In: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 109:14, s. 5219-5222
  • Journal article (peer-reviewed)abstract
    • In an effort to deliver better outcomes for people and the ecosystems they depend on, many governments and civil society groups are engaging natural resource users in collaborative management arrangements (frequently called comanagement). However, there are few empirical studies demonstrating the social and institutional conditions conducive to successful comanagement outcomes, especially in small-scale fisheries. Here, we evaluate 42 comanagement arrangements across five countries and show that: (i) comanagement is largely successful at meeting social and ecological goals; (ii) comanagement tends to benefit wealthier resource users; (iii) resource overexploitation is most strongly influenced by market access and users' dependence on resources; and (iv) institutional characteristics strongly influence livelihood and compliance outcomes, yet have little effect on ecological conditions.
  •  
39.
  • Ekhtiari, Hamed, et al. (author)
  • A methodological checklist for fMRI drug cue reactivity studies : development and expert consensus
  • 2022
  • In: Nature Protocols. - : Nature Portfolio. - 1754-2189 .- 1750-2799. ; 17:3, s. 567-595
  • Journal article (peer-reviewed)abstract
    • Cue reactivity measured by functional magnetic resonance imaging is used in studies of substance-use disorders. This Consensus Statement is the result of a Delphi process to arrive at parameters that should be reported in describing these studies. Cue reactivity is one of the most frequently used paradigms in functional magnetic resonance imaging (fMRI) studies of substance use disorders (SUDs). Although there have been promising results elucidating the neurocognitive mechanisms of SUDs and SUD treatments, the interpretability and reproducibility of these studies is limited by incomplete reporting of participants characteristics, task design, craving assessment, scanning preparation and analysis decisions in fMRI drug cue reactivity (FDCR) experiments. This hampers clinical translation, not least because systematic review and meta-analysis of published work are difficult. This consensus paper and Delphi study aims to outline the important methodological aspects of FDCR research, present structured recommendations for more comprehensive methods reporting and review the FDCR literature to assess the reporting of items that are deemed important. Forty-five FDCR scientists from around the world participated in this study. First, an initial checklist of items deemed important in FDCR studies was developed by several members of the Enhanced NeuroImaging Genetics through Meta-Analyses (ENIGMA) Addiction working group on the basis of a systematic review. Using a modified Delphi consensus method, all experts were asked to comment on, revise or add items to the initial checklist, and then to rate the importance of each item in subsequent rounds. The reporting status of the items in the final checklist was investigated in 108 recently published FDCR studies identified through a systematic review. By the final round, 38 items reached the consensus threshold and were classified under seven major categories: Participants Characteristics, General fMRI Information, General Task Information, Cue Information, Craving Assessment Inside Scanner, Craving Assessment Outside Scanner and Pre- and Post-Scanning Considerations. The review of the 108 FDCR papers revealed significant gaps in the reporting of the items considered important by the experts. For instance, whereas items in the General fMRI Information category were reported in 90.5% of the reviewed papers, items in the Pre- and Post-Scanning Considerations category were reported by only 44.7% of reviewed FDCR studies. Considering the notable and sometimes unexpected gaps in the reporting of items deemed to be important by experts in any FDCR study, the protocols could benefit from the adoption of reporting standards. This checklist, a living document to be updated as the field and its methods advance, can help improve experimental design, reporting and the widespread understanding of the FDCR protocols. This checklist can also provide a sample for developing consensus statements for protocols in other areas of task-based fMRI.
  •  
40.
  • Hamed, A. A., et al. (author)
  • On the strength of the phase cross-correlation in retrieving the Green's function information in a region affected by persistent aftershock sequences
  • 2021
  • In: Journal of Seismology. - : Springer Nature. - 1383-4649 .- 1573-157X. ; 25:3, s. 987-1003
  • Journal article (peer-reviewed)abstract
    • Although research on seismic interferometry is now entering a phase of maturity, earthquakes are still the most troublesome issues that plague the process in real applications. To address the problems that arise from spatially scattered and temporally transient enormous earthquakes, preference is usually given to the use of time-dependent weights. However, small earthquakes can also have a disturbing effect on the accuracy of interpretations if they are persistently clustered right next to the perpendicular bisector of the line joining station pairs or in close proximity to one of the stations. With regard to the suppression of these cluster earthquakes, commonly used solutions for dealing with monochromatic microseismic cluster events (e.g., implementing a band-reject filter around a comparatively narrow frequency band or whitening the amplitude spectra before calculating the cross-spectrum between two signals) may not have the necessary efficiency since earthquake clusters are generally a collection of events with different magnitudes, each having its own frequency and energy contents. Therefore, the only solution left in such a situation is to use stronger non-linear time-dependent weights (e.g., square of the running average or one-bit normalization), which may cause Green's function amplitude information to be lost. In this paper, by simulating the records of a benchmark earthquake M-N 5.2 with the help of empirical Green's functions (EGF) obtained after the Ahar-Varzeghan Earthquake Doublet (M-N 6.4 and M-N 6.3), it is shown that the amplitude-unbiased phase cross-correlation is a relatively efficient approach in the face of the issues concerning long-standing cluster events.
  •  
41.
  •  
42.
  • Abd-Ellah, Mahmoud Khaled, et al. (author)
  • A Review on Brain Tumor Diagnosis from MRI Images : Practical Implications, Key Achievements, and Lessons Learned
  • 2019
  • In: Magnetic Resonance Imaging. - : Elsevier. - 0730-725X .- 1873-5894. ; 61, s. 300-318
  • Journal article (peer-reviewed)abstract
    • The successful early diagnosis of brain tumors plays a major role in improving the treatment outcomes and thus improving patient survival. Manually evaluating the numerous magnetic resonance imaging (MRI) images produced routinely in the clinic is a difficult process. Thus, there is a crucial need for computer-aided methods with better accuracy for early tumor diagnosis. Computer-aided brain tumor diagnosis from MRI images consists of tumor detection, segmentation, and classification processes. Over the past few years, many studies have focused on traditional or classical machine learning techniques for brain tumor diagnosis. Recently, interest has developed in using deep learning techniques for diagnosing brain tumors with better accuracy and robustness. This study presents a comprehensive review of traditional machine learning techniques and evolving deep learning techniques for brain tumor diagnosis. This review paper identifies the key achievements reflected in the performance measurement metrics of the applied algorithms in the three diagnosis processes. In addition, this study discusses the key findings and draws attention to the lessons learned as a roadmap for future research.
  •  
43.
  • Abd-Ellah, Mahmoud Khaled, et al. (author)
  • Classification of Brain Tumor MRIs Using a Kernel Support Vector Machine
  • 2016
  • In: Building Sustainable Health Ecosystems. - Cham : Springer International Publishing. - 9783319446714 - 9783319446721 ; , s. 151-160
  • Conference paper (peer-reviewed)abstract
    • The use of medical images has been continuously increasing, which makes manual investigations of every image a difficult task. This study focuses on classifying brain magnetic resonance images (MRIs) as normal, where a brain tumor is absent, or as abnormal, where a brain tumor is present. A hybrid intelligent system for automatic brain tumor detection and MRI classification is proposed. This system assists radiologists in interpreting the MRIs, improves the brain tumor diagnostic accuracy, and directs the focus toward the abnormal images only. The proposed computer-aided diagnosis (CAD) system consists of five steps: MRI preprocessing to remove the background noise, image segmentation by combining Otsu binarization and K-means clustering, feature extraction using the discrete wavelet transform (DWT) approach, and dimensionality reduction of the features by applying the principal component analysis (PCA) method. The major features were submitted to a kernel support vector machine (KSVM) for performing the MRI classification. The performance evaluation of the proposed system measured a maximum classification accuracy of 100 % using an available MRIs database. The processing time for all processes was recorded as 1.23 seconds. The obtained results have demonstrated the superiority of the proposed system.
  •  
44.
  •  
45.
  • Abd-Ellah, Mahmoud Khaled, et al. (author)
  • Design and implementation of a computer-aided diagnosis system for brain tumor classification
  • 2017
  • In: 2016 28th International Conference on Microelectronics (ICM). - 9781509057214 ; , s. 73-76
  • Conference paper (peer-reviewed)abstract
    • Computer-aided diagnosis (CAD) systems have become very important for the medical diagnosis of brain tumors. The systems improve the diagnostic accuracy and reduce the required time. In this paper, a two-stage CAD system has been developed for automatic detection and classification of brain tumor through magnetic resonance images (MRIs). In the first stage, the system classifies brain tumor MRI into normal and abnormal images. In the second stage, the type of tumor is classified as benign (Noncancerous) or malignant (Cancerous) from the abnormal MRIs. The proposed CAD ensembles the following computational methods: MRI image segmentation by K-means clustering, feature extraction using discrete wavelet transform (DWT), feature reduction by applying principal component analysis (PCA). The two-stage classification has been conducted using a support vector machine (SVM). Performance evaluation of the proposed CAD has achieved promising results using a non-standard MRIs database.
  •  
46.
  • Abd-Ellah, Mahmoud Khaled, et al. (author)
  • Parallel Deep CNN Structure for Glioma Detection and Classification via Brain MRI Images
  • 2019
  • In: IEEE-ICM 2019 CAIRO-EGYPT. - : IEEE. ; , s. 304-307
  • Conference paper (other academic/artistic)abstract
    • Although most brain tumor diagnosis studies have focused on tumor segmentation and localization operations, few studies have focused on tumor detection as a time- and effort-saving process. This study introduces a new network structure for accurate glioma tumor detection and classification using two parallel deep convolutional neural networks (PDCNNs). The proposed structure is designed to identify the presence and absence of a brain tumor in MRI images and classify the type of tumor images as high-grade gliomas (HGGs, i.e., glioblastomas) or low-grade gliomas (LGGs). The introduced PDCNNs structure takes advantage of both global and local features extracted from the two parallel stages. The proposed structure is not only accurate but also efficient, as the convolutional layers are more accurate because they learn spatial features, and they are efficient in the testing phase since they reduce the number of weights, which reduces the memory usage and runtime. Simulation experiments were accomplished using an MRI dataset extracted from the BraTS 2017 database. The obtained results show that the proposed parallel network structure outperforms other detection and classification methods in the literature.
  •  
47.
  • Abd-Ellah, Mahmoud Khaled, et al. (author)
  • TPUAR-Net : Two Parallel U-Net with Asymmetric Residual-Based Deep Convolutional Neural Network for Brain Tumor Segmentation
  • 2019
  • In: Image Analysis and Recognition. - Cham : Springer. ; , s. 106-116
  • Conference paper (peer-reviewed)abstract
    • The utilization of different types of brain images has been expanding, which makes manually examining each image a labor-intensive task. This study introduces a brain tumor segmentation method that uses two parallel U-Net with an asymmetric residual-based deep convolutional neural network (TPUAR-Net). The proposed method is customized to segment high and low grade glioblastomas identified from magnetic resonance imaging (MRI) data. Varieties of these tumors can appear anywhere in the brain and may have practically any shape, contrast, or size. Thus, this study used deep learning techniques based on adaptive, high-efficiency neural networks in the proposed model structure. In this paper, several high-performance models based on convolutional neural networks (CNNs) have been examined. The proposed TPUAR-Net capitalizes on different levels of global and local features in the upper and lower paths of the proposed model structure. In addition, the proposed method is configured to use the skip connection between layers and residual units to accelerate the training and testing processes. The TPUAR-Net model provides promising segmentation accuracy using MRI images from the BRATS 2017 database, while its parallelized architecture considerably improves the execution speed. The results obtained in terms of Dice, sensitivity, and specificity metrics demonstrate that TPUAR-Net outperforms other methods and achieves the state-of-the-art performance for brain tumor segmentation.
  •  
48.
  •  
49.
  • Binder, Zev A., et al. (author)
  • Epidermal Growth Factor Receptor Extracellular Domain Mutations in Glioblastoma Present Opportunities for Clinical Imaging and Therapeutic Development
  • 2018
  • In: Cancer Cell. - : Elsevier BV. - 1535-6108 .- 1878-3686. ; 34:1, s. 163-177
  • Journal article (peer-reviewed)abstract
    • We explored the clinical and pathological impact of epidermal growth factor receptor (EGFR) extracellular domain missense mutations. Retrospective assessment of 260 de novo glioblastoma patients revealed a significant reduction in overall survival of patients having tumors with EGFR mutations at alanine 289 (EGFR(A289D/T/V)). Quantitative multi-parametric magnetic resonance imaging analyses indicated increased tumor invasion for EGFR(A289D/T/V) mutants, corroborated in mice bearing intracranial tumors expressing EGFR(A289V) and dependent on ERK-mediated expression of matrix metalloproteinase-1. EGFR(A289V) tumor growth was attenuated with an antibody against a cryptic epitope, based on in silico simulation. The findings of this study indicate a highly invasive phenotype associated with the EGFR(A289V) mutation in glioblastoma, postulating EGFR(A289V) as a molecular marker for responsiveness to therapy with EGFR-targeting antibodies.
  •  
50.
  • Dahal, Prabin, et al. (author)
  • Competing risk events in antimalarial drug trials in uncomplicated Plasmodium falciparum malaria : a WorldWide Antimalarial Resistance Network individual participant data meta-analysis
  • 2019
  • In: Malaria Journal. - : BMC. - 1475-2875. ; 18
  • Journal article (peer-reviewed)abstract
    • Background: Therapeutic efficacy studies in uncomplicated Plasmodium falciparum malaria are confounded by new infections, which constitute competing risk events since they can potentially preclude/pre-empt the detection of subsequent recrudescence of persistent, sub-microscopic primary infections.Methods: Antimalarial studies typically report the risk of recrudescence derived using the Kaplan-Meier (K-M) method, which considers new infections acquired during the follow-up period as censored. Cumulative Incidence Function (CIF) provides an alternative approach for handling new infections, which accounts for them as a competing risk event. The complement of the estimate derived using the K-M method (1 minus K-M), and the CIF were used to derive the risk of recrudescence at the end of the follow-up period using data from studies collated in the WorldWide Antimalarial Resistance Network data repository. Absolute differences in the failure estimates derived using these two methods were quantified. In comparative studies, the equality of two K-M curves was assessed using the log-rank test, and the equality of CIFs using Gray's k-sample test (both at 5% level of significance). Two different regression modelling strategies for recrudescence were considered: cause-specific Cox model and Fine and Gray's sub-distributional hazard model.Results: Data were available from 92 studies (233 treatment arms, 31,379 patients) conducted between 1996 and 2014. At the end of follow-up, the median absolute overestimation in the estimated risk of cumulative recrudescence by using 1 minus K-M approach was 0.04% (interquartile range (IQR): 0.00-0.27%, Range: 0.00-3.60%). The overestimation was correlated positively with the proportion of patients with recrudescence [Pearson's correlation coefficient (rho): 0.38, 95% Confidence Interval (CI) 0.30-0.46] or new infection [rho: 0.43; 95% CI 0.35-0.54]. In three study arms, the point estimates of failure were greater than 10% (the WHO threshold for withdrawing antimalarials) when the K-M method was used, but remained below 10% when using the CIF approach, but the 95% confidence interval included this threshold.Conclusions: The 1 minus K-M method resulted in a marginal overestimation of recrudescence that became increasingly pronounced as antimalarial efficacy declined, particularly when the observed proportion of new infection was high. The CIF approach provides an alternative approach for derivation of failure estimates in antimalarial trials, particularly in high transmission settings.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-50 of 102
Type of publication
journal article (71)
conference paper (18)
research review (8)
reports (1)
book chapter (1)
Type of content
peer-reviewed (87)
other academic/artistic (12)
Author/Editor
Awad, Ali Ismail (11)
Hamed, Hesham F.A. (11)
Khalaf, Ashraf A.M. (9)
Jones, C (9)
George, R (8)
Jones, G. (7)
show more...
Ali, M (7)
Young, R. (7)
Khan, K (7)
Pereira, R (7)
Walker, M (7)
Edwards, J (7)
Patel, A (7)
Fortuna, L (7)
Jonas, Jost B. (7)
Walsh, M (7)
Shaw, A. (7)
Scott, M (6)
Abd-Ellah, Mahmoud K ... (6)
Goloborod'ko, V (6)
Ongena, J (6)
Sousa, J (6)
Koyanagi, Ai (6)
Ng, S (6)
Youssef, M (6)
Price, C (6)
Hay, Simon I. (6)
Afarideh, Mohsen (6)
Farzadfar, Farshad (6)
James, Spencer L. (6)
Khader, Yousef Saleh (6)
Lotufo, Paulo A. (6)
Malekzadeh, Reza (6)
Mendoza, Walter (6)
Miller, Ted R. (6)
Mokdad, Ali H. (6)
Naghavi, Mohsen (6)
Pereira, David M. (6)
Sepanlou, Sadaf G. (6)
Tran, Bach Xuan (6)
Werdecker, Andrea (6)
Xu, Gelin (6)
Yonemoto, Naohiro (6)
Yu, Chuanhua (6)
Majeed, Azeem (6)
Mirrakhimov, Erkin M ... (6)
Singh, Jasvinder A. (6)
Tabares-Seisdedos, R ... (6)
King, R (6)
Rawaf, Salman (6)
show less...
University
Karolinska Institutet (25)
Uppsala University (17)
Stockholm University (16)
Lund University (15)
Royal Institute of Technology (13)
Luleå University of Technology (12)
show more...
Chalmers University of Technology (12)
Umeå University (10)
University of Gothenburg (9)
Linköping University (6)
Högskolan Dalarna (5)
Linnaeus University (3)
University of Gävle (2)
Halmstad University (1)
Örebro University (1)
Jönköping University (1)
Malmö University (1)
Mid Sweden University (1)
Södertörn University (1)
show less...
Language
English (101)
Swedish (1)
Research subject (UKÄ/SCB)
Natural sciences (36)
Medical and Health Sciences (28)
Engineering and Technology (18)
Social Sciences (17)
Humanities (2)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view