SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Hand Kevin P.) "

Search: WFRF:(Hand Kevin P.)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Cartwright, Richard J., et al. (author)
  • Revealing Callisto's Carbon-rich Surface and CO2 Atmosphere with JWST
  • 2024
  • In: The Planetary Science Journal. - : American Astronomical Society. - 2632-3338. ; 5:3
  • Journal article (peer-reviewed)abstract
    • We analyzed spectral cubes of Callisto’s leading and trailing hemispheres, collected with the NIRSpec Integrated Field Unit (G395H) on the James Webb Space Telescope. These spatially resolved data show strong 4.25 μm absorption bands resulting from solid-state 12CO2, with the strongest spectral features at low latitudes near the center of its trailing hemisphere, consistent with radiolytic production spurred by magnetospheric plasma interacting with native H2O mixed with carbonaceous compounds. We detected CO2 rovibrational emission lines between 4.2 and 4.3 μm over both hemispheres, confirming the global presence of CO2 gas in Callisto’s tenuous atmosphere. These results represent the first detection of CO2 gas over Callisto’s trailing side. The distribution of CO2 gas is offset from the subsolar region on either hemisphere, suggesting that sputtering, radiolysis, and geologic processes help sustain Callisto’s atmosphere. We detected a 4.38 μm absorption band that likely results from solid-state 13CO2. A prominent 4.57 μm absorption band that might result from CN-bearing organics is present and significantly stronger on Callisto’s leading hemisphere, unlike 12CO2, suggesting these two spectral features are spatially antiassociated. The distribution of the 4.57 μm band is more consistent with a native origin and/or accumulation of dust from Jupiter’s irregular satellites. Other, more subtle absorption features could result from CH-bearing organics, CO, carbonyl sulfide, and Na-bearing minerals. These results highlight the need for preparatory laboratory work and improved surface-atmosphere interaction models to better understand carbon chemistry on the icy Galilean moons before the arrival of NASA’s Europa Clipper and ESA’s JUICE spacecraft.
  •  
2.
  • Alberini, Andrew, et al. (author)
  • Investigating the stability of aromatic carboxylic acids in hydrated magnesium sulfate under UV irradiation to assist detection of organics on Mars
  • 2024
  • In: Scientific Reports. - : Nature Research. - 2045-2322. ; 14:1
  • Journal article (peer-reviewed)abstract
    • The Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals (SHERLOC) instrument onboard the Mars 2020 Perseverance rover detected so far some of the most intense fluorescence signals in association with sulfates analyzing abraded patches of rocks at Jezero crater, Mars. To assess the plausibility of an organic origin of these signals, it is key to understand if organics can survive exposure to ambient Martian UV after exposure by the Perseverance abrasion tool and prior to analysis by SHERLOC. In this work, we investigated the stability of organo-sulfate assemblages under Martian-like UV irradiation and we observed that the spectroscopic features of phthalic and mellitic acid embedded into hydrated magnesium sulfate do not change for UV exposures corresponding to at least 48 Martian sols and, thus, should still be detectable in fluorescence when the SHERLOC analysis takes place, thanks to the photoprotective properties of magnesium sulfate. In addition, different photoproduct bands diagnostic of the parent carboxylic acid molecules could be observed. The photoprotective behavior of hydrated magnesium sulfate corroborates the hypothesis that sulfates might have played a key role in the preservation of organics on Mars, and that the fluorescence signals detected by SHERLOC in association with sulfates could potentially arise from organic compounds. 
  •  
3.
  • Phua, Yu Yu, et al. (author)
  • Characterizing Hydrated Sulfates and Altered Phases in Jezero Crater Fan and Floor Geologic Units With SHERLOC on Mars 2020
  • 2024
  • In: Journal of Geophysical Research - Planets. - : American Geophysical Union (AGU). - 2169-9097 .- 2169-9100. ; 129:7
  • Journal article (peer-reviewed)abstract
    • The Mars 2020 Perseverance rover has explored fluvio-lacustrine sedimentary rocks within Jezero crater. Prior work showed that igneous crater floor Séítah and Máaz formations have mafic mineralogy with alteration phases that indicate multiple episodes of aqueous alteration. In this work, we extend the analyses of hydration to targets in the Jezero western fan delta, using data from the SHERLOC (Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals) Raman spectrometer. Spectral features, for example, sulfate and hydration peak positions and shapes, vary within, and across the crater floor and western fan. The proportion of targets with hydration associated with sulfates was approximately equal in the crater floor and the western fan. All hydrated targets in the crater floor and upper fan showed bimodal hydration peaks at ∼3,200 and ∼3,400 cm−1. The sulfate symmetric stretch at ∼1,000 cm−1 coupled with a hydration peak at ∼3,400 cm−1 indicate that MgSO4·nH2O (2 < n ≤ 5) is a likely hydration carrier phase in all units, perhaps paired with low-hydration (n ≤ 1) amorphous Mg-sulfates, indicated by the ∼3,200 cm−1 peak. Low-hydration MgSO4·nH2O (n = 1–2) are more prevalent in the fan, and hydrated targets in the fan front only had one peak at ∼3,400 cm−1. While anhydrite co-occurs with hydrated Mg-sulfates in the crater floor and fan front, hydrated Ca-sulfates are observed instead at the top of the upper fan. Collectively, the data imply aqueous deposition of sediments with formation of salts from high ionic strength fluids and subsequent aridity to preserve the observed hydration states.
  •  
4.
  • Sun, Vivian Z., et al. (author)
  • Overview and Results From the Mars 2020 Perseverance Rover's First Science Campaign on the Jezero Crater Floor
  • 2023
  • In: Journal of Geophysical Research: Planets. - : John Wiley and Sons Inc. - 2169-9097 .- 2169-9100. ; 128:6
  • Journal article (peer-reviewed)abstract
    • The Mars 2020 Perseverance rover landed in Jezero crater on 18 February 2021. After a 100-sol period of commissioning and the Ingenuity Helicopter technology demonstration, Perseverance began its first science campaign to explore the enigmatic Jezero crater floor, whose igneous or sedimentary origins have been much debated in the scientific community. This paper describes the campaign plan developed to explore the crater floor's Máaz and Séítah formations and summarizes the results of the campaign between sols 100–379. By the end of the campaign, Perseverance had traversed more than 5 km, created seven abrasion patches, and sealed nine samples and a witness tube. Analysis of remote and proximity science observations show that the Máaz and Séítah formations are igneous in origin and composed of five and two geologic members, respectively. The Séítah formation represents the olivine-rich cumulate formed from differentiation of a slowly cooling melt or magma body, and the Máaz formation likely represents a separate series of lava flows emplaced after Séítah. The Máaz and Séítah rocks also preserve evidence of multiple episodes of aqueous alteration in secondary minerals like carbonate, Fe/Mg phyllosilicates, sulfates, and perchlorate, and surficial coatings. Post-emplacement processes tilted the rocks near the Máaz-Séítah contact and substantial erosion modified the crater floor rocks to their present-day expressions. Results from this crater floor campaign, including those obtained upon return of the collected samples, will help to build the geologic history of events that occurred in Jezero crater and provide time constraints on the formation of the Jezero delta.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view