SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Hauryliuk Vasili 1980 ) "

Search: WFRF:(Hauryliuk Vasili 1980 )

  • Result 1-36 of 36
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Brodiazhenko, Tetiana, et al. (author)
  • Elimination of Ribosome Inactivating Factors Improves the Efficiency of Bacillus subtilis and Saccharomyces cerevisiae Cell-Free Translation Systems
  • 2018
  • In: Frontiers in Microbiology. - : Frontiers Media S.A.. - 1664-302X. ; 9
  • Journal article (peer-reviewed)abstract
    • Cell-free translation systems based on cellular lysates optimized for in vitro protein synthesis have multiple applications both in basic and applied science, ranging from studies of translational regulation to cell-free production of proteins and ribosome-nascent chain complexes. In order to achieve both high activity and reproducibility in a translation system, it is essential that the ribosomes in the cellular lysate are enzymatically active. Here we demonstrate that genomic disruption of genes encoding ribosome inactivating factors – HPF in Bacillus subtilis and Stm1 in Saccharomyces cerevisiae – robustly improve the activities of bacterial and yeast translation systems. Importantly, the elimination of B. subtilis HPF results in a complete loss of 100S ribosomes, which otherwise interfere with disome-based approaches for preparation of stalled ribosomal complexes for cryo-electron microscopy studies.
  •  
2.
  • Crowe-McAuliffe, Caillan, et al. (author)
  • Structural basis for antibiotic resistance mediated by the Bacillus subtilis ABCF ATPase VmlR
  • 2018
  • In: Proceedings of the National Academy of Sciences of the United States of America. - : National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 115:36, s. 8978-8983
  • Journal article (peer-reviewed)abstract
    • Many Gram-positive pathogenic bacteria employ ribosomal protection proteins (RPPs) to confer resistance to clinically important antibiotics. In Bacillus subtilis, the RPP VmlR confers resistance to lincomycin (Lnc) and the streptogramin A (SA) antibiotic virginiamycin M (VgM). VmlR is an ATP-binding cassette (ABC) protein of the F type, which, like other antibiotic resistance (ARE) ABCF proteins, is thought to bind to antibiotic-stalled ribosomes and promote dissociation of the drug from its binding site. To investigate the molecular mechanism by which VmlR confers antibiotic resistance, we have determined a cryo-electron microscopy (cryo-EM) structure of an ATPase-deficient B. subtilis VmlR-EQ(2) mutant in complex with a B. subtilis ErmDL-stalled ribosomal complex (SRC). The structure reveals that VmlR binds within the E site of the ribosome, with the antibiotic resistance domain (ARD) reaching into the peptidyltransferase center (PTC) of the ribosome and a C-terminal extension (CTE) making contact with the small subunit (SSU). To access the PTC, VmlR induces a conformational change in the P-site tRNA, shifting the acceptor arm out of the PTC and relocating the CCA end of the P-site tRNA toward the A site. Together with microbiological analyses, our study indicates that VmlR allosterically dissociates the drug from its ribosomal binding site and exhibits specificity to dislodge VgM, Lnc, and the pleuromutilin tiamulin (Tia), but not chloramphenicol (Cam), linezolid (Lnz), nor the macrolide erythromycin (Ery).
  •  
3.
  • Crowe-McAuliffe, Caillan, et al. (author)
  • Structural Basis for Bacterial Ribosome-Associated Quality Control by RqcH and RqcP
  • 2021
  • In: Molecular Cell. - : Cell Press. - 1097-2765 .- 1097-4164. ; 81:1, s. 115-126.e7
  • Journal article (peer-reviewed)abstract
    • In all branches of life, stalled translation intermediates are recognized and processed by ribosome-associated quality control (RQC) pathways. RQC begins with the splitting of stalled ribosomes, leaving an unfinished polypeptide still attached to the large subunit. Ancient and conserved NEMF family RQC proteins target these incomplete proteins for degradation by the addition of C-terminal "tails.'' How such tailing can occur without the regular suite of translational components is, however, unclear. Using single-particle cryo-electron microscopy (EM) of native complexes, we show that C-terminal tailing in Bacillus subtilis is mediated by NEMF protein RqcH in concert with RqcP, an Hsp15 family protein. Our structures reveal how these factors mediate tRNA movement across the ribosomal 50S subunit to synthesize polypeptides in the absence of mRNA or the small subunit.
  •  
4.
  •  
5.
  • Dzhygyr, Ievgen, 1985- (author)
  • Functional studies of Escherichia coli stringent response factor RelA
  • 2018
  • Doctoral thesis (other academic/artistic)abstract
    • RelA is a ribosome associated multi-domain enzyme, which plays a crucial role in adaptation ofEscherichia coli to nutritional stress as such as amino acid deficiency. It detects the deficiency of aminoacids in the cell by monitoring whether a tRNA at the acceptor site (A-site) of the ribosome is chargedwith amino acid or not. When RelA detects uncharged, i.e. deacylated tRNA, it starts to producealarmone guanosine penta- or tetraphosphate, collectively referred to as (p)ppGpp. (p)ppGpp is aglobal metabolism regulator in bacteria. Increase in (p)ppGpp concentration alters crucial metabolicprocesses, such as DNA replication, gene expression, cell wall synthesis and translation. Thesechanges also include activation of different virulence factors and are proposed to drive formation of abacterial sub-population that is highly resilient to antibiotic treatment, the so-called persisters.For a long time the molecular mechanism of RelA’s activation by and interaction with the ribosomedeacylatedtRNA complex was unknown. Only recently several cryo-EM structures of RelA-ribosomecomplex have shed light on how C-terminal domains of RelA interact with ribosome-deacylated tRNAcomplex. Guided by these structures we investigated the role of RelA’s domains in this interaction byconstructing a set of RelA C-terminal truncates and subjecting these to biochemical and microbiologicalexperimentation. These experiments were complemented with mutations in ribosomal RNA atpositions that interact with RelA, namely A-site finger and sarcin-ricin loop.We have shown that only the full-length wild type RelA can be activated by ribosome-tRNA complex,whereas, the set of truncated proteins missing either one, two or three C-terminal domains do notrespond to the presence of uncharged tRNA in the A-site of the ribosome. However, these truncatedversions can still be activated by vacant 70S ribosome as well as pppGpp, suggesting that N-terminaldomain of RelA has an allosteric regulation site for (p)ppGpp and is able to interact with the ribosome.The mechanism of this interaction is yet to be elucidated.We have shown that A-site finger of the ribosome is required for RelA activation and recruitment tothe ribosome. Using EMSA assays, we have shown that RelA and deacylated tRNA do not form a stablecomplex off the ribosome. His432 located in TGS domain of RelA is crucial for recognition of deacylatedtRNA and a mutation of this histidine to glycine abolishes RelA activation by deacylated tRNA.Since (p)ppGpp plays an important role in bacterial survival and pathogenicity we have also testedseveral strategies for RelA inhibition by antibiotics, which target ribosomes and the interactionbetween RelA and ribosome-deacylated tRNA complex. We have shown that antibiotic thiostreptoninhibits (p)ppGpp synthesis by preventing RelA-tRNA interaction on the ribosome. (p)ppGppproduction is also inhibited by chloramphenicol and tetracycline.
  •  
6.
  • Gaca, Anthony O., et al. (author)
  • From (p)ppGpp to (pp)pGpp : characterization of Regulatory Effects of pGpp Synthesized by the Small Alarmone Synthetase of Enterococcus faecalis
  • 2015
  • In: Journal of Bacteriology. - : American Society for Microbiology. - 0021-9193 .- 1098-5530. ; 197:18, s. 2908-2919
  • Journal article (peer-reviewed)abstract
    • The bacterial stringent response (SR) is a conserved stress tolerance mechanism that orchestrates physiological alterations to enhance cell survival. This response is mediated by the intracellular accumulation of the alarmones pppGpp and ppGpp, collectively called (p) ppGpp. In Enterococcus faecalis, (p) ppGpp metabolism is carried out by the bifunctional synthetase/hydrolase E. faecalis Rel (Rel(Ef)) and the small alarmone synthetase (SAS) RelQ(Ef). Although Rel is the main enzyme responsible for SR activation in Firmicutes, there is emerging evidence that SASs can make important contributions to bacterial homeostasis. Here, we showed that RelQ(Ef) synthesizes ppGpp more efficiently than pppGpp without the need for ribosomes, tRNA, or mRNA. In addition to (p) ppGpp synthesis from GDP and GTP, RelQ(Ef) also efficiently utilized GMP to form GMP 3'-diphosphate (pGpp). Based on this observation, we sought to determine if pGpp exerts regulatory effects on cellular processes affected by (p) ppGpp. We found that pGpp, like (p) ppGpp, strongly inhibits the activity of E. faecalis enzymes involved in GTP biosynthesis and, to a lesser extent, transcription of rrnB by Escherichia coli RNA polymerase. Activation of E. coli RelA synthetase activity was observed in the presence of both pGpp and ppGpp, while RelQ(Ef) was activated only by ppGpp. Furthermore, enzymatic activity of RelQ(Ef) is insensitive to relacin, a (p) ppGpp analog developed as an inhibitor of "long" RelA/SpoT homolog (RSH) enzymes. We conclude that pGpp can likely function as a bacterial alarmone with target-specific regulatory effects that are similar to what has been observed for (p) ppGpp. IMPORTANCE Accumulation of the nucleotide second messengers (p) ppGpp in bacteria is an important signal regulating genetic and physiological networks contributing to stress tolerance, antibiotic persistence, and virulence. Understanding the function and regulation of the enzymes involved in (p) ppGpp turnover is therefore critical for designing strategies to eliminate the protective effects of this molecule. While characterizing the (p) ppGpp synthetase RelQ of Enterococcus faecalis (RelQ(Ef)), we found that, in addition to (p) ppGpp, RelQ(Ef) is an efficient producer of pGpp (GMP 3'-diphosphate). In vitro analysis revealed that pGpp exerts complex, target-specific effects on processes known to be modulated by (p) ppGpp. These findings provide a new regulatory feature of RelQ(Ef) and suggest that pGpp may represent a new member of the (pp) pGpp family of alarmones.
  •  
7.
  • Goormaghtigh, Frederic, et al. (author)
  • Reassessing the Role of Type II Toxin-Antitoxin Systems in Formation of Escherichia coli Type II Persister Cells
  • 2018
  • In: mBio. - : American Society for Microbiology. - 2161-2129 .- 2150-7511. ; 9:3
  • Journal article (peer-reviewed)abstract
    • Persistence is a reversible and low-frequency phenomenon allowing a subpopulation of a clonal bacterial population to survive antibiotic treatments. Upon removal of the antibiotic, persister cells resume growth and give rise to viable progeny. Type II toxin-antitoxin (TA) systems were assumed to play a key role in the formation of persister cells in Escherichia coli based on the observation that successive deletions of TA systems decreased persistence frequency. In addition, the model proposed that stochastic fluctuations of (p)ppGpp levels are the basis for triggering activation of TA systems. Cells in which TA systems are activated are thought to enter a dormancy state and therefore survive the antibiotic treatment. Using independently constructed strains and newly designed fluorescent reporters, we reassessed the roles of TA modules in persistence both at the population and single-cell levels. Our data confirm that the deletion of 10 TA systems does not affect persistence to ofloxacin or ampicillin. Moreover, microfluidic experiments performed with a strain reporting the induction of the yefM-yoeB TA system allowed the observation of a small number of type II persister cells that resume growth after removal of ampicillin. However, we were unable to establish a correlation between high fluorescence and persistence, since the fluorescence of persister cells was comparable to that of the bulk of the population and none of the cells showing high fluorescence were able to resume growth upon removal of the antibiotic. Altogether, these data show that there is no direct link between induction of TA systems and persistence to antibiotics. IMPORTANCE Within a growing bacterial population, a small subpopulation of cells is able to survive antibiotic treatment by entering a transient state of dormancy referred to as persistence. Persistence is thought to be the cause of relapsing bacterial infections and is a major public health concern. Type II toxin-antitoxin systems are small modules composed of a toxic protein and an antitoxin protein counteracting the toxin activity. These systems were thought to be pivotal players in persistence until recent developments in the field. Our results demonstrate that previous influential reports had technical flaws and that there is no direct link between induction of TA systems and persistence to antibiotics.
  •  
8.
  •  
9.
  • Hauryliuk, Vasili, 1980- (author)
  • A Few Strokes to the Family Portrait of Translational GTPases
  • 2008
  • Doctoral thesis (other academic/artistic)abstract
    • Protein biosynthesis is a core process in all living organisms. Assembly of the protein chain from aminoacids is catalysed by the ribosome, ancient and extremely complex macromolecular machine. Several different classes of accessory molecules are involved in translation, and one set of them, called translational GTPases (trGTPases), was in the focus of this work. In this thesis properties of two trGTPases– EF-G and eRF3 - were studied by means of direct biochemical experiments. EF-G is a bacterial trGTPase involved in two steps of translation: translocation and ribosomal recycling. Translocation is a process of the ribosomal movement along the mRNA, and recycling as the step when upon completion of the protein ribosome is released from the mRNA via splitting in two ribosomal subunits. We found that off the ribosome EF-G has similar affinities to GDP and GTP, and thus given the predominance of the latter in the cell, EF-G should be present mostly in the complex with GTP. However, binding to the ribosome increases factors affinity to GTP drastically, ensuring that it is in the GTP-bound state. GDP can not promote neither translocation, not recycling, and GDPNP can not promote recycling. It can, however, promote translocation, but in so doing it results in an intermediate ribosomal state and translocation process can be reversed by addition of GDP, which is not the case for the EF-G•GTP-catalyzed reaction.The second trGTPase we investigated is eukaryotic termination factor eRF3. This protein together with another factor, eRF1, is involved translation termination, which is release of the synthesized protein from the ribosome. We demonstrateed, that eRF3 alone has basically no propensity to bind GTP and thus resides in the GDP-bound state. Complex formation between eRF1 and eRF3 promotes GTP binding by the latter, resulting in the formation of the ternary complex eRF1•eRF3•GTP, which in turn is catalyzing the termination event.Experimental investigations of trGTPases where rationalized within a generalized thermodynamical framework, accommoding the existent experimental observations, both structural and biochemical.
  •  
10.
  • Hauryliuk, Vasili, 1980-, et al. (author)
  • Recent functional insights into the role of (p)ppGpp in bacterial physiology
  • 2015
  • In: Nature Reviews Microbiology. - : Macmillan Publishers Ltd.. - 1740-1526 .- 1740-1534. ; 13:5, s. 298-309
  • Research review (peer-reviewed)abstract
    • The alarmones guanosine tetraphosphate and guanosine pentaphosphate (collectively referred to as (p) ppGpp) are involved in regulating growth and several different stress responses in bacteria. In recent years, substantial progress has been made in our understanding of the molecular mechanisms of (p) ppGpp metabolism and (p) ppGpp-mediated regulation. In this Review, we summarize these recent insights, with a focus on the molecular mechanisms governing the activity of the RelA/SpoT homologue (RSH) proteins, which are key players that regulate the cellular levels of (p) ppGpp. We also discuss the structural basis of transcriptional regulation by (p) ppGpp and the role of (p) ppGpp in GTP metabolism and in the emergence of bacterial persisters.
  •  
11.
  • Irie, Yasuhiko, et al. (author)
  • Hfq-Assisted RsmA Regulation Is Central to Pseudomonas aeruginosa Biofilm Polysaccharide PEL Expression
  • 2020
  • In: Frontiers in Microbiology. - : Frontiers Media S.A.. - 1664-302X. ; 11
  • Journal article (peer-reviewed)abstract
    • To appropriately switch between sessile and motile lifestyles, bacteria control expression of biofilm-associated genes through multiple regulatory elements. In Pseudomonas aeruginosa, the post-transcriptional regulator RsmA has been implicated in the control of various genes including those related to biofilms, but much of the evidence for these links is limited to transcriptomic and phenotypic studies. RsmA binds to target mRNAs to modulate translation by affecting ribosomal access and/or mRNA stability. Here, we trace a global regulatory role of RsmA to inhibition of the expression of Vfr-a transcription factor that inhibits transcriptional regulator FleQ. FleQ directly controls biofilm-associated genes that encode the PEL polysaccharide biosynthesis machinery. Furthermore, we show that RsmA alone cannot bind vfr mRNA but requires the assistance of RNA chaperone protein Hfq. This is the first example where a RsmA protein family member requires another protein for binding to its target RNA.
  •  
12.
  • Jimmy, Steffi, et al. (author)
  • A widespread toxin-antitoxin system exploiting growth control via alarmone signaling
  • 2020
  • In: Proceedings of the National Academy of Sciences of the United States of America. - : National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 117:19, s. 10500-10510
  • Journal article (peer-reviewed)abstract
    • Under stressful conditions, bacterial RelA-SpoT Homolog (RSH) enzymes synthesize the alarmone (p)ppGpp, a nucleotide second messenger. (p)ppGpp rewires bacterial transcription and metabolism to cope with stress, and, at high concentrations, inhibits the process of protein synthesis and bacterial growth to save and redirect resources until conditions improve. Single-domain small alarmone synthetases (SASs) are RSH family members that contain the (p)ppGpp synthesis (SYNTH) domain, but lack the hydrolysis (HD) domain and regulatory C-terminal domains of the long RSHs such as Rel, RelA, and SpoT. We asked whether analysis of the genomic context of SASs can indicate possible functional roles. Indeed, multiple SAS subfamilies are encoded in widespread conserved bicistronic operon architectures that are reminiscent of those typically seen in toxin-antitoxin (TA) operons. We have validated five of these SASs as being toxic (toxSASs), with neutralization by the protein products of six neighboring antitoxin genes. The toxicity of Cellulomonas marina toxSAS FaRel is mediated by the accumulation of alarmones ppGpp and ppApp, and an associated depletion of cellular guanosine triphosphate and adenosine triphosphate pools, and is counteracted by its HD domain-containing antitoxin. Thus, the ToxSAS-antiToxSAS system with its multiple different antitoxins exemplifies how ancient nucleotide-based signaling mechanisms can be repurposed as TA modules during evolution, potentially multiple times independently.
  •  
13.
  • Jimmy, Steffi, 1988- (author)
  • Novel RelA-SpoT Homolog toxin-antitoxin systems that inhibit bacterial growth through production of toxic alarmone ppApp
  • 2020
  • Doctoral thesis (other academic/artistic)abstract
    • The stress alarmone nucleotides guanosine pentaphosphate (pppGpp) and tetraphosphate (ppGpp), collectively known as (p)ppGpp, are the molecular mediators of the bacterial stringent response — a bacterial stress response implicated in virulence, antibiotic tolerance and biofilm formation. At high concentrations, (p)ppGpp halts bacterial growth, inhibits protein synthesis and rewires transcription and metabolism. In Escherichia coli  (E. coli ) the (p)ppGpp levels are controlled by two large multi-domain proteins RelA and SpoT, the namesakes of Rel-SpoT Homolog (RSH) protein family. During amino acid starvation, RelA directly senses the acylation status of the A-site tRNA on the ribosome. In the presence of uncharged tRNA, RelA is activated to synthesize (p)ppGpp using ATP and either GDP or GTP as substrates; SpoT opposes the activity of RelA by hydrolyzing the alarmone. The RSH family also includes single domain, monofunctional enzymes: Small Alarmone Synthetases (SASs), which can synthesize (p)ppGpp, and Small Alarmone Hydrolases (SAHs), which can hydrolyze (p)ppGpp. Acting together with ‘long’ RSHs such as RelA and SpoT, these enzymes control the intracellular alarmone levels. Using conservation of genomic neighborhoods analysis of RSH sequences, we have identified several families of SAS factors encoded in conserved bicistronic architectures that are similar to the so-called toxin-antitoxin operons. We experimentally validated five of these SASs as being the toxins (toxSASs) which are neutralized by the products of the six neighboring antitoxin genes. The SAS enzyme from Cellulomonas marina  (C. marina ) FaRel inhibits the growth of E. coli cells by synthesizing alarmones ppGpp and ppApp, which in turn leads to the depletion of cellular ATP and GTP. These toxic effects can be countered by the C. marina SAH antitoxin through degradation of ppGpp and ppApp alarmones.Since (p)ppGpp plays such a crucial role in bacterial virulence and antibiotic tolerance, the (p)ppGpp-mediated signaling has emerged as a target for developing new antibacterials. ppGpp-mimetics are a promising strategy for direct inhibition of RSH enzymes. We tested a targeted chemical library of ppGpp analogs in enzymatic assays with purified E. coli RelA activated by the ribosome. Although the screen has yielded several potent inhibitors, none of them were effective in live bacterial cells. Despite their limited utility as antibacterials, these compounds are useful tools for future structural and biochemical work. We took an alternative approach and developed a High Throughput Screening (HTS) assay which utilized amino acid auxotroph Bacillus subtilis lacking (p)ppGpp. We have performed an HTS screen with a diverse compound library and identified a set of compounds sharing a common 4-(6-(phenoxyl) alkyl)-3,5-dimethyl-1H-pyrazole core as possible stringent response inhibitors. Our follow-up characterization of these compounds as well as reported potential inhibitors — the ppGpp analog Relacin and cationic peptide 1018 — revealed that neither compound is sufficiently specific to warrant further development.
  •  
14.
  • Jurėnas, Dukas, et al. (author)
  • Photorhabdus antibacterial Rhs polymorphic toxin inhibits translation through ADP-ribosylation of 23S ribosomal RNA
  • 2021
  • In: Nucleic Acids Research. - : Oxford University Press. - 0305-1048 .- 1362-4962. ; 49:14, s. 8384-8395
  • Journal article (peer-reviewed)abstract
    • Bacteria have evolved sophisticated mechanisms to deliver potent toxins into bacterial competitors or into eukaryotic cells in order to destroy rivals and gain access to a specific niche or to hijack essential metabolic or signaling pathways in the host. Delivered effectors carry various activities such as nucleases, phospholipases, peptidoglycan hydrolases, enzymes that deplete the pools of NADH or ATP, compromise the cell division machinery, or the host cell cytoskeleton. Effectors categorized in the family of polymorphic toxins have a modular structure, in which the toxin domain is fused to additional elements acting as cargo to adapt the effector to a specific secretion machinery. Here we show that Photorhabdus laumondii, an entomopathogen species, delivers a polymorphic antibacterial toxin via a type VI secretion system. This toxin inhibits protein synthesis in a NAD+-dependent manner. Using a biotinylated derivative of NAD, we demonstrate that translation is inhibited through ADP-ribosylation of the ribosomal 23S RNA. Mapping of the modification further showed that the adduct locates on helix 44 of the thiostrepton loop located in the GTPase-associated center and decreases the GTPase activity of the EF-G elongation factor.
  •  
15.
  • Kaldalu, Niilo, et al. (author)
  • In Vitro Studies of Persister Cells
  • 2020
  • In: Microbiology and molecular biology reviews. - : American Society for Microbiology. - 1092-2172 .- 1098-5557. ; 84:4
  • Research review (peer-reviewed)abstract
    • Many bacterial pathogens can permanently colonize their host and establish either chronic or recurrent infections that the immune system and antimicrobial therapies fail to eradicate. Antibiotic persisters (persister cells) are believed to be among the factors that make these infections challenging. Persisters are subpopulations of bacteria which survive treatment with bactericidal antibiotics in otherwise antibiotic-sensitive cultures and were extensively studied in a hope to discover the mechanisms that cause treatment failures in chronically infected patients; however, most of these studies were conducted in the test tube. Research into antibiotic persistence has uncovered large intrapopulation heterogeneity of bacterial growth and regrowth but has not identified essential, dedicated molecular mechanisms of antibiotic persistence. Diverse factors and stresses that inhibit bacterial growth reduce killing of the bulk population and may also increase the persister subpopulation, implying that an array of mechanisms are present. Hopefully, further studies under conditions that simulate the key aspects of persistent infections will lead to identifying target mechanisms for effective therapeutic solutions.
  •  
16.
  •  
17.
  • Kasari, Villu, et al. (author)
  • A role for the Saccharomyces cerevisiae ABCF protein New1 in translation termination/recycling
  • 2019
  • In: Nucleic Acids Research. - : Oxford University Press. - 0305-1048 .- 1362-4962. ; 47:16, s. 8807-8820
  • Journal article (peer-reviewed)abstract
    • Translation is controlled by numerous accessory proteins and translation factors. In the yeast Saccharomyces cerevisiae, translation elongation requires an essential elongation factor, the ABCF ATPase eEF3. A closely related protein, New1, is encoded by a non-essential gene with cold sensitivity and ribosome assembly defect knock-out phenotypes. Since the exact molecular function of New1 is unknown, it is unclear if the ribosome assembly defect is direct, i.e. New1 is a bona fide assembly factor, or indirect, for instance due to a defect in protein synthesis. To investigate this, we employed yeast genetics, cryo-electron microscopy (cryo-EM) and ribosome profiling (Ribo-Seq) to interrogate the molecular function of New1. Overexpression of New1 rescues the inviability of a yeast strain lacking the otherwise strictly essential translation factor eEF3. The structure of the ATPase-deficient (EQ2) New1 mutant locked on the 80S ribosome reveals that New1 binds analogously to the ribosome as eEF3. Finally, Ribo-Seq analysis revealed that loss of New1 leads to ribosome queuing upstream of 3′-terminal lysine and arginine codons, including those genes encoding proteins of the cytoplasmic translational machinery. Our results suggest that New1 is a translation factor that fine-tunes the efficiency of translation termination or ribosome recycling.
  •  
18.
  • Kasari, Villu, et al. (author)
  • Ribosome profiling analysis of eEF3-depleted Saccharomyces cerevisiae
  • 2019
  • In: Scientific Reports. - : Nature Publishing Group. - 2045-2322. ; 9
  • Journal article (peer-reviewed)abstract
    • In addition to the standard set of translation factors common in eukaryotic organisms, protein synthesis in the yeast Saccharomyces cerevisiae requires an ABCF ATPase factor eEF3, eukaryotic Elongation Factor 3. eEF3 is an E-site binder that was originally identified as an essential factor involved in the elongation stage of protein synthesis. Recent biochemical experiments suggest an additional function of eEF3 in ribosome recycling. We have characterised the global effects of eEF3 depletion on translation using ribosome profiling. Depletion of eEF3 results in decreased ribosome density at the stop codon, indicating that ribosome recycling does not become rate limiting when eEF3 levels are low. Consistent with a defect in translation elongation, eEF3 depletion causes a moderate redistribution of ribosomes towards the 5' part of the open reading frames. We observed no E-site codon-or amino acid-specific ribosome stalling upon eEF3 depletion, supporting its role as a general elongation factor. Surprisingly, depletion of eEF3 leads to a relative decrease in P-site proline stalling, which we hypothesise is a secondary effect of generally decreased translation and/or decreased competition for the E-site with eIF5A.
  •  
19.
  • Kumar, Pravin, et al. (author)
  • Clinically observed deletions in SARS-CoV-2 Nsp1 affect its stability and ability to inhibit translation
  • 2022
  • In: FEBS Letters. - : John Wiley & Sons. - 0014-5793 .- 1873-3468. ; 596:9, s. 1203-1213
  • Journal article (peer-reviewed)abstract
    • Nonstructural protein 1 (Nsp1) of SARS-CoV-2 inhibits host cell translation through an interaction between its C-terminal domain and the 40S ribosome. The N-terminal domain (NTD) of Nsp1 is a target of recurring deletions, some of which are associated with altered COVID-19 disease progression. Here, we characterize the efficiency of translational inhibition by clinically observed Nsp1 deletion variants. We show that a frequent deletion of residues 79–89 severely reduces the ability of Nsp1 to inhibit translation while not abrogating Nsp1 binding to the 40S. Notably, while the SARS-CoV-2 5′ untranslated region enhances translation of mRNA, it does not protect from Nsp1-mediated inhibition. Finally, thermal stability measurements and structure predictions reveal a correlation between stability of the NTD and the efficiency of translation inhibition.
  •  
20.
  • Kurata, Tatsuaki, et al. (author)
  • A hyperpromiscuous antitoxin protein domain for the neutralization of diverse toxin domains
  • 2022
  • In: Proceedings of the National Academy of Sciences of the United States of America. - : National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 119:6
  • Journal article (peer-reviewed)abstract
    • Toxin–antitoxin (TA) gene pairs are ubiquitous in microbial chromosomal genomes and plasmids as well as temperate bacteriophages. They act as regulatory switches, with the toxin limiting the growth of bacteria and archaea by compromising diverse essential cellular targets and the antitoxin counteracting the toxic effect. To uncover previously uncharted TA diversity across microbes and bacteriophages, we analyzed the conservation of genomic neighborhoods using our computational tool FlaGs (for flanking genes), which allows high-throughput detection of TA-like operons. Focusing on the widespread but poorly experimentally characterized antitoxin domain DUF4065, our in silico analyses indicated that DUF4065-containing proteins serve as broadly distributed antitoxin components in putative TA-like operons with dozens of different toxic domains with multiple different folds. Given the versatility of DUF4065, we have named the domain Panacea (and proteins containing the domain, PanA) after the Greek goddess of universal remedy. We have experimentally validated nine PanA-neutralized TA pairs. While the majority of validated PanA-neutralized toxins act as translation inhibitors or membrane disruptors, a putative nucleotide cyclase toxin from a Burkholderia prophage compromises transcription and translation as well as inducing RelA-dependent accumulation of the nucleotide alarmone (p)ppGpp. We find that Panacea-containing antitoxins form a complex with their diverse cognate toxins, characteristic of the direct neutralization mechanisms employed by Type II TA systems. Finally, through directed evolution, we have selected PanA variants that can neutralize noncognate TA toxins, thus experimentally demonstrating the evolutionary plasticity of this hyperpromiscuous antitoxin domain.
  •  
21.
  • Kurata, Tatsuaki, et al. (author)
  • RelA-SpoT Homolog toxins pyrophosphorylate the CCA end of tRNA to inhibit protein synthesis
  • 2021
  • In: Molecular Cell. - : Cell Press. - 1097-2765 .- 1097-4164. ; 81:15, s. 3160-3170.e9
  • Journal article (peer-reviewed)abstract
    • RelA-SpoT Homolog (RSH) enzymes control bacterial physiology through synthesis and degradation of the nucleotide alarmone (p)ppGpp. We recently discovered multiple families of small alarmone synthetase (SAS) RSH acting as toxins of toxin-antitoxin (TA) modules, with the FaRel subfamily of toxSAS abrogating bacterial growth by producing an analog of (p)ppGpp, (pp)pApp. Here we probe the mechanism of growth arrest used by four experimentally unexplored subfamilies of toxSAS: FaRel2, PhRel, PhRel2, and CapRel. Surprisingly, all these toxins specifically inhibit protein synthesis. To do so, they transfer a pyrophosphate moiety from ATP to the tRNA 3′ CCA. The modification inhibits both tRNA aminoacylation and the sensing of cellular amino acid starvation by the ribosome-associated RSH RelA. Conversely, we show that some small alarmone hydrolase (SAH) RSH enzymes can reverse the pyrophosphorylation of tRNA to counter the growth inhibition by toxSAS. Collectively, we establish RSHs as RNA-modifying enzymes.
  •  
22.
  • Kuzmenko, Anton, et al. (author)
  • Mitochondrial translation initiation machinery : conservation and diversification
  • 2014
  • In: Biochimie. - : Elsevier. - 0300-9084 .- 1638-6183. ; 100C, s. 132-140
  • Journal article (peer-reviewed)abstract
    • The highly streamlined mitochondrial genome encodes almost exclusively a handful of transmembrane components of the respiratory chain complex. In order to ensure the correct assembly of the respiratory chain, the products of these genes must be produced in the correct stoichiometry and inserted into the membrane, posing a unique challenge to the mitochondrial translational system. In this review we describe the proteins orchestrating mitochondrial translation initiation: bacterial-like general initiation factors mIF2 and mIF3, as well as mitochondria-specific components - mRNA-specific translational activators and mRNA-nonspecific accessory initiation factors. We consider how the fast rate of evolution in these organelles has not only created a system that is divergent from that of its bacterial ancestors, but has led to a huge diversity in lineage specific mechanistic features of mitochondrial translation initiation among eukaryotes.
  •  
23.
  • Mohamad, Merianne, et al. (author)
  • Sal-type ABC-F proteins : intrinsic and common mediators of pleuromutilin resistance by target protection in staphylococci
  • 2022
  • In: Nucleic Acids Research. - : Oxford University Press. - 0305-1048 .- 1362-4962. ; 50:4, s. 2128-2142
  • Journal article (peer-reviewed)abstract
    • The first member of the pleuromutilin (PLM) class suitable for systemic antibacterial chemotherapy in humans recently entered clinical use, underscoring the need to better understand mechanisms of PLM resistance in disease-causing bacterial genera. Of the proteins reported to mediate PLM resistance in staphylococci, the least-well studied to date is Sal(A), a putative ABC-F NTPase that—by analogy to other proteins of this type—may act to protect the ribosome from PLMs. Here, we establish the importance of Sal proteins as a common source of PLM resistance across multiple species of staphylococci. Sal(A) is revealed as but one member of a larger group of Sal-type ABC-F proteins that vary considerably in their ability to mediate resistance to PLMs and other antibiotics. We find that specific sal genes are intrinsic to particular staphylococcal species, and show that this gene family is likely ancestral to the genus Staphylococcus. Finally, we solve the cryo-EM structure of a representative Sal-type protein (Sal(B)) in complex with the staphylococcal 70S ribosome, revealing that Sal-type proteins bind into the E site to mediate target protection, likely by displacing PLMs and other antibiotics via an allosteric mechanism.
  •  
24.
  • Mojr, Viktor, et al. (author)
  • Nonhydrolysable Analogues of (p)ppGpp and (p)ppApp Alarmone Nucleotides as Novel Molecular Tools
  • 2021
  • In: ACS Chemical Biology. - : American Chemical Society (ACS). - 1554-8929 .- 1554-8937. ; 16:9, s. 1680-1691
  • Journal article (peer-reviewed)abstract
    • While alarmone nudeotides guanosine-3',5'-bisdiphosphate (ppGpp) and guanosine-5'-triphosphate-3'-diphosphate (pppGpp) are archetypical bacterial second messengers, their adenosine analogues ppApp (adenosine-3',5'-bisdiphosphate) and pppApp (adenosine-5'-triphosphate-3'-diphosphate) are toxic effectors that abrogate bacterial growth. The alarmones are both synthesized and degraded by the members of the ReIA-SpoT Homologue (RSH) enzyme family. Because of the chemical and enzymatic liability of (p)ppGpp and (p)ppApp, these alarmones are prone to degradation during structural biology experiments. To overcome this limitation, we have established an efficient and straightforward procedure for synthesizing nonhydrolysable (p)ppNu(N)pp analogues starting from 3'-azido-3'-deoxyribonucleotides as key intermediates. To demonstrate the utility of (p)ppG(N)pp as a molecular tool, we show that (i) as an HD substrate mimic, ppG(N)pp competes with ppGpp to inhibit the enzymatic activity of human MESHI Small Alarmone Hyrolase, SAH; and (ii) mimicking the allosteric effects of (p)ppGpp, (p)ppG(N)pp acts as a positive regulator of the synthetase activity of long ribosome-associated RSHs Rel and ReIA. Finally, by solving the structure of the N-terminal domain region (NTD) of T. thermophilus Rel complexed with pppG(N)pp, we show that as an HD substrate mimic, the analogue serves as a bona fide orthosteric regulator that promotes the same intra-NTD structural rearrangements as the native substrate.
  •  
25.
  • Murina, Victoriia, et al. (author)
  • ABCF ATPases Involved in Protein Synthesis, Ribosome Assembly and Antibiotic Resistance : Structural and Functional Diversification across the Tree of Life
  • 2019
  • In: Journal of Molecular Biology. - : Elsevier. - 0022-2836 .- 1089-8638. ; 431:18, s. 3568-3590
  • Journal article (peer-reviewed)abstract
    • Within the larger ABC superfamily of ATPases, ABCF family members eEF3 in Saccharomyces cerevisiae and EttA in Escherichia coli have been found to function as ribosomal translation factors. Several other ABCFs including biochemically characterized VgaA, LsaA and MsrE confer resistance to antibiotics that target the peptidyl transferase center and exit tunnel of the ribosome. However, the diversity of ABCF subfamilies, the relationships among subfamilies and the evolution of antibiotic resistance (ARE) factors from other ABCFs have not been explored. To address this, we analyzed the presence of ABCFs and their domain architectures in 4505 genomes across the tree of life. We find 45 distinct subfamilies of ABCFs that are widespread across bacterial and eukaryotic phyla, suggesting that they were present in the last common ancestor of both. Surprisingly, currently known ARE ABCFs are not confined to a distinct lineage of the ABCF family tree, suggesting that ARE can readily evolve from other ABCF functions. Our data suggest that there are a number of previously unidentified ARE ABCFs in antibiotic producers and important human pathogens. We also find that ATPase-deficient mutants of all four E. coli ABCFs (EttA, YbiT, YheS and Uup) inhibit protein synthesis, indicative of their ribosomal function, and demonstrate a genetic interaction of ABCFs Uup and YheS with translational GTPase BipA involved in assembly of the 50S ribosome subunit. Finally, we show that the ribosome-binding resistance factor VmlR from Bacillus subtilis is localized to the cytoplasm, ruling out a role in antibiotic efflux.
  •  
26.
  • Roghanian, Mohammad, et al. (author)
  • (p)ppGpp controls stringent factors by exploiting antagonistic allosteric coupling between catalytic domains
  • 2021
  • In: Molecular Cell. - : Elsevier. - 1097-2765 .- 1097-4164. ; 81:16, s. 3310-3322.e6
  • Journal article (peer-reviewed)abstract
    • Amino acid starvation is sensed by Escherichia coli RelA and Bacillus subtilis Rel through monitoring the aminoacylation status of ribosomal A-site tRNA. These enzymes are positively regulated by their product—the alarmone nucleotide (p)ppGpp—through an unknown mechanism. The (p)ppGpp-synthetic activity of Rel/RelA is controlled via auto-inhibition by the hydrolase/pseudo-hydrolase (HD/pseudo-HD) domain within the enzymatic N-terminal domain region (NTD). We localize the allosteric pppGpp site to the interface between the SYNTH and pseudo-HD/HD domains, with the alarmone stimulating Rel/RelA by exploiting intra-NTD autoinhibition dynamics. We show that without stimulation by pppGpp, starved ribosomes cannot efficiently activate Rel/RelA. Compromised activation by pppGpp ablates Rel/RelA function in vivo, suggesting that regulation by the second messenger (p)ppGpp is necessary for mounting an acute starvation response via coordinated enzymatic activity of individual Rel/RelA molecules. Control by (p)ppGpp is lacking in the E. coli (p)ppGpp synthetase SpoT, thus explaining its weak synthetase activity.
  •  
27.
  • Takada, Hiraku, et al. (author)
  • Expression of Bacillus subtilis ABCF antibiotic resistance factor VmlR is regulated by RNA polymerase pausing, transcription attenuation, translation attenuation and (p)ppGpp
  • 2022
  • In: Nucleic Acids Research. - : Oxford University Press. - 0305-1048 .- 1362-4962. ; 50:11, s. 6174-6189
  • Journal article (peer-reviewed)abstract
    • Since antibiotic resistance is often associated with a fitness cost, bacteria employ multi-layered regulatory mechanisms to ensure that expression of resistance factors is restricted to times of antibiotic challenge. In Bacillus subtilis, the chromosomally-encoded ABCF ATPase VmlR confers resistance to pleuromutilin, lincosamide and type A streptogramin translation inhibitors. Here we show that vmlR expression is regulated by translation attenuation and transcription attenuation mechanisms. Antibiotic-induced ribosome stalling during translation of an upstream open reading frame in the vmlR leader region prevents formation of an anti-antiterminator structure, leading to the formation of an antiterminator structure that prevents intrinsic termination. Thus, transcription in the presence of antibiotic induces vmlR expression. We also show that NusG-dependent RNA polymerase pausing in the vmlR leader prevents leaky expression in the absence of antibiotic. Furthermore, we demonstrate that induction of VmlR expression by compromised protein synthesis does not require the ability of VmlR to rescue the translational defect, as exemplified by constitutive induction of VmlR by ribosome assembly defects. Rather, the specificity of induction is determined by the antibiotic's ability to stall the ribosome on the regulatory open reading frame located within the vmlR leader. Finally, we demonstrate the involvement of (p)ppGpp-mediated signalling in antibiotic-induced VmlR expression.
  •  
28.
  • Takada, Hiraku, et al. (author)
  • Ribosome association primes the stringent factor Rel for tRNA-dependent locking in the A-site and activation of (p)ppGpp synthesis
  • 2021
  • In: Nucleic Acids Research. - : Oxford University Press. - 0305-1048 .- 1362-4962. ; 49:1, s. 444-457
  • Journal article (peer-reviewed)abstract
    • In the Gram-positive Firmicute bacterium Bacillus subtilis, amino acid starvation induces synthesis of the alarmone (p)ppGpp by the RelA/SpoT Homolog factor Rel. This bifunctional enzyme is capable of both synthesizing and hydrolysing (p)ppGpp. To detect amino acid deficiency, Rel monitors the aminoacylation status of the ribosomal A-site tRNA by directly inspecting the tRNA's CCA end. Here we dissect the molecular mechanism of B. subtilis Rel. Off the ribosome, Rel predominantly assumes a 'closed' conformation with dominant (p)ppGpp hydrolysis activity. This state does not specifically select deacylated tRNA since the interaction is only moderately affected by tRNA aminoacylation. Once bound to the vacant ribosomal A-site, Rel assumes an 'open' conformation, which primes its TGS and Helical domains for specific recognition and stabilization of cognate deacylated tRNA on the ribosome. The tRNA locks Rel on the ribosome in a hyperactivated state that processively synthesises (p)ppGpp while the hydrolysis is suppressed. In stark contrast to non-specific tRNA interactions off the ribosome, tRNA-dependent Rel locking on the ribosome and activation of (p)ppGpp synthesis are highly specific and completely abrogated by tRNA aminoacylation. Binding pppGpp to a dedicated allosteric site located in the N-terminal catalytic domain region of the enzyme further enhances its synthetase activity.
  •  
29.
  • Takada, Hiraku, et al. (author)
  • RqcH and RqcP catalyze processive poly-alanine synthesis in a reconstituted ribosome-associated quality control system
  • 2021
  • In: Nucleic Acids Research. - : Oxford University Press. - 0305-1048 .- 1362-4962. ; 49:14, s. 8355-8369
  • Journal article (peer-reviewed)abstract
    • In the cell, stalled ribosomes are rescued through ribosome-associated protein quality-control (RQC) pathways. After splitting of the stalled ribosome, a C-terminal polyalanine 'tail' is added to the unfinished polypeptide attached to the tRNA on the 50S ribosomal subunit. In Bacillus subtilis, polyalanine tailing is catalyzed by the NEMF family protein RqcH, in cooperation with RqcP. However, the mechanistic details of this process remain unclear. Here we demonstrate that RqcH is responsible for tRNAAla selection during RQC elongation, whereas RqcP lacks any tRNA specificity. The ribosomal protein uL11 is crucial for RqcH, but not RqcP, recruitment to the 50S subunit, and B. subtilis lacking uL11 are RQC-deficient. Through mutational mapping, we identify critical residues within RqcH and RqcP that are important for interaction with the P-site tRNA and/or the 50S subunit. Additionally, we have reconstituted polyalanine-tailing in vitro and can demonstrate that RqcH and RqcP are necessary and sufficient for processivity in a minimal system. Moreover, the in vitro reconstituted system recapitulates our in vivo findings by reproducing the importance of conserved residues of RqcH and RqcP for functionality. Collectively, our findings provide mechanistic insight into the role of RqcH and RqcP in the bacterial RQC pathway.
  •  
30.
  • Takada, Hiraku, et al. (author)
  • The C-Terminal RRM/ACT Domain Is Crucial for Fine-Tuning the Activation of 'Long' RelA-SpoT Homolog Enzymes by Ribosomal Complexes
  • 2020
  • In: Frontiers in Microbiology. - : Frontiers Media S.A.. - 1664-302X. ; 11
  • Journal article (peer-reviewed)abstract
    • The (p)ppGpp-mediated stringent response is a bacterial stress response implicated in virulence and antibiotic tolerance. Both synthesis and degradation of the (p)ppGpp alarmone nucleotide are mediated by RelA-SpoT Homolog (RSH) enzymes which can be broadly divided in two classes: single-domain 'short' and multi-domain 'long' RSH. The regulatory ACT (Aspartokinase, Chorismate mutase and TyrA)/RRM (RNA Recognition Motif) domain is a near-universal C-terminal domain of long RSHs. Deletion of RRM in both monofunctional (synthesis-only) RelA as well as bifunctional (i.e., capable of both degrading and synthesizing the alarmone) Rel renders the long RSH cytotoxic due to overproduction of (p)ppGpp. To probe the molecular mechanism underlying this effect we characterized Escherichia coli RelA and Bacillus subtilis Rel RSHs lacking RRM. We demonstrate that, first, the cytotoxicity caused by the removal of RRM is counteracted by secondary mutations that disrupt the interaction of the RSH with the starved ribosomal complex - the ultimate inducer of (p)ppGpp production by RelA and Rel - and, second, that the hydrolytic activity of Rel is not abrogated in the truncated mutant. Therefore, we conclude that the overproduction of (p)ppGpp by RSHs lacking the RRM domain is not explained by a lack of auto-inhibition in the absence of RRM or/and a defect in (p)ppGpp hydrolysis. Instead, we argue that it is driven by misregulation of the RSH activation by the ribosome.
  •  
31.
  • Tamman, Hedvig, et al. (author)
  • A nucleotide-switch mechanism mediates opposing catalytic activities of Rel enzymes
  • 2020
  • In: Nature Chemical Biology. - : Nature Publishing Group. - 1552-4450 .- 1552-4469. ; 16:8, s. 834-840
  • Journal article (peer-reviewed)abstract
    • Bifunctional Rel stringent factors, the most abundant class of RelA/SpoT homologs, are ribosome-associated enzymes that transfer a pyrophosphate from ATP onto the 3 ' of guanosine tri-/diphosphate (GTP/GDP) to synthesize the bacterial alarmone (p)ppGpp, and also catalyze the 3 ' pyrophosphate hydrolysis to degrade it. The regulation of the opposing activities of Rel enzymes is a complex allosteric mechanism that remains an active research topic despite decades of research. We show that a guanine-nucleotide-switch mechanism controls catalysis by Thermus thermophilus Rel (Rel(Tt)). The binding of GDP/ATP opens the N-terminal catalytic domains (NTD) of Rel(Tt) (Rel(Tt)(NTD)) by stretching apart the two catalytic domains. This activates the synthetase domain and allosterically blocks hydrolysis. Conversely, binding of ppGpp to the hydrolase domain closes the NTD, burying the synthetase active site and precluding the binding of synthesis precursors. This allosteric mechanism is an activity switch that safeguards against futile cycles of alarmone synthesis and degradation.
  •  
32.
  • Tamman, Hedvig, et al. (author)
  • Structure of SpoT reveals evolutionary tuning of catalysis via conformational constraint
  • 2023
  • In: Nature Chemical Biology. - : Springer Nature. - 1552-4450 .- 1552-4469. ; 19, s. 334-345
  • Journal article (peer-reviewed)abstract
    • Stringent factors orchestrate bacterial cell reprogramming through increasing the level of the alarmones (p)ppGpp. In Beta- and Gammaproteobacteria, SpoT hydrolyzes (p)ppGpp to counteract the synthetase activity of RelA. However, structural information about how SpoT controls the levels of (p)ppGpp is missing. Here we present the crystal structure of the hydrolase-only SpoT from Acinetobacter baumannii and uncover the mechanism of intramolecular regulation of ‘long’-stringent factors. In contrast to ribosome-associated Rel/RelA that adopt an elongated structure, SpoT assumes a compact τ-shaped structure in which the regulatory domains wrap around a Core subdomain that controls the conformational state of the enzyme. The Core is key to the specialization of long RelA-SpoT homologs toward either synthesis or hydrolysis: the short and structured Core of SpoT stabilizes the τ-state priming the hydrolase domain for (p)ppGpp hydrolysis, whereas the longer, more dynamic Core domain of RelA destabilizes the τ-state priming the monofunctional RelA for efficient (p)ppGpp synthesis. [Figure not available: see fulltext.].
  •  
33.
  • Turnbull, Kathryn Jane, et al. (author)
  • Intramolecular Interactions Dominate the Autoregulation of Escherichia coli Stringent Factor RelA
  • 2019
  • In: Frontiers in Microbiology. - : Frontiers Media S.A.. - 1664-302X. ; 10
  • Journal article (peer-reviewed)abstract
    • Amino acid starvation in Escherichia coli activates the enzymatic activity of the stringent factor RelA, leading to accumulation of the alarmone nucleotide (p)ppGpp. The alarmone acts as an intercellular messenger to regulate transcription, translation and metabolism to mediate bacterial stress adaptation. The enzymatic activity of RelA is subject to multi-layered allosteric control executed both by ligands - such as "starved" ribosomal complexes, deacylated tRNA and pppGpp - and by individual RelA domains. The auto-regulation of RelA is proposed to act either in cis (inhibition of the enzymatic activity of the N-terminal region, NTD, by regulatory C-terminal region, CTD) or in trans (CTD-mediated dimerization leading to enzyme inhibition). In this report, we probed the regulatory roles of the individual domains of E. coli RelA and our results are not indicative of RelA dimerization being the key regulatory mechanism. First, at growth-permitting levels, ectopic expression of RelA CTD does not interfere with activation of native ReIA, indicating lack of regulation via inhibitory complex formation in the cell. Second, in our biochemical assays, increasing RelA concentration does not decrease the enzyme activity, as would be expected in the case of efficient auto-inhibition via dimerization. Third, while high-level CTD expression efficiently inhibits the growth, the effect is independent of native RelA and is mediated by direct inhibition of protein synthesis, likely via direct interaction with the ribosomal A-site. Finally, deletion of the RRM domain of the CTD region leads to growth inhibition mediated by accumulation of (p)ppGpp, suggesting de-regulation of the synthetic activity in this mutant.
  •  
34.
  • Van Nerom, Katleen, et al. (author)
  • The Rel stringent factor from Thermus thermophilus : crystallization and X-ray analysis
  • 2019
  • In: Acta Crystallographica Section F. - : International Union of Crystallography. - 2053-230X. ; 75, s. 561-569
  • Journal article (peer-reviewed)abstract
    • The stringent response, controlled by (p)ppGpp, enables bacteria to trigger a strong phenotypic resetting that is crucial to cope with adverse environmental changes and is required for stress survival and virulence. In the bacterial cell, (p)ppGpp levels are regulated by the concerted opposing activities of RSH (RelA/SpoT homologue) enzymes that can transfer a pyrophosphate group of ATP to the 3′ position of GDP (or GTP) or remove the 3′ pyrophosphate moiety from (p)ppGpp. Bifunctional Rel enzymes are notoriously difficult to crystallize owing to poor stability and a propensity for aggregation, usually leading to a loss of biological activity after purification. Here, the production, biochemical analysis and crystallization of the bifunctional catalytic region of the Rel stringent factor from Thermus thermophilus (RelTtNTD) in the resting state and bound to nucleotides are described. RelTt and RelTtNTD are monomers in solution that are stabilized by the binding of Mn2+ and mellitic acid. RelTtNTD crystallizes in space group P4122, with unit-cell parameters a = b = 88.4, c = 182.7 Å, at 4°C and in space group P41212, with unit-cell parameters a = b = 105.7, c = 241.4 Å, at 20°C.
  •  
35.
  • Wilson, Daniel N., et al. (author)
  • Target protection as a key antibiotic resistance mechanism
  • 2020
  • In: Nature Reviews Microbiology. - : Nature Publishing Group. - 1740-1526 .- 1740-1534. ; 18:11, s. 637-648
  • Research review (peer-reviewed)abstract
    • Antibiotic resistance is mediated through several distinct mechanisms, most of which are relatively well understood and the clinical importance of which has long been recognized. Until very recently, neither of these statements was readily applicable to the class of resistance mechanism known as target protection, a phenomenon whereby a resistance protein physically associates with an antibiotic target to rescue it from antibiotic-mediated inhibition. In this Review, we summarize recent progress in understanding the nature and importance of target protection. In particular, we describe the molecular basis of the known target protection systems, emphasizing that target protection does not involve a single, uniform mechanism but is instead brought about in several mechanistically distinct ways.
  •  
36.
  • Zbornikova, Eva, et al. (author)
  • Analysis of nucleotide pools in bacteria using HPLC-MS in HILIC mode
  • 2019
  • In: Talanta. - : Elsevier. - 0039-9140 .- 1873-3573. ; 205
  • Journal article (peer-reviewed)abstract
    • Nucleotides, nucleosides and their derivatives are present in all cells at varying concentrations that change with the nutritional, and energetic status of the cell. Precise measurement of the concentrations of these molecules is instrumental for understanding their regulatory effects. Such measurement is challenging due to the inherent instability of these molecules and, despite many decades of research, the reported values differ widely. Here, we present a comprehensive and easy-to-use approach for determination of the intracellular concentrations of > 25 target molecular species. The approach uses rapid filtration and cold acidic extraction followed by high performance liquid chromatography (HPLC) in the hydrophilic interaction liquid chromatography (HILIC) mode using zwitterionic columns coupled with UV and MS detectors. The method reliably detects and quantifies all the analytes expected to be observed in the bacterial cell and paves the way for future studies correlating their concentrations with biological effects.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-36 of 36
Type of publication
journal article (29)
doctoral thesis (3)
research review (3)
other publication (1)
Type of content
peer-reviewed (32)
other academic/artistic (4)
Author/Editor
Hauryliuk, Vasili, 1 ... (34)
Takada, Hiraku (14)
Atkinson, Gemma C (14)
Tenson, Tanel (12)
Garcia-Pino, Abel (11)
Murina, Victoriia (8)
show more...
Wilson, Daniel N. (5)
Rejman, Dominik (5)
Kaldalu, Niilo (4)
Jimmy, Steffi (4)
Turnbull, Kathryn Ja ... (4)
Caballero-Montes, Ju ... (3)
Talavera, Ariel (3)
Kudrin, Pavel (3)
Johansson, Marcus J ... (3)
Brodiazhenko, Tetian ... (3)
Crowe-McAuliffe, Cai ... (3)
Kasvandik, Sergo (2)
Ainelo, Andres (2)
Ernits, Karin (2)
Udekwu, Klas (2)
Ignatova, Zoya (2)
Nissan, Tracy (2)
Atkinson, Gemma Cath ... (2)
Van Melderen, Lauren ... (2)
Pohl, Radek (2)
Graf, Michael (2)
Novácek, Jirí (2)
Ehrenberg, Måns (1)
Persson, Karina (1)
Ekström, Simon (1)
Bulvas, Ondřej (1)
Zedek, Safia (1)
Wu, Kelvin J Y (1)
Tresco, Ben I C (1)
Myers, Andrew G (1)
Perez, Javier (1)
Johansson, Jörgen, P ... (1)
Terenin, Ilya (1)
Shingler, Victoria (1)
Abdelshahid, Maha (1)
Kuzmenko, Anton (1)
Kamenski, Piotr (1)
Atkinson, Gemma (1)
Beljantseva, Jelena (1)
Buckingham, Richard, ... (1)
Hofkens, Johan (1)
Schexnaydre, Erin (1)
Carlson, Lars-Anders (1)
Huter, Paul (1)
show less...
University
Umeå University (35)
Lund University (10)
Stockholm University (3)
Uppsala University (1)
Language
English (36)
Research subject (UKÄ/SCB)
Natural sciences (27)
Medical and Health Sciences (17)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view