SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Helmers S) "

Search: WFRF:(Helmers S)

  • Result 1-6 of 6
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Yasuma, R, et al. (author)
  • Intravenous immune globulin suppresses angiogenesis in mice and humans
  • 2016
  • In: Signal transduction and targeted therapy. - : Springer Science and Business Media LLC. - 2095-9907 .- 2059-3635. ; 1
  • Journal article (peer-reviewed)abstract
    • Human intravenous immune globulin (IVIg), a purified IgG fraction composed of ~60% IgG1 and obtained from the pooled plasma of thousands of donors, is clinically used for a wide range of diseases. The biological actions of IVIg are incompletely understood and have been attributed both to the polyclonal antibodies therein and also to their IgG (IgG) Fc regions. Recently, we demonstrated that multiple therapeutic human IgG1 antibodies suppress angiogenesis in a target-independent manner via FcγRI, a high-affinity receptor for IgG1. Here we show that IVIg possesses similar anti-angiogenic activity and inhibited blood vessel growth in five different mouse models of prevalent human diseases, namely, neovascular age-related macular degeneration, corneal neovascularization, colorectal cancer, fibrosarcoma and peripheral arterial ischemic disease. Angioinhibition was mediated by the Fc region of IVIg, required FcγRI and had similar potency in transgenic mice expressing human FcγRs. Finally, IVIg therapy administered to humans for the treatment of inflammatory or autoimmune diseases reduced kidney and muscle blood vessel densities. These data place IVIg, an agent approved by the US Food and Drug Administration, as a novel angioinhibitory drug in doses that are currently administered in the clinical setting. In addition, they raise the possibility of an unintended effect of IVIg on blood vessels.
  •  
3.
  •  
4.
  • Helmers, S.B., et al. (author)
  • Limited effects of high-dose intravenous immunoglobulin (IVIG) treatment on molecular expression in muscle tissue of patients with inflammatory myopathies
  • 2007
  • In: Annals of the Rheumatic Diseases. - : BMJ. - 0003-4967 .- 1468-2060. ; 66:10, s. 1276-1283
  • Journal article (peer-reviewed)abstract
    • Objectives: The study was conducted with the aim of achieving an improved understanding of the molecular mechanisms of high-dose intravenous immunoglobulin (IVIG) in inflammatory myopathies by investigating the effects on muscle function and immunological molecules in skeletal muscle of polymyositis (PM), dermatomyositis (DM) and inclusion body myositis (IBM) patients. Methods: Thirteen treatment-resistant patients, 6 PM, 4 DM, 2 IBM and 1 juvenile DM, were treated with 2 g/kg of IVIG, three times at monthly intervals. Functional Index in Myositis and serum creatinine kinase (CK) levels were determined, and muscle biopsies were performed before treatment and after the third IVIG infusion. Immunological molecules were also studied in biopsies taken 24-48 h after the first infusion. Results: Improved muscle function was observed in three patients (1 PM, 1 DM and 1 IBM) and CK levels decreased in five. T cells, macrophages, major histocompatibility complex (MHC) class I antigen on muscle fibres, intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) expression and membranolytic attack complex (MAC) deposits on capillaries were present to an equal degree in biopsies before and after MG treatment. No correlation between the clinical response and molecular changes was found. Conclusions: The clinical effects of high-dose IVIG on muscle function in patients with refractory inflammatory active myositis did not correspond to effects on any of the investigated molecules in our study. T cells, macrophages, phenotypical changes in muscle fibres and endothelial cell activation were still present after treatment. These observations question a role for IVIG as an immune-modulating therapy in patients with inflammatory myopathies.
  •  
5.
  •  
6.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-6 of 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view